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Studies of turbulent boundary layer flow
through direct numerical simulation
Martin Skote
Department of Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract

The objective has been to study turbulent boundary layers under adverse pres-
sure gradients (APG) through direct numerical simulation (DNS). The numer-
ical code is based on a pseudo-spectral technique which is suitable for the sim-
ple geometry (flat plate) considered here. A large effort has been put into the
optimization of the numerical code on various super computers. Five large sim-
ulations have been performed, ranging from a zero pressure gradient boundary
layer to a separating flow. The simulations have revealed many features of APG
turbulent boundary layers which are difficult to capture in experiments. Espe-
cially the near-wall behavior has been investigated thoroughly, both through
the statistical and instantaneous flow.

Theoretical work based on the turbulent boundary layer equation has been
conducted with the aim to develop near-wall laws suitable for turbulence mod-
els. The conditions for self-similarity and relations between mean flow pa-
rameters have been reviewed and applied in the DNS. The results from the
simulations have confirmed the theoretical part of this work.

The turbulent flows have also been investigated using turbulence models.
A boundary layer under strong APG is difficult to predict correctly, and the
separating boundary layer is one of the most difficult flows in this respect. The
near-wall damping was improved by comparing DNS data and model predic-
tions. The asymptotic behavior of an APG boundary layer for large Reynolds
numbers has been determined through asymptotic analysis and with the aid of
turbulence models.

The DNS data have also been utilized for the investigation of instanta-
neous turbulence structures. The turbulent boundary layer was found to be
populated by near-wall low-speed streaks and vortices shaped like a horseshoe,
in agreement with earlier investigations. The instability mechanism behind the
formation of these vortices is examined through a simulation of an artificial
low-speed streak introduced in a laminar boundary layer.

The turbulence statistics from the simulations have also been compared
with other simulations of turbulent boundary layers and Couette flow.

Descriptors: Turbulence, direct numerical simulation, boundary layer, sepa-
ration, parallel computers, turbulence modelling.



Preface

This thesis considers direct numerical simulation of turbulent boundary layer
flows. The introductory part is a summary of the work contained in the nine
papers included, and thus is not a general review of the subject. The thesis is
based on and contains the following papers.

Paper 1. Skote, M., Henningson, D.S. & Henkes, R.A.W.M. 1998
Direct numerical simulation of self-similar turbulent boundary layers in adverse
pressure gradients. Flow, Turbulence and Combustion, 60, 47–85.

Paper 2. Henkes, R.A.W.M., Skote, M. & Henningson, D.S. 1997
Application of turbulence models to equilibrium boundary layers under adverse
pressure gradient. Eleventh Symposium on Turbulent Shear Flows, Grenoble,
France, 33:13–33:18.

Paper 3. Skote, M. & Henningson, D.S. 1999 Analysis of the data base
from a DNS of a separating turbulent boundary layer. Center for Turbulence
Research, Annual Research Briefs 1999, 225–237.

Paper 4. Skote, M. & Henningson, D.S. 2000 Direct numerical simula-
tion of separating turbulent boundary layers. Submitted to Journal of Fluid
Mechanics.

Paper 5. Skote, M. & Wallin, S. 2000 Near-wall damping in model pre-
dictions of separated flows. FFA TN 2000-72.

Paper 6. Komminaho, J. & Skote, M. 2000 Reynolds stress budgets in
Couette and boundary layer flows. Submitted to Flow, Turbulence and Com-
bustion.

Paper 7. Skote, M., Haritonidis J.H. & Henningson, D.S. 2000 Insta-
bilities in turbulent boundary layers. Submitted to Physics of Fluids.
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Paper 8. Alvelius, K. & Skote, M. 1999 The performance of a spectral
simulation code for turbulence on parallel computers with distributed memory.
TRITA-MEK 2000:17.

Paper 9. Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J.,

Kim, J. & Henningson, D.S. 1999 An efficient spectral method for simula-
tion of incompressible flow over a flat plate. TRITA-MEK 1999:11.

The papers are re-set in the present thesis format. Some of them are based on
publications in conference proceedings (Skote & Henningson 1997, 1998, 1999;
Skote et al. 2000).

Division of work between authors

The DNS was performed with a numerical code already in use for mainly tran-
sition research. It is based on a pseudo-spectral technique and has been further
developed by Skote (MS) for extracting flow quantities needed in turbulence
research. The necessary changes of the code for the porting to computers with
distributed memory have been completed.

The DNS in paper 1 was performed by MS. The turbulence model cal-
culations were done by MS together with Henkes (RH). The theoretical work
was performed by MS. The writing was done by MS with great help from
Henningson (DH).

The DNS data in paper 2 are the same as in paper 1. The model predictions
were conducted by RH. The paper was written mainly by RH.

The DNS data in paper 3 were taken from Na & Moin (1998). The eval-
uation of the data and the writing was done by MS with help from DH. The
theoretical part of the work was done by MS.

The DNS in paper 4 was performed by MS. The theoretical work was done
by MS. The writing was done by MS with help from DH.

In paper 5, the a priori tests were performed by MS, while the model
predictions were performed by Wallin (SW). The theoretical work and writing
was done by MS and SW together.

The Couette data were produced and evaluated by Komminaho (JK) in
paper 6. The boundary layer data were produced and evaluated by MS. JK
wrote the part about the Couette flow, while the part about the boundary layer
was written by MS.

Haritonidis (JH) came up with the original idea for the work in paper
7. The simulations were performed by MS and JH together. The stability
analysis was performed by MS with a lot of help from JH and DH. The paper
was written by MS with help from JH and DH.

The work described in paper 8 was performed by Alvelius and MS together.
It was also written together.

MS contribution in paper 9 was the pressure solver and to compile and
organize the report.
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“A dry maple leaf fell off and is dropping to the ground; its
movement is exactly like the flight of a butterfly. Isn’t it strange?
The most mournful and dead—resembles the most gay and lively.”

Ivan Turgenev





CHAPTER 1

Introduction

The phenomenon leading to such an exclaim of wonder as on the previous page
is caused by the motion of air, which mysteries are investigated in the field of
fluid mechanics.

Actually, there is no mystery at all. Newton’s second law of motion and a
constitutive relation regarding the viscous forces describe the motion in mathe-
matical terms (equations). The equations are called Navier-Stokes (N-S) equa-
tions and form together with the continuity equation (conservation of mass) a
system of four equations for the four variables: velocity vector (three compo-
nents) and pressure. However, because the flow can be complicated enough to
even resemble living things, it is difficult to solve the governing equations. In
other words, the flow is represented by a simple equation (when put in a math-
ematical formulation), but the solution may not be simple. Only very special
solutions to the N-S equations can be solved mathematically to a closed expres-
sion, i.e. the velocity vector given as a function of time and space. For more
realistic situations, the solution has to be calculated with the aid of a computer.
Alternatively, experiments have to be conducted to extract information about
the flow.

Most of the flows in nature and in technical applications are turbulent, i.e.
the velocity fluctuates rapidly in time and space. This is what makes the dry
leaf come to life. Other examples include the flow over the wing of an aircraft
and the flow of blood through our veins.

To numerically solve the N-S equations is called direct numerical simulation
(DNS) and is an enormous challenge for the super computers in use today. The
difficulties that arise when performing DNS are due to the wide range of scales
in the turbulence that need to be resolved, making the simulations large and
time consuming. By scales one means the lengths (both in time and space) that
are important for the dynamics of the flow. The large scales are determined by
the outer, geometrical constraints, and the smallest scales are determined by
the viscosity (inner friction). The range of scales is measured by the Reynolds
number.

Another example of the complexity of fluid motion, actually involving a
butterfly, is that the flap of such tiny wings might be responsible for a full
storm on the other side of the earth. This illustrates another difficulty in
the prediction of fluid flows; the sensitivity to changes in boundary conditions
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4 1. INTRODUCTION

or initial conditions, which manifests itself in, among other things, the large
uncertainty in weather forecasts.

The usual concept in research of physical phenomena is to translate the
physics to mathematics, then solve the mathematical problem, and finally
translate the answer back to physics. The construction of a mathematical model
of the physical reality usually requires some assumption about the physics —
a simplification, or at least an interpretation of nature. In the part of fluid
mechanics dealt with here, the assumptions are
i the continuum hypothesis; the molecules are so small and many that they
constitute a continuum. This is the basis of fluid mechanics, and will not be
further discussed.
ii the incompressibility of fluid; the density of the fluid is constant. The work
presented here concerns flow at relatively low speed, thus compressibility is of
no concern.
iii Newtonian fluid; the relationship between the stresses and the rates of de-
formation is linear. The work presented here concerns air or water, which are
Newtonian fluids.

A physical experiment is the natural method for extracting information
about fluid flows. Why would one want to perform a numerical simulation?
There is a number of advantages with DNS over experiments. The most obvious
ones include the information of the flow close to the wall, which is crucial in
many aspects. It is difficult to measure close to the surface, while the full
information is available from numerical data. Furthermore, to have access to
all flow variables at the same instant is important in turbulence research, and
is only possible with numerical simulations.

However, because the limited performance of computers, DNS is con-
strained to simple geometries and low Reynolds numbers. Thus, DNS is only
suitable for basic studies of turbulence.

From an engineering point of view, the information needed for the design
consists of the average of the turbulent flow. Therefore, the full N-S equations
describing every detail in time and space are not necessary, or even desirable,
to solve. It is sufficient to solve the equations for the averaged flow, which
are obtained by taking the time or ensemble average of the full N-S equations.
The equations describing the mean flow have terms included that describe the
influence of the fluctuating part of the velocity on the mean. These terms are
unknown and must be modelled, i.e. they need to be expressed in the mean
flow variables. A lot of research has been devoted to this so called turbulence
modelling. All of the numerical calculations of turbulent flows of engineering
interest are performed using turbulence models.

The flow around an object that moves in air or water is responsible for such
phenomena as drag and lift. Close to a solid surface the flow forms a boundary
layer, where the speed of the fluid relative the object rapidly decreases to
zero. In this relatively thin layer many of the most interesting features of the
aerodynamic property of the body are determined. Thus, the boundary layer is
of engineering significance in most applications. Furthermore, the flow within
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this boundary layer is often turbulent. This type of flow, called turbulent
boundary layer flow, is the topic of this thesis.

In this thesis some features of the flow are compared with theoretical ex-
pressions, obtained from the averaged N-S equations (Reynolds equations), or
more specifically, a simplified version (the turbulent boundary layer equation).
The motivation for the theoretical work is to explain the behaviour of the mean
flow of the turbulent boundary layer. Furthermore, relating the DNS data with
theoretical results give an opportunity to advance turbulence models further
than is possible if only comparisons between DNS data and model predictions
are made.

References to papers 1 through 9 will be made in the following chapters.
The papers are included in the thesis and the proper reference is stated in the
preface.



CHAPTER 2

Direct numerical simulation

2.1. Numerical method
The direct numerical simulations presented in this thesis have all been per-
formed with the spectral algorithm described in detail in paper 9. In a spectral
method the solution is approximated by an expansion in smooth functions,
e.g. trigonometric functions as in our case. The earliest applications to partial
differential equations were developed by Kreiss & Oliger (1972) and Orszag
(1972), who named the method pseudo-spectral. The term pseudo-spectral
refers to the multiplications in the non-linear terms, which are calculated in
physical space to avoid the evaluation of convolution sums. The transforma-
tion between physical and spectral space can be efficiently done by Fast Fourier
Transform (FFT) algorithms that became generally known in the 1960’s, see
Cooley & Tukey (1965).

The high accuracy in spectral methods compared to finite-element or finite
difference discretizations is a result of the fast convergence rate of spectral
approximations of a function. Efficient implementations of pseudo-spectral
methods can be made thanks to the low costs of performing FFTs. Moreover,
the data structure makes the algorithms suitable for both vectorization and
parallelization. However, the spectral approximation limits the applications to
simple geometries.

Pseudo-spectral methods became widely used for a variety of flows during
the 1980’s. Early turbulent boundary layer results were presented by Spalart &
Leonard (1987), who used a parallel approximation of the boundary layer. The
first spatial (no parallel approximation) turbulent boundary layer computation
was performed by Spalart & Watmuff (1993).

The algorithm used for the simulations in this thesis is similar to that
for channel geometry of Kim et al. (1987), using Fourier series expansion in
the wall parallel directions and Chebyshev series in the normal direction and
pseudo-spectral treatment of the non-linear terms. The time advancement used
is a four-step low storage third-order Runge-Kutta method for the non-linear
terms and a second-order Crank-Nicolson method for the linear terms. Aliasing
errors from the evaluation of the non-linear terms are removed by the 3/2−rule
when the horizontal FFTs are calculated.

The numerical code is written in FORTRAN and consists of two major
parts; one linear part where the equations are solved in spectral space, and one
non-linear part where the non-linear terms in the equations are computed in

6
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Figure 2.1. The boundary layer thickness δ (dashed) of a
laminar mean flow that grows downstream in the physical do-
main and is reduced in the fringe region by the forcing. The
flow profile is returned to the desired inflow profile in the fringe
region, where the fringe function λ(x) is non-zero.

physical space. The linear part needs data for one spanwise (z) position at a
time since the equations are solved in the wall normal (y) direction. The non-
linear part needs data for one y position at a time since the FFT is performed
in the horizontal directions (spanwise and streamwise). The flow variables are
stored at an intermediate level with spectral representation in the horizontal
directions and physical representation in the y direction. All spatial derivatives
are calculated with spectral accuracy. The main computational effort in these
two parts is in the FFT.

Since the boundary layer is developing in the downstream direction, it is
necessary to use non-periodic boundary conditions in the streamwise direction.
This is possible while retaining the Fourier discretization if a fringe region,
similar to that described by Bertolotti et al. (1992), is added downstream of
the physical domain. In the fringe region the flow is forced from the outflow
of the physical domain to the inflow. In this way the physical domain and the
fringe region together satisfy periodic boundary conditions. The fringe region
is implemented by the addition of a volume force F , to the Navier-Stokes
equations:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj
2

+ Fi. (2.1)

The force
Fi = λ(x)(ũi − ui) (2.2)

is non-zero only in the fringe region; ũi is the laminar inflow velocity profile
the solution ui is forced to and λ(x) is the strength of the forcing. The form
of λ(x) is designed to minimize the upstream influence. See Nordström et al.
(1999) for an investigation of the fringe region technique. Figure 2.1 illustrates
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the variation of the boundary layer thickness and the mean flow profile in the
computational box for a laminar case, as well as a typical fringe function λ(x).

The code has been thoroughly checked and used in several investigations
by a number of users on a variety of workstations and super computers.

2.2. Computer implementation
Many super computers of various types have been used for the simulations.
All of the computers have been parallel, i.e. multiple processors are working
together at the same time. The computers can be divided in two groups with
respect to processor type, and two groups with respect to memory configura-
tion.

A processor has either scalar or vector registers. A scalar processor per-
forms operations on one element at a time with fast access to memory, whereas
a vector processor performs operations on several elements at the same time.

The processors can have access to a large memory, common to all proces-
sors (shared memory), or have their own memory, unique for all processors
(distributed memory).

All combinations of the different types have been used and the computers
are listed in table 2.1.

shared memory distributed memory
scalar processor SGI Origin 200 Cray T3E, IBM SP2
vector processor Cray J90, C90, T90 Fujitsu VPP300, NWT

Table 2.1. The four categories of super computers

While the parallelization of the code on shared memory computers is
straightforward, a lot of effort was needed for the parallelization and optimiza-
tion of the code on computers with distributed memory, see paper 8. Com-
munication between processors is necessary when the operations on the data
set are to be performed in the two different parts of the code. The data set
(velocity field) is divided between the different processors along the z direction.
Thus, in the linear part, no communication is needed. When the non-linear
terms are calculated, each processor needs data for a horizontal plane. The
main storage is kept at its original position on the different processors. In the
non-linear part each processor collects the two dimensional data from the other
processors, on which it performs the computations, and then redistributes it
back to the main storage.

The tuning of a code for optimal performance consists of two parts. One
is the single processor tuning and the other is the parallel optimization. The
tuning for one processor is dependent on the type of processor, whereas the par-
allelization is connected to the memory configuration. The two main issues for
the single processor performance are the vectorized versus scalar FFT. For the
parallelization the inherent structure of the code makes it suitable for shared
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memory systems, and for distributed memory the MPI (Message-Passing In-
terface) is utilized.

An overview of the performance on the different computers used for the
simulations presented in this thesis is shown in table 2.2. The peak performance
in the table is the theoretical maximum speed you could obtain on a single pro-
cessor. This number is more closely obtained in reality for vector processors.
Note that the clock frequency usually quoted in connection with personal com-
puters is somewhat misleading in this context. The clock frequency for e.g.
the SP2 processor is only 160 MHz, but it is capable of four operation in each
clock cycle, making the top performance 640 million floating point operations
per second (640 Mflop/s).

The largest computer used for the simulations was the Numerical Wind
Tunnel (NWT) at the National Aerospace Laboratory (NAL), Tokyo. It was
built in the early 90’s and consists of 166 vector processors from Fujitsu.

Computer # processors peak performance code performance
Cray J90 1 220 1001

Cray J90 8 600
Cray C90 1 952 5221

Cray C90 4 1500
Cray T90 1 1700 710

Fujitsu VPP300 1 2200 525
Fujitsu NWT 1 1700 3202

Fujitsu NWT 64 20500
Cray T3E 1 600 302

Cray T3E 64 1900
IBM SP2 1 640 552

IBM SP2 64 3500
SGI Origin 200 1 450 53
SGI Origin 200 4 181

Table 2.2. The speed on various super computers in Mflop/s.
1 Measured with optimal vector length, same performance not
possible on several processors. 2 Not measured, but calculated
from performance on 64 processors for comparison.

2.3. Performed simulations
The adverse pressure gradient is implemented through the variation of the
streamwise velocity at the freestream (U). In all of the simulations presented
in this thesis the form of U has been,

U = U0(1 − x

x0
)m. (2.3)
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Both the exponent m and the virtual origin x0 are parameters defining the
shape of U . The parameters used in the simulations are given in table 2.3.

The simulations start with a laminar boundary layer at the inflow which is
triggered to transition by a random volume force near the wall. All the quan-
tities are non-dimensionalized by the freestream velocity (U) and the displace-
ment thickness (δ∗) at the starting position of the simulation (x = 0), where
the flow is laminar. The Reynolds number is set by specifying Reδ∗ = Uδ∗/ν at
x = 0, and the values are given in table 2.3. The length (including the fringe),
height and width of the computational box are listed in table 2.3 together with
the number of modes used. Also included in table 2.3 are the total number of
collocation points, denoted Nc.

Case Reδ∗ Lx Ly Lz Nx Ny Nz Nc m x0

ZPG 450 600 30 34 640 201 128 37 · 106 0 ∞
A1 400 450 18 24 480 121 96 13 · 106 -0.077 -60
A2 400 450 24 24 480 161 96 17 · 106 -0.15 -60
A3 400 700 65 80 512 193 192 43 · 106 -0.25 -62

SEP 400 700 65 80 720 217 256 90 · 106 -0.35 -50
Table 2.3. Numerical parameters. L denotes the size of the
computational box. N denotes the number of modes.

The five different simulations are presented in six of the nine papers in-
cluded in this thesis, as well as in a number of conference proceedings not
included. The simulations have different notations in the papers and are sum-
marized in table 2.4.

Thesis paper 1 paper 2 paper 4 paper 5 paper 6 paper 7
ZPG ZPG ZPG
A1 APG1 APG1
A2 APG2 APG2 APG1
A3 APG1 APG1 APG2

SEP SEP SEP
Table 2.4. The simulations are presented in different papers
with a notation summarized here.



CHAPTER 3

Fundamental analysis of turbulent boundary layer flows

In most applications it is the mean flow that sets the limit on the performance
and hence determines the design. The rapid turbulent fluctuations in time
and space are not in themselves as interesting as their influence on the time-
averaged flow. The equations to be solved to obtain the steady mean flow is
the averaged Navier-Stokes equations (Reynolds equations),

∂ui

∂xi
= 0, (3.1)

uj
∂ui

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2ui

∂xj
2
− d

dxj
〈u′

iu
′
j〉, (3.2)

where 〈u′
iu

′
j〉 is the Reynolds stress tensor, which is the quantity that accounts

for the influence of the turbulent fluctuations on the mean flow ui. P is the
mean pressure.

By solving equation (3.2), the mean flow ui is obtained. However, 〈u′
iu

′
j〉

is an unknown quantity that needs to be expressed in ui and its derivatives
in order to obtain a solvable equation. Thus, one objective for DNS is to
obtain turbulence statistics from which the true coupling between mean flow
and Reynolds stresses can be extracted. From the results it is possible to draw
conclusions about the validity of current turbulence models and also to develop
new models. Furthermore, the solution to equation (3.2) does not contain any
information about the instantaneous flow. However, for the coupling between
the mean flow and Reynolds stresses, the instantaneous structure of the flow
could be of importance.

3.1. The boundary layer equations
In a steady two-dimensional boundary layer the mean flow equations (3.1) and
(3.2) reduce to,

∂u

∂x
+

∂v

∂y
= 0, (3.3)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
〈u′v′〉 − ∂

∂x
(〈u′u′〉 − 〈v′v′〉), (3.4)

where u is the mean streamwise velocity, v the mean wall normal velocity,
dP
dx the pressure gradient, 〈u′v′〉, 〈u′u′〉, 〈v′v′〉 the Reynolds stresses, ρ the

11



12 3. FUNDAMENTAL ANALYSIS

density and ν the kinematic viscosity. Equation (3.4) is the turbulent analogy
to the laminar second order boundary layer approximation, i.e. terms up to
order (δ/L)2 are kept, where δ is a typical length in the normal direction and
L is a typical length in the streamwise direction. The last term in equation
(3.4) can be neglected in most situations, and the resulting equation is a first
order boundary layer approximation. This simplified turbulent boundary layer
equation will be denoted TBLE throughout this chapter. The TBLE can be
further simplified by the distinction between an inner part and an outer part.

3.2. Scalings and self-similarity
One important concept in the analysis of equation (3.4) is self-similarity, which
means that velocity profiles at different downstream positions collapse on a
single curve. In order to achieve this, proper scaling has to be used.

The concept of scaling and self-similarity has been an important tool in
physics for a long time. According to Barenblatt (1996), the first application
was made by Fourier (1822), in the context of heat conduction.

By reducing a partial differential equation — with two or more indepen-
dent variables, to an ordinary equation — with one independent variable, an
enormous simplification of the problem has been made.

The velocities and Reynolds stresses in equation (3.4) are dependent on
both x and y. However, under certain conditions the dependency can be re-
duced to only one similarity coordinate (which depends on x and y).

In turbulent boundary layer theory one usually distinguish between two re-
gions of the flow with different characteristics. The individual terms in equation
(3.4) are of different importance in the two regions of the boundary layer flow.
The viscous term is only important in the inner region, while the advection
terms are only significant in the outer part.

3.2.1. The outer part
In the outer part of a turbulent boundary layer, equation (3.4) can be reduced
to,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
− ∂

∂y
〈u′v′〉. (3.5)

The partial differential equation (3.5) is converted to an ordinary differential
equation through the rescaling,

(u − U)/uτ = F (η), −〈u′v′〉/uτ
2 = R(η),

η = y/∆(x), ∆ = Uδ∗/uτ . (3.6)

U is the freestream velocity, uτ is the friction velocity (defined in the next
section) and δ∗ is the displacement thickness. These scalings yields an equation
of the form,

−(β − 2ω)F + γF 2 − (α − 2β − 2ω)η
dF

dη
− χ

dF

dη

∫ η

0

Fdη =
dR

dη
, (3.7)
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with

α =
(

U

uτ

)2
dδ∗

dx
, β =

δ∗

τw

dp

dx
, (3.8)

ω =
1
2

δ∗

uτ

(
U

uτ

)2
duτ

dx
,

γ =
U

uτ

δ∗

uτ

duτ

dx
, χ =

U

uτ

dδ∗

dx
+

δ∗

uτ

dU

dx
.

If the scalings in (3.6) is to produce an ODE of equation (3.7), all the
terms α, β, γ, χ, ω must be constants. The conditions under which constant
parameters can occur are discussed next.

The classical treatment of the equations which involves outer and inner
equations and a matching of the solutions, leads to the logarithmic friction
law,

uτ

U
=

1
C + 1

κ ln Reδ∗
, (3.9)

where κ is the Kármán constant and Reδ∗ = Uδ∗/ν. Equation (3.9) shows that
uτ/U → 0 in the limit of very high Reynolds number. A series expansion of
the terms (3.8) in the small parameter (uτ/U) is performed in paper 2. Letting
uτ/U → 0, the asymptotic version of equation (3.7) is obtained,

−2βF − (1 + 2β)η
dF

dη
=

dR

dη
, (3.10)

which is called the defect layer equation. The same asymptotic version was
obtained by Tennekes & Lumley (1972). Also Wilcox (1993) performed an
asymptotic analysis but made some mistakes as pointed out in paper 2 and by
Henkes (1998).

A different approach to equation (3.4) is presented in paper 1, in which
the asymptotic theory is substituted with an analysis permitting a finite ratio
uτ/U . Since the logarithmic function grows very slowly when the argument
is large, a better assumption than uτ/U → 0 for moderately high Reynolds
numbers is that uτ/U ≈ constant. If uτ/U is regarded as constant and an
outer length scale varies linearly, the condition β =constant is fulfilled if the
freestream variation is of the form U ∼ xm, which was shown by Townsend
(1956) and Mellor & Gibson (1966). When specifying a profile in a power-law
form it can be written,

U = U0(1 − x

x0
)m. (3.11)

Utilizing these constraints, the TBLE becomes,

−2βF +
β

m
(1 + m)η

dF

dη

+
uτ

U

{
−βF 2 +

β

m
(1 + m)

dF

dη

∫ η

0

Fdη

}
=

dR

dη
+

1
Reδ∗

d2F

dη2 . (3.12)
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If now uτ/U → 0, the asymptotic version becomes,

−2βF +
β

m
(1 + m)η

dF

dη
=

dR

dη
. (3.13)

The relation between the equations (3.10), (3.12) and (3.13), and what
they can be used for is discussed in the next chapter.

3.2.2. The inner part
The analysis of the flow near the wall is important because many features of
the flow of engineering significance is determined in the near-wall region. In
the inner part of a zero pressure gradient boundary layer, equation (3.4) can
be reduced to,

0 = ν
∂2u

∂y2
− ∂

∂y
〈u′v′〉. (3.14)

The right hand side is interpreted as the gradient of the shear stress τ (or
actually the gradient of τ/ρ), and equation (3.14) can be integrated from the
wall to give an expression for τ itself as a function of y and x,

τ

ρ
≡ ν

∂u

∂y
− 〈u′v′〉 =

(
ν

∂u

∂y
− 〈u′v′〉

) ∣∣∣∣
y=0

(3.15)

The Reynolds stress is zero at the wall and we define the friction velocity uτ

as,

uτ ≡
√

ν
∂u

∂y

∣∣∣∣
y=0

. (3.16)

If we use the viscous scaling (or plus units); u+ ≡ u/uτ , y+ ≡ yuτ/ν and
τ+ ≡ τ/(ρu2

τ ), equation (3.15) can be written,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1, (3.17)

which implies that all the dependency on x is included in uτ . The assumption
that u+ is a function of only y+ was first made by Prandtl (1932). In the
viscous sub-layer, where the Reynolds stress is negligible, equation (3.17) can
be integrated to yield u+ = y+, i.e. the velocity profile is a function of only
one variable, which in turn depends on both x and y.

Equation (3.17) with the pressure gradient term included can be written
as,

τ+ = 1 +
(

up

uτ

)3

y+, (3.18)

with

up ≡
(

ν
1
ρ

dP

dx

)1/3

. (3.19)

The linear behavior of the total shear stress revealed in equation (3.18) was
first observed by Stratford (1959a,b).
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In the viscous sub-layer the Reynolds shear stress approaches zero and
equation (3.18) can be integrated to give,

u+ = y+ +
1
2

(
up

uτ

)3

(y+)2. (3.20)

This equation was first derived by Patel (1973), and reduces to the usual linear
profile in ZPG case, when up → 0.

It can be shown that the pressure gradient term decreases with increasing
Reynolds number. The term is thus important only for low Reynolds numbers.
However, close to separation, where uτ approaches zero, it is clear that the
terms becomes infinite, even for large Reynolds numbers.

For the ZPG case, the scaling of the total shear stress with uτ gives a self-
similar profile (τ+ = 1). From equation (3.18) it is observed that the velocity
scale uτ does not results in a self-similar expression. However, equation (3.18)
can be formulated as

τ∗ ≡ 1
u2∗

(
ν

∂u

∂y
− 〈u′v′〉

)
= 1, (3.21)

where u∗ is a velocity scale that depends on y and can be expressed as

u2
∗ = u2

τ +
u3

p

uτ
y+. (3.22)

The only velocity scale in the inner part of the ZPG boundary layer is uτ .
By normalizing the velocity gradient with y and uτ , and assume this scaling
leads to a constant non-dimensional velocity gradient for large enough y+, (see
e.g. Bradshaw & Huang (1995)), we get the equation,

y

uτ

∂u

∂y
=

1
κ

. (3.23)

When expressed in inner scales and integrated, equation (3.23) yields the log-
arithmic velocity profile.

In the APG boundary layer, the velocity scale is u∗, and using this velocity
scale in the normalization of the velocity gradient yields,

y

u∗
∂u

∂y
=

1
κ

. (3.24)

When expressed in inner scales and integrated, equation (3.24) yields,

u+ =
1
κ

(
ln y+ − 2 ln

√
1 + λy+ + 1

2
+ 2(

√
1 + λy+ − 1)

)
+ B, (3.25)

with

λ =
(

up

uτ

)3

.

A more thorough derivation of equation (3.25) is given in paper 4. Townsend
(1961), Mellor (1966) and Afzal (1996) have derived similar equations, albeit
with different methods and assumptions. Equation (3.25) will be compared
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with DNS data in the next chapter where also the corresponding equation for
the separated boundary layer will be presented.



CHAPTER 4

Turbulent boundary layers under adverse pressure
gradients

The turbulent boundary layer under an adverse pressure gradient (APG) is
decelerated, which does not mean that the turbulence intensity decreases. On
the contrary, the flow becomes even more unstable and the turbulence activity
is enhanced. The boundary layer also grows (thickens) more rapidly under the
influence of an APG. Since the momentum of the fluid is lower close to the wall
than further up in the boundary layer, the flow near the wall is more severely
affected by the pressure gradient. If the pressure gradient is strong enough, the
flow close to the wall separates, i.e. reversed flow appears.

4.1. General features
In figure 4.1 the freestream velocity (U) for all five simulations included in this
thesis are shown. These profiles constitute the boundary condition on the upper
edge of the computational box and define the APG. The resulting skin friction
(Cf ≡ 2(uτ/U)2) of the four attached boundary layers are shown in figure
4.2. As the APG is increased the Cf is reduced. If the APG is strong enough
it induces separation (Cf < 0), which occurs for the freestream distribution
used in the case SEP. The Cf for SEP is shown in figure 4.3, where also the
Cf distributions for previously completed simulations of a separated turbulent
boundary layer are included. The two earlier simulations were performed by
Na & Moin (1998) and Spalart & Coleman (1997). In figure 4.3 the x values
have been recalculated in our simulation coordinates. However, the relative
starting positions of the boundary layers cannot be calculated and are here
matched by letting the starting points of all three simulations be located at
x = 0. From figure 4.3 it is clear that the separation bubble is longer in the
present simulation (case SEP) than in the other two. In figure 4.3 the Cf

from our simulation has been calculated using the same technique as in Na &
Moin (1998) and Spalart & Coleman (1997), i.e. with a value of unity for the
freestream velocity. More results from the separated boundary layer simulation
are presented in section 4.4.

The streamwise velocity profile at x = 300 is shown for the five cases
in figure 4.4. The simulations were performed with different heights of the
computational box, as seen in figure 4.4. The heights in A3 and SEP were
actually 65 but the profiles are shown up to 45. The freestream velocity is unity

17
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Figure 4.1. U . — ZPG; - - A1; · · · A2; − · − A3; − · ·− SEP.
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Figure 4.2. Cf . — ZPG; - - A1; · · · A2; − · − A3.
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Figure 4.3. — Cf from SEP; - - Cf from Na & Moin (1998);
· · · Cf from Spalart & Coleman (1997).

only for ZPG. The profile from SEP exhibits negative values of the velocity close
to the wall, showing that separation has occurred.

The streamwise velocity fluctuations form elongated structures near the
wall in a ZPG boundary layer. It is generally thought that the structures are
weakened in an APG flow. This is illustrated in figure 4.5, where the streamwise
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Figure 4.4. Streamwise velocity profiles at x = 300. — ZPG;
- - A1; · · · A2; − · − A3; − · ·− SEP.

velocity fluctuations in a horizontal plane from ZPG, A3 and SEP are shown.
The figure shows the whole computational boxes in the spanwise direction and
excluding the transitional part and fringe region in the streamwise direction.
The dark color represents the low-speed regions and light color represents the
area containing high-speed fluid. The streaks formed in the ZPG case (figure
4.5a) are spaced 100 viscous units in the spanwise direction. The streaks in the
A3 case are shown in figure 4.5b. The structures are weakened at the end of the
domain as compared with those in the beginning, showing the damping effect
of the APG on the structures. The spacing between the structures increases
from 100 (the same as for a ZPG layer) at the beginning to about 130 at the
end, based on the local uτ .

The SEP case is shown in figure 4.5c. There are still some structures in
the separated flow, though not at all as long and frequent as in the ZPG or
A3. Before separation, which occurs at approximately x = 142, the streaks
are visible, but are rapidly vanishing in the beginning of the separated region.
There is notable increase in the streak formation around x = 350, where the
friction coefficient is at its lowest values, c.f. figure 4.3. Thus, there are indica-
tions that streaks may reappear in a separated region if the back flow is severe
enough. After the reattachment at x = 412 the streaks are not immediately
appearing, but are clearly visible after x = 450.
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Figure 4.5. Streamwise velocity fluctuations in a horizon-
tal plane at y+ = 10. (a) ZPG. (b) A3. (c) SEP. The points
denoted S and R represent the separation and reattachment
respectively.
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4.2. The outer region of the boundary layer
4.2.1. Self-similarity

The simulations presented in paper 1 showed constant β, see table 4.1. How-
ever, the functions F (η) and R(η) are not self-similar for low Reynolds numbers
as shown with DNS in paper 1. For large Reynolds numbers, the functions F (η)
and R(η) do become self-similar and converge to the asymptotic defect layer
equation given be equation (3.10), as shown with turbulence models in paper
2 and by Henkes (1998).

The shapes of F (η) from the simulations are shown in figure 4.6. The β
parameter has a strong influence on the profile shape for A3, while the A1 and
A2 profiles are closer to the ZPG profile.
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Figure 4.6. Velocity profiles at x = 300. — ZPG; - - A1;
· · · A2; − · − A3.

4.2.2. Mean flow parameters
The equation describing the outer region can be integrated from the wall to
the freestream, and thereby provide relations between mean flow parameters.
If equation (3.13) is integrated, the relation

m = − β

1 + 3β
(4.1)

is obtained, and when put back in equation (3.13), equation (3.10) is recovered.
When integrating equation (3.10) it should be noted that the wall boundary

condition is R(0) = 1 and not R(0) = 0. The reason for this is that the near-
wall region is neglected when uτ/U → 0.

The non-linear equation (3.12) can also be integrated and yields the rela-
tion,

m = − β

H(1 + β) + 2β
, (4.2)

where H is the shape factor. The limit uτ/U → 0, can now be obtained by
letting H → 1, and the relation (4.1) is recovered from (4.2).
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To compare the relations (4.1) and (4.2), a number of experiments and DNS
are summarized in table 4.1. There is obviously a much better agreement with
the non-linear theory, showing that even in high Reynolds number experiments,
the asymptotic expressions are of limited value.

The more rapidly U is decreased, the lower Cf is obtained, as shown in
figures 4.1 and 4.2. While the relative difference in U between the cases re-
mains the same, a dramatic decrease in Cf occurs between A2 and A3. In
other words, the closer to separation the boundary layer is, the more sensitive
on the freestream velocity distribution it is. The relation between m and β
should reveal this behavior. That so is the case is seen from figure 4.7, where
equation (4.2) has been plotted for the two values of H, between which separa-
tion has been observed to occur. The limiting value of m increases with H but
is confined between −0.22 and −0.25, which is consistent with the observed
values in experiments and DNS. The rapid and strongly non-linear approach
to separation (β → ∞) is consistent with the strong decrease in Cf between
A2 and A3 in figure 4.2.

Case β H m m = − β
H(1+β)+2β m = − β

1+3β

A1 0.24 1.60 -0.077 -0.097 -0.14
A2 0.65 1.63 -0.15 -0.16 -0.22
A3 4.5 1.97 -0.23 -0.23 -0.31

Bradshaw 1 0.9 1.4 -0.15 -0.20 -0.24
Bradshaw 2 5.4 1.54 -0.255 -0.26 -0.31

Sk̊are & 20.0 2.0 -0.22 -0.24 -0.33
Krogstad
Elsberry 25.0 2.45 -0.22 -0.22 -0.33
Stratford ∞ 2.5 -0.23 -0.22 -0.33
Spalart & 1.8 1.65 -0.21 -0.22 -0.28
Leonard 8.0 1.92 -0.23 -0.24 -0.32

∞ 2.3 -0.22 -0.23 -0.33
0.9 1.55 -0.18 -0.19 -0.24
5.4 1.86 -0.24 -0.24 -0.31

Table 4.1. Comparison of m from the non-linear/linear the-
ory. The data are taken from the following references (from
top to bottom) Bradshaw (1967), Sk̊are & Krogstad (1994),
Elsberry et al. (2000), Stratford (1959a), Spalart & Leonard
(1987).

4.3. The inner part of the boundary layer
4.3.1. The viscous sub-layer

Profiles in the viscous scaling are compared for the different APG cases in
figure 4.8. All of them matches closely the linear profile u+ = y+. Thus, even
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Figure 4.7. β as a function of m from equation (4.2) for
— H=2.0 and - - H=2.5.

under strong APG the inclusion of the pressure gradient term does not seem
to be of importance. However, close to separation or reattachment, when uτ is
small, the velocity profile is strongly influenced by the pressure gradient term.
In figure 4.9, a velocity profile from the SEP case (in the attached region)
illustrates the importance of the pressure gradient term.
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Figure 4.8. Velocity profiles at x = 300. — ZPG; - - A1;
· · · A2; − · − A3; ◦ u+ = y+.

4.3.2. The overlap region
An example of comparison between DNS data and equation (3.25) is shown
in figure 4.10. DNS data from the attached region (at x = 450) of the case
SEP is shown as a solid line in figure 4.10. The dashed line is equation (3.25)
and the dotted line is the logarithmic law for the ZPG boundary layer. The
value of additive constant is B = −2, which is in agreement with the earlier
investigation of the flow just upstream of separation in the simulation of Na &
Moin (1998), see paper 3.

The value of the Kármán constant, κ, has been set to 0.41 throughout
this thesis. Lately, Österlund et al. (2000) have shown that the value of the
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Figure 4.9. Velocity profile close to reattachment. — SEP;
- - equation (3.20); ◦ u+ = y+.
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Figure 4.10. Velocity profiles from SEP: — DNS; - - equation
(3.25) for x = 450 and equation (4.8) for x = 150; · · · u+ =

1
0.41 ln y+ + 5.1.

Kármán constant actually is 0.38 for large enough Reynolds number. However,
Spalart (1988) has shown that the old value of 0.41 gives good agreement for
low Reynolds numbers. In a number of earlier investigations the influence of the
Reynolds number on the Kármán constant has been debated, see e.g. Simpson
(1970).

4.4. Separation
In paper 4, one of the boundary layers was separated for a large portion of the
flow. The contours of mean streamwise velocity are shown in figure 4.11 with
positive values shown as solid lines and negative as dashed.

At the point of separation the wall shear stress is zero, i.e. uτ = 0. Thus
the scaling with uτ encounters a singularity. When considering a strong APG or
separation, the singularity can be avoided by using the velocity scale up instead
of uτ . This was noted by Stratford (1959b), Townsend (1961) and Tennekes &
Lumley (1972). By rescaling equation (3.20) the following expression for the
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Figure 4.11. SEP: contours of mean velocity. Positive values
shown as solid lines, negative as dashed.
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Figure 4.12. Velocity profile close to reattachment. — SEP;
◦ up = 1

2 (yp)2.

velocity profile in the viscous sub-layer is obtained,

up ≡ u

up
=

1
2
(yp)2 +

(
uτ

up

)2

yp, (4.3)

where yp ≡ yup/ν. In the limit of separation, when uτ → 0, equation (4.3)
reduces to

up =
1
2
(yp)2. (4.4)

Thus, in this rescaled form, the singularity is avoided. The profile from the
SEP case at reattachment is shown in figure 4.12 together with the asymptotic
expression (4.4). This is the same velocity profile as was shown in figure 4.9.
Equation (3.25) can be rewritten in the pressure gradient scaling for the overlap
region, and the resulting expression asymptotes to the square-root law when
uτ → 0,

up =
1
κ

2
√

yp + C, (4.5)

which was first obtained by Stratford (1959b).
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In the separated region the velocity gradient at the wall is negative, and
the definition of uτ needs to be changed to

uτ ≡
√

−ν
∂u

∂y

∣∣∣∣
y=0

. (4.6)

An integration from the wall was a crucial step in the derivation of the
total shear stress. Both the velocity profile in the viscous sub-layer and in
the overlap region depends on the expression for the total shear stress. In a
separated boundary layer the wall boundary condition is different due to change
of sign in the definition of uτ , which leads to a velocity profile in the viscous
sub-layer that reads,

u+ = −y+ +
1
2

(
up

uτ

)3

y+2
. (4.7)

The velocity profile in the overlap region becomes, in the separated region,

u+ =
1
κ

[
2
√

λy+ − 1 − 2 arctan
(√

λy+ − 1
)]

+ B, (4.8)

with

λ =
(

up

uτ

)3

.

One of the profiles (at x = 150) from the separated region is shown in figure
4.10 together with the profile given by equation (4.8). The additive constant
is B = −7 for the separated case. Observe that no part of the back-flow region
is shown in figure 4.10. The reader is referred to paper 4 for velocity profiles
in the back-flow region.



CHAPTER 5

Modelling of turbulence

The modelling of turbulence can be divided in three major groups. The one we
will talk about most is the Reynolds average Navier-Stokes (RANS) modelling.
With this expression it is meant that the Reynolds equations are closed by a
model for the Reynolds stresses. The second group is large eddy simulation
(LES) where the flow is resolved for the large scales while the small scales are
modelled. This is completely left out in this work. The third group is the
models based on the actual structure of turbulence. The models can e.g. be
used for RANS modelling (Perry et al. 1994) or for turbulence control purposes.

5.1. RANS modelling
If the mean flow of a turbulent flow is to be calculated by solving the equations
(3.1) and (3.2), a relation between the Reynolds stresses and the mean flow is
required.

5.1.1. Basic concepts
Often the two-dimensional boundary layer is calculated using the equations
(3.3) and (3.4) with the last term neglected. Hence, only the Reynolds shear
stress needs to be related to the velocity. The simplest relation is the mixing
length,

−〈u′v′〉+ = (l+)2
(

du+

dy+

)2

with l+ = κy+, (5.1)

which was first developed by Prandtl (1925). This relation has received a lot of
interest during the years and particularly the near-wall behavior of (5.1) is of
great importance, even for more sophisticated models. The wall is not naturally
accounted for in the relation (5.1), but a successful wall-damping function (f1)
was introduced by van Driest (1956),

f1 = 1 − exp(−y+/A+), (5.2)

which is applied on the mixing length l+ = κy+f1.
The mixing length is based on the concept of turbulent viscosity, first in-

troduced by Boussinesq (1877). The Boussinesq hypothesis can be generalized
to the form,

aij = −2
νT

K
Sij , (5.3)

where νT is the turbulent viscosity. Here we have introduced the anisotropy ten-
sor, aij ≡ 〈u′

iu
′
j〉/K − 2δij/3, and rate of strain tensor, Sij ≡ 1/2(Ui,j + Uj,i).

27
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Figure 5.1. Velocity profiles from A2 in inner scaling.
— DNS; - - DRSM; · · · Asymptotic DRSM.

There exists a number of methods to develop better models than the mixing
length for νT . In e.g. the two-equation models νT is written in the form,

νT = Cµ
K2

ε
or νT =

K

ω
, (5.4)

and two transport equations for K and ε or ω have to be solved.
There are also many models not based on the Boussinesq hypothesis. In

the differential Reynolds stress model (DRSM) the transport equations for
the Reynolds stresses themselves are solved. This leads to a much greater
computational effort than for the two-equation models. In addition, numerical
issues become important. However, in some cases the DRSM is required to
capture features of the flow that cannot be predicted by other models.

In the explicit algebraic Reynolds stress model (EARSM), the advection
and viscous diffusion of the anisotropy are neglected in the transport equations,
and an algebraic equation for the anisotropy is obtained. This kind of model
is based on a two-equation model and can be written in a similar form as a
generalized Boussinesq hypothesis.

In paper1 the DRSM of Hanjalić et al. (1995) was used to investigate
the asymptotic behavior of the boundary layer for large Reynolds numbers.
Furthermore, the model was used to predict the mean flow at the same low
Reynolds number as the DNS. The model predictions showed that low Reynolds
number effects are well captured by the DRSM. An example from the case A2
is shown in figure 5.1. The velocity profile from the low Reynolds number
DNS (solid line) is well predicted by the DRSM (dashed line). The asymptotic
profile calculated with the DRSM at high Reynolds number develops into a
self-similar profile (dotted line).
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Figure 5.2. A3 at x = 150: ◦ DNS; — non-damped
EARSM; Damped EARSM with the scaled coordinate in f1

as - - y+; · · · y∗. a) a12. b) a22.

In paper 2 a number of two-equations models were compared with DNS
data and experimental data. The general conclusion from that investigation is
that the k−ω model is reasonably accurate, while the k− ε model gives rather
large deviations for strong adverse pressure gradients.

5.1.2. Improvement of wall damping
In paper 5 the EARSM model of Wallin & Johansson (2000) was used for
the investigation of the near-wall behavior. By using DNS data in the model
expressions for the Reynolds stresses close to the wall, the influence of the
wall-damping functions can be examined. The wall-damping is based on the
van Driest function, equation (5.2). However, in an APG boundary layer,
equation (5.2) is not valid. Some of the work in the earlier mixing length
models have been concentrated on finding a relation between the constant A+

and the pressure gradient, see e.g. Granville (1989). A different method to
improve the wall-damping is used in paper 5. The viscous scaling of y in
equation (5.2) is replaced with the scalings related to the work in paper 4. The
improved near-wall damping is illustrated in figure 5.2, where the expressions
for the anisotropy are evaluated from DNS data. The DNS data is represented
with circles and the non-damped (i.e. f1 = 1) model evaluation is shown as the
solid line. By damping with f1 = 1 based on y+ the dashed line is obtained.
If y+ is replaced with y∗ ≡ yu∗/ν, where u∗ is defined from equation (3.22),
the dotted profile is obtained. Thus, the wall-damping is much improved by
changing from the viscous scaling to the relevant scaling in an APG flow.

DNS data from the case A3 was also used by Wallin & Johansson (2000)
to evaluate the damping of the EARSM model.
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5.2. Instantaneous flow structures
Turbulence does not consist of randomly fluctuating velocities. The experi-
ments of Kline et al. (1967) showed that low-speed streaks populate the near-
wall region. Since then many different types of structures and models for the
dynamics of turbulence structures have been proposed, see the introduction of
paper 7.

Most models trying to capture the essential mechanisms in turbulence are
conceptual, not predictive, in the sense they do not relate Reynolds stresses
to the mean flow, but try to explain the various steps in the production and
regeneration of turbulence. For a general review of the subject, see Robinson
(1991).

In paper 7 the instability mechanism of a turbulent low-speed streak is
addressed. Simulations of an artificial streak in a laminar boundary layer were
performed in order to examine the instability in a controlled environment. This
laminar simulation was also used for reproducing and further investigate the
results from an experimental investigation by Acarlar & Smith (1987).

The laminar streak breaks down due to an instability originating from
an inflectional velocity profile. The instability calculations using the Orr-
Sommerfeld equations gave qualitative agreement in the growth rate and stream-
wise wavenumber with the corresponding values extracted from the DNS veloc-
ity fields. The instability waves riding on the streak, roll up to form a horseshoe
vortex. Some striking similarities between the vortices that appear in the lam-
inar simulation and the ones found in a ZPG turbulent boundary layer were
found. To illustrate the qualitative agreement, a small part of the turbulent
boundary layer is shown in figure 5.3, while the laminar streak is shown in
figure 5.4. The horseshoe vortices are visualized with regions of low pressure.
The light grey structures represent the low-speed streaks and the darker ones
represent regions with low pressure. The flow is directed upward in the figures.
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Figure 5.3. The turbulent boundary layer.
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Figure 5.4. The laminar low-speed streak.



CHAPTER 6

Conclusions and outlook

The direct numerical simulations have been completed with a code which runs
efficiently on all types of super computers in use today. Besides the obvi-
ous wishes for higher Reynolds number, larger computational box and higher
resolution, there is a number of possible extensions for future DNS. A natural
extension to this work is the turbulent boundary layer with a three-dimensional
mean flow. Although some theoretical work has been presented for this type of
flow, (e.g. Degani et al. 1993), DNS would be interesting for comparison. Wall
roughness and wall curvature are also complications that are of engineering
significance.

A consistent analysis of the turbulent boundary layer equations for the
inner part in this work has given the theoretical expressions for the streamwise
velocity profile in the viscous sub-layer and overlap region. The analysis could
perhaps be extended to include complications of the kind mentioned above, see
e.g. Townsend (1976).

The work on turbulence modelling leaves some unanswered questions. The
damping of the non-linear terms in the EARSM model is one such issue.
However, the near-wall laws for APG boundary layers developed here could
be of great importance in turbulence model predictions of such flows. The
laws are suitable as boundary conditions through wall functions if well defined
freestream data are available. The work on coherent structures and their dy-
namics can be developed to obtain a more complete picture. Specially the insta-
bility mechanism of the low-speed streaks in a turbulent flow needs to be more
thoroughly investigated. The concept of two instability mechanisms present in
turbulence could lead to a more unified view on the self-sustained turbulence
regeneration cycle. The knowledge about turbulence structures should be uti-
lized in a predictive model, maybe in a similar manner as in the investigation
of Perry et al. (1994).

For more specific conclusions, the reader is referred to papers 1 through 8.
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ter in Sweden (NSC) at Linköping University, and the National Aerospace
Laboratory (NAL) in Tokyo.



Bibliography

Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar
boundary layer. Part 2. Hairpin vortices generated by fluid injection. J. Fluid
Mech. 175, 43–48.

Afzal, N. 1996 Wake layer in a turbulent boundary layer with pressure gradient:
a new approach. In IUTAM Symposium on Asymptotic Methods for Turbulent
Shear flows at High Reynolds Numbers (ed. K. Gersten), pp. 95–118. Kluwer
Academic Publishers.

Barenblatt, G. I. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics.
Cambridge University Press.

Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and nonlinear
stability of the Blasius boundary layer. J. Fluid Mech. 242, 441–474.
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Direct numerical simulation of self-similar
turbulent boundary layers in adverse pressure

gradients

By Martin Skote∗, Dan S. Henningson∗†
and Ruud A. W. M. Henkes‡

Direct numerical simulations of the Navier-Stokes equations have been car-
ried out with the objective of studying turbulent boundary layers in adverse
pressure gradients. The boundary layer flows concerned are of the equilibrium
type which makes the analysis simpler and the results can be compared with
earlier experiments and simulations. This type of turbulent boundary layers
also permits an analysis of the equation of motion to predict separation. The
linear analysis based on the assumption of asymptotically high Reynolds num-
ber gives results that are not applicable to finite Reynolds number flows. A
different non-linear approach is presented to obtain a useful relation between
the freestream variation and other mean flow parameters. Comparison of tur-
bulent statistics from the zero pressure gradient case and two adverse pressure
gradient cases shows the development of an outer peak in the turbulent energy
in agreement with experiment. The turbulent flows have also been investigated
using a differential Reynolds stress model. Profiles for velocity and turbulence
quantities obtained from the direct numerical simulations were used as initial
data. The initial transients in the model predictions vanished rapidly. The
model predictions are compared with the direct simulations and low Reynolds
number effects are investigated.

1. Introduction

The analysis of adverse pressure gradient (APG) turbulent boundary layers has
been going on for a long time. Disagreement in the approach of analysis as well
as contradiction in results from experiments are found in the literature. Only
in recent years have direct numerical simulations (DNS) of these flows become
possible, albeit for low Reynolds numbers.

The conditions needed for self-similarity as well as for the onset of separa-
tion have been the subject of several investigations. Clauser (1954) performed
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Sweden
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experiments where he adjusted the pressure gradient such that a self-similar
turbulent boundary layer was obtained. A constant non-dimensional pressure
gradient,

β =
δ∗

τw

dP

dx
,

was shown to be a condition for self-similarity. Here δ∗ is the displacement
thickness, τw is the wall shear stress and dP/dx is the pressure gradient.
Townsend (1976) and Mellor & Gibson (1966) showed that self-similarity is
obtained if the freestream variation has the form of a power law in the down-
stream direction, U ∼ xm, where U is the freestream velocity and x is the
streamwise coordinate. Townsend used non-specified length and velocity scales
and analyzed the equation describing the outer part of the turbulent boundary
layer. His analysis showed that in addition to the condition U ∼ xm the length
scale must vary linearly with the downstream coordinate. Mellor & Gibson an-
alyzed the integrated momentum equation with the length and velocity scales
∆ = (U/uτ )δ∗ and uτ , where uτ is the friction velocity. Under certain approx-
imations they obtain that for flows with β = const. the freestream variation
is U ∼ xm and ∆ ∼ x. Tennekes & Lumley (1972) analyzed the integrated
momentum equation with an assumption of sufficiently high Reynolds number,
so that the velocity defect law could be linearized, and they obtained a rela-
tion between the exponent and Clauser’s non-dimensional pressure gradient β
which reads

m = − β

1 + 3β
.

Following Clauser, a number of measurements have been carried out in self-
similar adverse pressure gradient turbulent boundary layers near separation.
Bradshaw (1967) measured three self-similar turbulent boundary layers with
m = 0,−0.15,−0.255. In the last case the turbulence intensities showed peak
values in the outer part of the layer and the boundary layer was near separation.
Sk̊are & Krogstad (1994) experiments near separation showed that the shape
factor approaches 2 and m = −0.22. In their experiments β = 20 and the shape
factor as well as the ratio uτ/U was found to be constant. They also obtained
self-similar velocity profiles. Stratford (1959a) performed measurements on a
turbulent boundary layer near separation as well as an analysis of the inner
and outer equations (Stratford 1959b). He concluded that the asymptotic form
of the separation profile near the wall is proportional to y1/2, which was also
theoretically verified by Durbin & Belcher (1992).

The value of m near separation has also been investigated theoretically.
Head (1976) used an integral method to calculate the turbulent boundary layer
for m = −0.15,−0.255,−0.35 and concluded that the solution is unique in
the first case whereas multiple solutions exist in the second. No solution was
obtained in the third case. Schofield (1981) analyzed the self-similar boundary
layers based on the Schofield-Perry law. He concluded that there is no solution
for m < −0.3 and only one solution exists for m > −0.23.
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In recent years direct numerical simulations of turbulent boundary layers
have become an important complement to experiments. Spalart (1988) carried
out DNS of a zero pressure gradient turbulent boundary layer. Spalart &
Leonard (1987) performed DNS of self-similar APG turbulent boundary layer
using a similarity coordinate system. In these simulations the shape factor
approaches 2.3 and m = −0.22 near separation. Spalart & Watmuff (1993)
compared experiments and DNS of an APG turbulent boundary layer in a
varying pressure gradient and they found good agreement. Recent simulations
have also been made past the point of separation. Coleman & Spalart (1993)
and Spalart & Coleman (1997) performed DNS of a separation bubble with
heat transfer. Na & Moin (1996) have performed DNS of a separation bubble
and they presented the Reynolds stresses and turbulent energy budgets.

Regarding self-similar adverse pressure gradient turbulent boundary layer,
both theoretical work and experiments support the idea that a power law
freestream velocity is a requirement for self-similarity. The assumption of in-
finite Reynolds number and the use of specific velocity and length scales have
given a relation between m and β. The consensus from the experiments and
DNS performed for turbulent boundary layers near separations seems to be
that separation occurs for about −0.25 < m < −0.20 with a shape factor of
about 2.

The work presented here starts in section 2 with an introduction to the
concept of self-similarity of turbulent boundary layers subjected to adverse
pressure gradients. A relation between the non-dimensional pressure gradient
and m is also derived. The numerical code for the turbulence model prediction
and the code for the DNS is described in section 3. Section 4 is devoted to
results from the DNS as well as comparison with turbulence model predictions.
In section 5 we sum up and draw conclusions.

2. Analysis of the turbulent boundary layer equations

The first part of this section consists of a review of the asymptotic behavior of
adverse pressure gradient boundary layer flows. In the second part the analysis
is extended and the restriction to asymptotically high Reynolds number is
relaxed, and in the last part the relation to earlier work is discussed.

2.1. Linearized analysis

The equations for an incompressible two-dimensional turbulent boundary layer
are

∂u

∂x
+

∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
〈u′v′〉 (2)

where u is the mean streamwise velocity, v the mean wall normal velocity,
dP/dx the pressure gradient, 〈u′v′〉 the Reynolds stress, ρ the density and ν
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the kinematic viscosity. If the pressure gradient is not too large, the scalings
in the inner part of the boundary layer remain the same as in the zero pressure
gradient case. For the outer part however, the analysis must take into account
even a weak pressure gradient. The equation describing the outer part of an
incompressible turbulent boundary layer is given by

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
− ∂

∂y
〈u′v′〉. (3)

A self-similar solution has no explicit dependence on x. Thus we seek
solutions of the form

(u − U)/uτ = F (η), −〈u′v′〉/uτ
2 = R(η), (4)

where
η = y/∆(x), ∆ = Uδ∗/uτ . (5)

Substituting these expressions into equation (3) we obtain

−2βF − (1 + 2β)η
dF

dη
=

dR

dη
, (6)

when uτ/U → 0. The classical treatment of the equations which involves outer
and inner equations and a matching of the solutions, leads to the logarithmic
friction law,

uτ

U
=

1
C + 1

κ lnReδ∗
, (7)

where κ is the Kármán constant and Reδ∗ = Uδ∗/ν. Equation (7) shows that
uτ/U → 0 in the limit of very high Reynolds number, which is utilized in
the derivation of equation (6). This derivation is given in different ways by
Tennekes & Lumley (1972), Mellor & Gibson (1966) and Henkes (1998).

From equation (6) one obtains a condition for self-similarity as a parameter
β that should be constant

β =
δ∗

τw

dP

dx
. (8)

That β should be constant follows from a balance of the skin friction force and
the pressure gradient force, as argued by Clauser (1954).

Assuming a self-similar boundary layer, we proceed to give the Tennekes &
Lumley (1972) analysis resulting in a relationship between β and m. We start
with the integrated momentum equation,(

U

uτ

)2
d

dx
Θ − 2β

H
= 1 + β, (9)

which is equation (2) integrated from the wall to the freestream. We rewrite
the velocity defect term as

u(U − u) = U(U − u) − (U − u)2. (10)
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If the velocity defect is assumed to be of order uτ , the last term is an order
uτ/U smaller than the others and can be neglected, giving

u

U

(
1 − u

U

)
→

(
1 − u

U

)
(11)

if uτ/U → 0. From this equation it is clear that the linearization is equivalent
to the assumption of a shape factor equal to unity since Θ = δ∗. The linearized
version of equation (9) thus becomes

U

uτ
2

d

dx
(∆uτ ) = 1 + 2β. (12)

By keeping the ratio uτ/U approximately constant in equation (12) Ten-
nekes & Lumley obtain a relation between m and β which reads

m = − β

1 + 3β
(13)

with
U ∼ xm. (14)

2.2. Non-linear analysis

A shape factor equal to unity is an unrealistic approximation in most practical
cases, see Fernholz & Finley (1996) for an assessment of data from experiments
on zero pressure gradient turbulent boundary layers. Since we are interested
in using a relation such as (13) for separation prediction it would be useful to
obtain results that are not restricted to asymptotically high Reynolds numbers.
We will now derive a relation between β and m without this restriction.

The full integrated momentum equation (9) can be written as
U ′δ∗

Uδ∗′
= − β

H(1 + β) + 2β + (H − 1)β(1 − uτ
′U

uτ U ′ )
, (15)

where the ′ denotes x-derivative. We have used the relation

H =
1

1 − uτ

U G
(16)

with
G =

∫ ∞

0

F 2dη. (17)

G must be constant if the boundary layer is to be self-similar, i.e. F does not
change its shape. From equation (16) the limit H → 1 as uτ/U → 0 is con-
sistent with the linearization (11) described above. The use of the limit value
uτ/U → 0 as Re → ∞ is motivated by equation (7). Since the logarithmic func-
tion grows very slowly when the argument is large, a better assumption than
uτ/U → 0 for moderately high Reynolds numbers is that uτ/U ≈ constant,
which is consistent with many of the numerical investigations and experiments
described in the introduction. If uτ/U is kept constant, which implies that

u′
τU

uτU ′ = 1, (18)
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equation (15) can be written as

U ′δ∗

Uδ∗′
= − β

H(1 + β) + 2β
= m. (19)

Equation (19) can be integrated to give

U

U0
=

(
δ∗

δ∗0

)m

, (20)

where the subscript 0 refers to the initial values at x = 0 The definition of β,
equation (8), can be written as

β = − δ∗

u2
τ

U
dU

dx
. (21)

Combining equations (20) and (21) and integrating gives

U

U0
=

[
1 − β

mδ∗0

(uτ

U

)2

x

]m

(22)

and
δ∗

δ∗0
= 1 − β

mδ∗0

(uτ

U

)2

x. (23)

Introducing x0 as a virtual leading edge where δ∗ = 0 we derive from equation
(23) that

δ∗0 =
β

m

(uτ

U

)2

x0. (24)

Using equation (24), the equations (22) and (23) can be written as

U

U0
=

(
1 − x

x0

)m

,
δ∗

δ∗0
= 1 − x

x0
. (25)

The result is that
U ∼ xm, δ∗ ∼ x, (26)

with

m = − β

H(1 + β) + 2β
. (27)

Equation (13) is recovered from equation (27) by setting H = 1.
In section 4.2.2 a comparison between the relations (13) and (27) will show

that the linearization, which might be correct for asymptotically high Reynolds
number, is insufficient for low and moderate Reynolds number flows.

2.3. Relation to previous work

Equation (15) can be integrated if the right hand side is assumed to be constant.
This was done by Mellor & Gibson (1966) who found that

U ∼ x̃m (28)

with

x̃ =
∫ x

0

uτU0

uτ0U
dx, (29)
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where m in their case is equal to the right hand side of equation (15). With
uτ/U = const. the variable x̃ in equation (28) becomes x and the results in
equations (26) and (27) are recovered. Due to the slow increase of ln(Re) with
Re, H and uτ/U are far from their asymptotic values of 1 and 0 respectively
in many experiments and DNS. They are on the other hand fairly constant
in a large range of Reynolds numbers for the same reason. Thus it seems
as equations (28) and (29) do not add substantially new information to the
non-linear theory with a constant uτ/U as an approximation.

The relation (27) was obtained by Rotta (1962), although expressed in
G and uτ/U . This work was apparently unnoticed by Townsend (1976) and
Mellor & Gibson (1966), whose work is closely related to Rotta’s.

An alternative to the procedure of letting uτ/U → 0 for high Reynolds
numbers to obtain self-similar equations, is to scale the velocity defect with U
instead of uτ to obtain full similarity of equation (3). This is done by George
& Castillo (1993). One of the consequences is that the logarithmic region in
the velocity profile is substituted by a power law region. The same scaling was
used by Townsend (1960) for the near separation case, where he also used the
half-power law, u ∼ y1/2, of Stratford (1959b). He develops a theory to predict
the experiment by Stratford (1959a) with the assumption of constant eddy
viscosity. To predict the velocity profile Townsend had to change the values of
measured constants in his calculations, e.g. the exponent m is 0.234 instead of
the measured 0.25.

Using the constraint uτ/U = const. together with U ∼ xm in equation (3)
gives instead of equation (6) the following equation

2mF − (1 + m)η
dF

dη
− uτ

U
(1 + m)

dF

dη

∫ η

0

Fdη +
uτ

U
mF 2 = −dR

dη

m

β
. (30)

Integrating this equation gives m = −1/(H + 2) which is the same as relation
(27) for β → ∞. In equation (30) the viscous term is neglected, which means
that ν(∂u/∂y)(y = 0) = 0, i.e. we implicitly obtain the case at separation.
Adding the viscous term, which reads

ν
d2F

dη2

1
∆uτ

m

β
, (31)

to the right hand side of equation (30) and integrating gives the relation

m = − β

H(1 + β) + 2β
,

which is the same as (27). In the integrations above the following relations
have been used,

−
∫ ∞

0

Fdη =
∫ ∞

0

η
dF

dη
dη = 1, (32)

∫ ∞

0

F 2dη = −
∫ ∞

0

(
dF

dη

∫ η

0

Fdη

)
dη =

H − 1
H uτ

U

. (33)
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3. Computational tools and parameters

3.1. The DNS Code

The code used for the direct numerical simulations (DNS) is developed at KTH
and FFA (Lundbladh et al. 1992, 1994). The numerical approximation consists
of spectral methods with Fourier discretization in the horizontal directions
and Chebyshev discretization in the normal direction. Since the boundary
layer is developing in the downstream direction, it is necessary to use non-
periodic boundary conditions in the streamwise direction. This is possible while
retaining the Fourier discretization if a fringe region is added downstream of
the physical domain. In the fringe region the flow is forced from the outflow
of the physical domain to the inflow. In this way the physical domain and the
fringe region together satisfy periodic boundary conditions. The fringe region
is implemented by the addition of a volume force F , to the Navier-Stokes
equations:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj
2

+ Fi. (34)

The force
Fi = λ(x)(ũi − ui) (35)

is non-zero only in the fringe region; ũi is the laminar inflow velocity profile the
solution ui is forced to and λ(x) is the strength of the forcing with a maximum
of about 1. The form of λ(x) is designed to minimize the upstream influence
and is sketched in Figure 1. The figure shows the whole computational box with
the fringe region at the end. The dotted line shows how the boundary layer
grows downstream and is forced back to its inflow value in the fringe region.
The forcing at the beginning of the fringe region is towards the boundary layer
as it would continue downstream. This is done to damp the disturbances before
the actual forcing towards the inflow profile starts. See Nordström et al. (1999)
for an investigation of the fringe region technique.

Time integration is performed using a third order Runge-Kutta method for
the advective and forcing terms and Crank-Nicolson for the viscous terms. A
2/3-dealizing rule is used in the streamwise and spanwise direction.

3.2. Numerical parameters

Results from two direct numerical simulations of APG turbulent boundary
layers as well as one zero pressure gradient case (ZPG) are presented. In the
first APG case (APG1) the pressure gradient is close to that for which the
corresponding laminar boundary layer would separate and in the second case
(APG2) the pressure gradient is the same as in Bradshaw’s first experimental
APG case (Bradshaw 1967). The pressure gradient is applied through the
variation of the freestream velocity, which is described by a power law, U ∼ xm.
For APG1 m = −0.077 and for APG2 m = −0.15, which corresponds to
β ≈ 0.24 and β ≈ 0.65 respectively. The results from the ZPG are taken from
a simulation by Henningson & Lundbladh (1995). This simulation was done
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Figure 1. Computational box with the fringe region — λ(x),
the fringe function. - - the boundary layer thickness.

with a different set of parameters, see Table 1, and is not as highly resolved
as the other two. The results are included only as a comparison to the two
APG simulations. The simulations start with a laminar boundary layer at
the inflow which is triggered to transition by a random volume force near the
wall. All the quantities are non-dimensionalized by the freestream velocity (U)
and the displacement thickness (δ∗) at the starting position of the simulation
(x = 0) where the flow is laminar. At that position Reδ∗ = 400. The length
(including the fringe), height and width of the computation box were 450 × 24
× 24 in these units for the largest case, APG2. The number of modes in this
simulation was 480 × 161 × 96, which gives a total of 7.5 million modes or 17
million collocation points. For comparison with the other cases, see Table 1.
In all simulations the fringe region has a length of 50 and the trip is located
at x = 10. The useful region starts at x = 150, which corresponds to different
values of ReΘ as also found in Table 1.

The simulations were run for a total of 4500 time units (δ∗/U), and the
sampling for the turbulent statistics was performed during the 2000 last time
units. It was verified that the accuracy of the DNS and its statistics was suf-
ficient by repeating the computation of the APG1 case on a coarser resolution
(320 × 101 × 64 modes) and with a shorter averaging time (1000 time units),
see Henkes et al. (1997). The differences between the two resolutions are shown
in Figures 2a and 2b, where the mean velocity and Reynolds stresses are shown.
The difference between the coarser grid case (APG1a) and the full resolution
case (APG1) is small even though the number of points is reduced by a factor
of almost 2/3 in all directions. The resolutions of the cases APG1 and APG2
were thus considered to be sufficient.
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Case Lx Ly Lz NX NY NZ ∆X+ ∆Z+ Useful region, ReΘ

ZPG 500 12 25 320 81 64 31 7.8 350 − 525
APG1a 450 18 24 320 101 64 24 6.5 390 − 620
APG1 450 18 24 480 121 96 16 4.3 390 − 620
APG2 450 24 24 480 161 96 13 3.6 430 − 690

Table 1. Numerical parameters.

3.3. The turbulent boundary layer code

To be able to investigate the relevance of the asymptotic analysis described
above the use of turbulence models is the only option. Direct numerical sim-
ulation is possible only for low Reynolds number flows and experiments are
performed at higher, but not high enough Reynolds number for the full asymp-
totic behavior to appear. We will also use model predictions at low Reynolds
number for comparison with DNS. It is possible to draw conclusions about the
low Reynolds number effects in the DNS data by comparing model predictions
at low and high Reynolds numbers.

The equations solved are (1) and (2) together with a closure for the Rey-
nolds shear tress 〈u′v′〉. In the calculations described here the Differential
Reynolds Stress Model of Hanjalić et al. (1995) is used. The model contains
transport equations for the Reynolds stresses, the turbulent kinetic energy and
the dissipation rate, see Appendix A. The ε equation contains a source term

Sε4 = Cε4
ε

k

(
〈v′2〉 − 〈u′2〉

) ∂u

∂x
, (36)

where ε is the dissipation rate, k the turbulent kinetic energy, 〈u′2〉 and 〈v′2〉
the streamwise and normal Reynolds stresses and Cε4 a constant. The term
(36) is a simplified version of the original term and introduced by Hanjalić &
Launder (1980). They also showed that (36) gives a significant contribution to
the ε equation in boundary layer flows with streamwise pressure gradient. For
a complete description of the model, see Henkes (1997). The calculations were
made with a parabolic boundary layer code. The discretization is based on the
finite volume method with a second-order upwind scheme in the downstream
direction. In the normal direction is either a central scheme or a first-order
upwind scheme used, depending on the ratio between the convection and dif-
fusion term. The grid is uniform in the downstream direction but stretched
in the normal direction. To account for the growth of the boundary layer in
the downstream direction, at several x positions the outer edge was increased
and the y grid points were redistributed. All the calculations presented in this
paper have been checked to be grid independent. This was done by doubling
the number of points in the x and y directions.
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Figure 2. (a) Velocity defect. (b) u+
rms and Reynolds stress

for — 480 × 121 × 96; · · · 320 × 101 × 64.

4. DNS Results

In this section the results from the direct numerical simulations are presented.
Section 4.1 deals with the flow structures. The downstream behavior of the
mean flow quantities is described in section 4.2. The results are compared with
the results obtained from the analysis of the integrated momentum equation
from section 2.2. Comparison with other DNS and experiments is also made.
In section 4.3, turbulent statistics are presented and results obtained from
the equations describing the inner part of the turbulent boundary layer are
compared with the statistics from the DNS. In the last section 4.4, results using
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Figure 3. APG2: Contours of vorticity.

the differential Reynolds stress model are compared with the low Reynolds
number DNS data. The model predictions are also extended to high Reynolds
numbers to determine the asymptotic behavior.

4.1. Flow structures

Figure 3 shows an instantaneous vorticity flow field from the APG2 case. At
x = 0 the boundary layer is laminar and at x = 10 the stochastic volume force
triggers transition. The transition to turbulence is rapid and at approximately
x = 150 the turbulent flow has become fully developed. In the turbulent region,
shear layers inclined in the downstream direction can be seen as red and yellow
contours. They indicate the presence of turbulent ’bursts’ in the near wall
region. In the outer part of the boundary layer larger scale vortical structures
can be seen. Note the ’fringe region’ at the end of the computational box,
starting at x = 400.

The streamwise velocity fluctuations close to the wall in Figure 4 show the
dominance of streamwise aligned streaks. The speed of the low speed streaks
is about 0.16 and 0.29 for the high speed streaks at the position of y+ = 10.
The spacing of the low speed streaks is about 100 plus-units. These values are
about the same as those found in zero pressure gradient turbulent boundary
layers, see Figure 5 for comparison. If the whole field in the normal direction is
shown at a value of x = 280 as in Figure 6, a second layer of ’streaks’ is found
at y = 3.5 − 8.
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Figure 4. APG2: Streamwise velocity fluctuation in a plane
y = 0.7 or y+ = 10, contours at -0.05 (dashed) and 0.05.
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Figure 5. ZPG: Streamwise velocity fluctuation in a plane
y = 0.5 or y+ = 10, contours at -0.05 (dashed) and 0.05.
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Figure 6. APG2: Streamwise velocity fluctuation in a plane
x = 280, contours at -0.05 (dashed) and 0.05.
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Figure 7. APG2: Streamwise velocity fluctuation in a plane
y = 4 or η = 0.6, contours at -0.05 (dashed) and 0.05.

If plotted in a plane at y = 4 (Figure 7) it can be seen that the streaky
structures in the outer part of the boundary layer are shorter and wider com-
pared to the ones closer to the wall. The upper streaks are also present in the
zero pressure gradient case and are not a consequence of the adverse pressure
gradient, but they are intensified by the pressure gradient and can be related
to the outer maximum observed in the turbulent kinetic energy and turbulent
production. This observation is further discussed in section 4.3.2. Comparing
Figures 4 and 5 the streaks close to the wall also become shorter for stronger
adverse pressure gradients. In the DNS of Spalart & Leonard (1987) for a tur-
bulent boundary layer near separation the streaks have become so thick and
short that they are instead aligned in the spanwise direction. A part of the
computational box is shown in Figure 8 for the APG2 case. The color bar in-
dicates the streamwise disturbance velocity. The contour plots are at the blue
level of -0.08. Notice the long streaks close to the wall and the shorter streaks
located in the upper part of the boundary layer.

4.2. Mean flow characteristics

4.2.1. Self-similarity

The β-parameter is shown for the two APG cases in Figure 9a, and H as a
function of ReΘ for all three cases in Figure 9b. The β-parameter is close to
constant and the shape factor varies slowly, particularly for the higher adverse
pressure gradient. As seen in Figure 10 the Clauser parameter, G (equation
17), is about 7.6 for APG1 and varies between 8.0 and 8.3 for APG2 (further
discussed in section 4.4.1). Thus we can conclude that the simulations fulfill the
requirements for self-similarity reasonably well. In Figure 11 the skin friction,
Cf , is shown together with the freestream velocity. Cf is lower for higher
pressure gradients and would become zero at separation. Note that the figures
showing β and Cf include the small laminar state and the transitional region.

The velocity profiles from the two present simulations are compared with
Spalart’s ZPG case (Spalart 1988) at almost the same Reynolds number ReΘ =
670 in Figure 12. There is a small shift downward of the logarithmic part, but
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Figure 8. APG2: Streamwise velocity fluctuations. The
color bar indicates the streamwise disturbance velocity. The
level of the contour plot is −0.08. The streamwise direction is
upward in the figure. The extension of the box is x=246—319,
y=0—15, z=-12—12.

the log-region is too small to draw any conclusions about the effect of the
adverse pressure gradient on the log-law.

As the β-parameter is constant we might expect a self-similar boundary
layer. From the velocity profiles in the outer scaling at positions downstream
(Figure 13b), it is difficult to draw any conclusions about self-similarity in the
outer part of the boundary layer since the Reynolds number variation is small.
In the inner scaling, the self-similarity is very clear since the velocity profiles
collapse in the inner part as seen in Figure 13a.
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Figure 9. (a) β for the two APG cases. (b) H. — ZPG;
· · · APG1; - - APG2.

4.2.2. Separation prediction

In Table 2 we have compiled data from the present simulations, together with
data from existing experiments and numerical simulations. The relationship
between β and m obtained from the linear, equation (13), and non-linear,
equation (27), theories are evaluated. The overall conclusion from the table is
that the relation from the non-linear analysis is in much better agreement with
the measured and simulated cases than the linearized relation. It should be
noted that the considered cases have widely different Reynolds numbers.
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Figure 10. (a) G for APG1. (b) G for APG2. — DNS; - - DRSM.

The first two cases are the simulations presented here. The non-linear re-
lation is in better agreement for the stronger pressure gradient (APG2). This
might be explained from Figure 9b where the shape factor is closer to a con-
stant in APG2 than APG1. Bradshaw’s two measurements (Bradshaw 1967)
are shown next, where a better agreement is obtained for the stronger pres-
sure gradient. Sk̊are & Krogstad (1994) performed experiments on turbulent
boundary layers near separation. The agreement with the non-linear relation
is excellent while the linear counterpart does not agree. We also see that the
shape factor is about two and not one as the linear analysis requires. The data
from the measurements by Stratford (1959a) of a turbulent boundary layer near
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Figure 11. (a) Cf . (b) U. — ZPG; · · · APG1; - - APG2.

separation lead to the same conclusions as the previous case. The last five cases
are from the DNS of Spalart & Leonard (1987). The agreement is good for all
these cases, the first two are equivalent to the measurements by Clauser (1954),
and the third one is near separation. These simulations were performed using a
similarity coordinate system which permitted temporal simulations of spatially
developing boundary layer. They also performed simulations of Bradshaw’s
two cases by using the same value of β. The first case corresponds closely to
our APG2. The Reynolds number based on the displacement thickness is the
same in their simulation as at the end of our spatial simulation. Their value of
the shape factor is lower than ours, and m is more negative.
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Figure 12. Velocity profiles in the inner scaling for
— Spalart; · · · APG1; - - APG2.

Case β H m m = − β
H(1+β)+2β m = − β

1+3β

APG1 0.24 1.60 -0.077 -0.097 -0.14
APG2 0.65 1.63 -0.15 -0.16 -0.22

Bradshaw 1 0.9 1.4 -0.15 -0.20 -0.24
Bradshaw 2 5.4 1.54 -0.255 -0.26 -0.31

Sk̊are & 20.0 2.0 -0.22 -0.24 -0.33
Krogstad
Stratford ∞ 2.5 -0.23 -0.22 -0.33
Spalart & 1.8 1.65 -0.21 -0.22 -0.28
Leonard 8.0 1.92 -0.23 -0.24 -0.32

∞ 2.3 -0.22 -0.23 -0.33
0.9 1.55 -0.18 -0.19 -0.24
5.4 1.86 -0.24 -0.24 -0.31

Table 2. Comparison of m from the non-linear/linear theory.

Using the linearized relation (13) gives a value of the parameter m = −0.33
for all three investigations of near separation in Table 2. The non-linear relation
(27) reduces to m = −1/(H + 2), which gives much more realistic values of m
since the shape factor in the experiments is far from its asymptotic value of
one in the near separation cases.

The conclusion from this comparison is that the approximation uτ/U =
const. can be used successfully if one is interested in obtaining relations between
mean flow parameters at low and moderate Reynolds numbers. Even though
the Reynolds number in experiments is high enough to get self-similarity, the
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Figure 13. APG1: Velocity profiles for five positions down-
stream, starting at x = 150 with an increment of 50, ending
at x = 350. (a) Inner scaling. (b) Outer scaling.

slow variation of H and thus uτ/U makes the approximation uτ/U → 0 unsuit-
able as a starting point for the analysis of the equations. This slow variation is
also evident in the calculations with turbulence models, which will be described
later.



DNS of self-similar turbulent boundary layers 61

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

τ+

y+

Figure 14. Shear stress. — ZPG; · · · APG1; - - APG2.
Shear stress evaluated from equation (40) diverges, whereas
the total shear stress from DNS approaches zero for large y+.

4.3. Higher order statistics

4.3.1. Scalings in the inner part of the boundary layer

The equations governing the inner part of an adverse pressure gradient bound-
ary layer are the continuity equation (1) and the momentum equation (2) with
the non-linear, advective terms neglected, i.e.

0 = −1
ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
〈u′v′〉. (37)

When using the inner length and velocity scales ν/uτ and uτ respectively,
equation (37) can be written as

0 = − β

Re∗
+

∂2u+

∂y+2 − ∂

∂y+
〈u′v′〉+, (38)

where Re∗ = (uτδ∗)/ν. If the ratio β/Re∗ is smaller than the other terms,
the equation reduces to the same one that governs the inner part of a ZPG
boundary layer. However, for APG cases at low Reynolds numbers or close to
separation this term cannot be neglected. Equation (38) can be written as

∂

∂y+

(
∂u+

∂y+
− 〈u′v′〉+

)
=

β

Re∗
=

ν

u3
τ

1
ρ

dP

dx
(39)

and after integration, one finds the following expression for the total shear
stress

τ+ ≡ ∂u+

∂y+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1
ρ

dP

dx
y+. (40)
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The total shear stress, τ+, from the DNS and the curves τ+(y+) represented
by equation (40) are shown in Figure 14. The term

β

Re∗
=

ν

u3
τ

1
ρ

dP

dx
(41)

is evidently important for the shear stress distribution in the inner part of the
boundary layer at low Reynolds numbers. If we define a new velocity scale,

up =
(

ν
1
ρ

dP

dx

)1/3

, (42)

the term (41) can be written as

β

Re∗
=

(
up

uτ

)3

. (43)

One might expect that it is the magnitude of the ratio between the two velocity
scales up and uτ that determines which one to use in the scaling of equation
(37). If up and ν/up are used as the velocity and length scales respectively, the
integrated version of equation (37) becomes

∂up

∂yp
− 〈u′v′〉p = yp +

(
uτ

up

)2

. (44)

If uτ � up, i.e. the boundary layer is close to separation, the scalings based
on up should be used, but for the APG cases considered here, uτ is the proper
scaling, which is evident from Figure 13a, where the velocity profiles for down-
stream positions are shown. The profiles collapse on the curve u+ = y+ in the
viscous sub-layer, which is consistent with equation (40), which reduces to

∂u+

∂y+
= 1 (45)

when y+ → 0.
When multiplying equation (40) by ∂u+/∂y+ we get the mean energy bud-

get. (
∂u+

∂y+

)2

− 〈u′v′〉+ ∂u+

∂y+
=

∂u+

∂y+
+

β

Re∗
y+ ∂u+

∂y+
. (46)

The same equation is obtained if equation (38) is multiplied by u+. The terms
are noted from left to right: direct dissipation, production, transport and pres-
sure gradient term. The mean budget for the APG2 case in the inner region is
shown in Figure 15a. The largest contribution in the near wall region comes
from the direct dissipation which is balanced by the transport term. At y+ = 5
the pressure gradient term has reached its maximum and then stays constant.
The production of turbulent energy has its maximum at y+ = 9 where the pro-
duction and direct dissipation are equal in magnitude. All the terms balance
each other, though the total sum deviates from zero at large values of y+. If
the advective terms also are included in the total budget, the sum becomes
zero but these terms are small compared to the others.
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Figure 15. Energy budget for DNS: - - Dissipation; · · · Pro-
duction; - · · - Transport; - · - Pressure gradient term; — Total.
(a) DNS. (b) DRSM, asymptotic.

The same energy budget but for the DRSM prediction is almost identical.
More interesting is to look at the budget for the high Reynolds number case,
which is shown in Figure 15b. Here the pressure gradient term has vanished
from the budget. This is due to the term 1/Re∗ in the pressure gradient term
in equation (46). The sum of the terms is zero which implies that the advective
terms no longer has any influence on the inner layer.
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Figure 16. u+
rms at x = 300. — ZPG; · · · APG1; - - APG2.

(a) Inner scaling. (b) Outer scaling.

4.3.2. The Reynolds stresses and turbulent production

In Figure 16 urms for the ZPG/APG cases are shown in inner and outer scaling
for the same streamwise station. There is only a slight difference between
the cases in the inner region but in the outer region the tendency towards a
second peak in the urms profile for the highest pressure gradient marks a clear
difference. This outer maximum has been observed in a number of experimental
studies, such as Bradshaw (1967), Samuel & Joubert (1974), Nagano et al.
(1992) and Sk̊are & Krogstad (1994). The production term in the turbulent
energy budget also has an outer peak for the higher pressure gradient case, as
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Figure 17. (a) Production at x = 300. (b) Dissipation at
x = 300. — ZPG; · · · APG1; - - APG2.

seen in Figure 17a. These outer peaks in the turbulent energy and production
might be related to the enhanced streak formation in the outer part of the
boundary described in section 4.1. There are no outer peaks in the vrms and
wrms profiles.

The location of the inner maximum of the production can be motivated by
the form of the near-wall limit of the turbulent boundary layer equations. The
integrated inner equation for the ZPG case can be written as

−〈u′v′〉+ = 1 − ∂u+

∂y+
. (47)
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Figure 18. APG1: Reynolds shear stress profiles for five po-
sitions downstream, starting at x = 150 with an increment of
50, ending at x = 350. (a) Inner scaling. (b) Outer scaling.

When used in the expression for the turbulent production

p+ = −〈u′v′〉+ ∂u+

∂y+
, (48)

this yields

p+ =
(

1 − ∂u+

∂y+

)
∂u+

∂y+
. (49)
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p+ has a maximum of 0.25 at the position where ∂u+/∂y+ = 0.5. The inner
maximum is increased due to the pressure gradient but the position is not
changed as can be seen in Figure 17a.

The dissipation is shown in Figure 17b, where an increased dissipation for
higher pressure gradients is observed near the wall.

The profiles for the Reynolds stress in the outer scaling (Figure 18b) show
that self-similarity is not yet obtained since the maximum grows downstream.
In the inner scaling the profiles collapse as seen in Figure 18a. This non-
similarity in the outer part is due to low Reynolds number, as will be more
clearly understood when a comparison with model predictions is made in the
next section, where also the higher order statistics from the DNS will be con-
sidered.

4.4. Comparison with turbulence model predictions

Henkes (1998) has tested some turbulence models for high Reynolds number
self-similar APG turbulent boundary layers at high Reynolds number. All the
tested models, k− ε, k−ω and differential Reynolds stress models, give results
that approach the same asymptotic scalings for the velocity and the Reynolds
shear stress. However, differences occur in the scaled similarity profiles, as
well as in parameters like H, G and Cf . When comparing with available
experiments at moderate Reynolds numbers, the differential Reynolds stress
model turns out to be superior to the others. Here we will use the Differential
Reynolds Stress Model (DRSM) of Hanjalić et al. (1995) described in section
3.3 for both the high and low Reynolds number predictions.

4.4.1. Low Reynolds number

In this section calculations with the DRSM performed at low Reynolds num-
bers for comparison with data from our DNS (Henkes et al. 1997) are presented.
Mean turbulent profiles for the velocities, Reynolds stresses and the dissipa-
tion from the DNS at x = 150 were used as initial data. Comparison was made
at x = 350 for APG1 and x = 335 for APG2. At these positions the ReΘ

is approximately 620 for APG1 and 690 for APG2. The DRSM calculations
show that transients are dominating in the beginning of the calculations but
at the point of comparison with the DNS-data the solution is not sensitive to
small changes in initial data. It was also checked that changes in the length and
velocity scales of the initial data did not affect the solution at the point of com-
parison. Thus the comparison is meaningful since the difference between the
model predictions at low and high Reynolds number are due to the dependence
on the Reynolds number and not to the influence of the initial conditions.

The shape factor is shown in Figures 19a and 19b for APG1 and APG2.
After the decay of the initial transients the Reynolds number dependence of
the shape factor is captured by the model, although there is a slight offset
in the numerical values. The comparison of the Clauser parameter G for the
DNS and DRSM is shown in Figures 10a and 10b. As in the case of the shape
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Figure 19. (a) H for APG1. (b) H for APG2. — DNS; - - DRSM.

factor, the Reynolds number dependence is captured after the decay of the
initial transients. The profiles for the mean velocity, the Reynolds stress and
urms from the model predictions are compared with the DNS data in Figures
20 to 22. Only the APG2 case is shown since here the differences between DNS
and DRSM are larger than for the APG1 case. The self-similar high Reynolds
number profiles according to the DRSM are also shown in these figures for
comparison, but will be discussed more thoroughly in the next section.

In Figures 20a and 20b the mean velocity profiles from the DNS and DRSM
are shown together with the self-similar high Reynolds number profile. At the
point of comparison, only a small logarithmic part in the inner layer is found as
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Figure 20. Velocity profiles for APG2. — DNS; - - DRSM;
· · · Asymptotic. (a) Inner scaling. (b) Outer scaling.

seen in Figure 20a. The agreement between the DRSM and DNS in the inner
part is excellent. The velocity profiles in the outer scaling do not show very
large differences between the DNS, DRSM and the asymptotic DRSM profile as
seen in Figure 20b. The Reynolds stress profiles in the inner and outer scalings
are shown in Figures 21a and 21b. In the near wall region, the DRSM profile
is in close agreement with DNS and the deviation from the asymptotic profile
is well captured by the model. The plateau value of 1 seen in the asymptotic
profile has not yet been developed. The peak in the profiles belongs to the outer
part of the boundary layer as seen in Figure 21b and is larger in the asymptotic
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Figure 21. Reynolds stress for APG2.— DNS; - - DRSM;
· · · Asymptotic. a) Inner scaling. b) Outer scaling.

profile. Figure 21b also reveals that the DRSM gives a profile below the DNS in
the outer part of the boundary layer. The urms profiles in the inner and outer
scalings are shown in Figures 22a and 22b. In the near wall region region, the
profile from the DRSM is closer to the asymptotic profile than the DNS profile.
The inner peak value in the asymptotic profile is lower than the peaks in the
low-Re profiles. In the outer scaling, shown in Figure 22b, the DRSM profile
is below the DNS profile in the same way as for the Reynolds stress profiles.
The outer peak seen in the low-Re profiles is still relatively far from its value
in the asymptotic DRSM profile. By comparing the inner and outer peaks in
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Figure 22. u+
rms for APG2. — DNS; - - DRSM; · · · Asymp-

totic. a) Inner scaling. b) Outer scaling.

the urms profiles, we may conclude that turbulent energy is transfered from the
inner part to the outer part of the boundary layer when the self-similar state
is approached.

These results show that although differences between the DRSM solution
at Reθ = 690 and the similarity solution are significant, the results with the
DRSM closely agree with the DNS at ReΘ = 690. This suggests that the
DRSM reproduces the physics of adverse pressure gradient boundary layers at
relatively low Reynolds numbers.
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Figure 23. High Reynolds number profiles: a) Velocity de-
fect. b) u+

rms and −〈u′v′〉+. · · · APG1; - - APG2.

4.4.2. High Reynolds number

DRSM predictions of the two adverse pressure gradients cases, APG1 and
APG2, were started at the same Reynolds number at which the DNS was
performed and then continued up to very high Reynolds number. Above ReΘ

of about 104 the velocity and Reynolds stress profiles in the outer scaling are
self-similar.

The self-similar velocity profiles in the inner scaling, (Figure 23a), show
that the slope of the asymptotic profile, i.e. the Kármán constant, does not
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Figure 24. a) H. b) G. · · · APG1; - - APG2.

change with the pressure gradient. In Figure 23b the self-similar Reynolds
stress and urms profiles are shown in the outer scaling. The peaks in the
profiles are the outer ones. The inner peak of the urms and the plateau value
of 1 for the Reynolds shear stress are not visible in the outer scaling. Compare
with the Figures 21 and 22 where the asymptotic profiles are shown in both the
inner and outer scalings. It is only for the APG2 case that the outer peak in the
urms profile appears. Apparently the adverse pressure gradient in APG1 is too
weak for an outer peak to develop. The asymptotic behavior of H and G are
shown in Figures 24a and 24b. H should approach 1 and G a constant value at
infinite Re. The figures show that the asymptotic values and therefore complete
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self-similarity are far from being reached although the Reynolds number is very
large. The values are further from the asymptotic values for APG2 than for
APG1.

From the mean velocity and Reynolds stress profiles one might conclude
that self-similarity is obtained, but the downstream variation of H and G show
that the asymptotic state of the flow is very slowly approached. In the experi-
ments by Sk̊are & Krogstad (1994) the results were interpreted as self-similarity
although the constant shape factor was far from the asymptotic value. These
experiments were performed at ReΘ between 104 and 105, and the results can
be explained by the high Reynolds number behavior of the velocity profile and
the shape factor which appear to be constant if the Reynolds number is not
varied enough. The slow variation of mean flow parameters was also utilized
to derive the mean flow relations in section 2.2.

5. Summary and Conclusions

DNS of the Navier-Stokes equations has been carried out with the objective of
studying APG turbulent boundary layers. The pressure gradient parameter is
found to be constant when the freestream velocity varies according to a power
law, which has also been shown to follow from the turbulent boundary layer
equations. To relate the exponent in the power law to the pressure gradient
parameter, an analysis based on the assumption of asymptotically high Rey-
nolds number was first reviewed. The assumption implies that the ratio of
the friction velocity to the freestream velocity is zero. This is obtained from
the logarithmic friction law and the matching of inner and outer solution of
the mean turbulent boundary layer equations. Another consequence of the
assumption is that the shape factor becomes one, which is equivalent to a lin-
earization of the velocity defect. The mean turbulent flow was investigated
with a differential Reynolds stress model for high Reynolds numbers. These
investigations showed that even at very high Reynolds number the asymptotic
value for the shape factor is still far from being obtained although a self-similar
state of the velocity and Reynolds shear stress profiles has been reached. This
is also evident from a number of experiments and can also be related to the
fact that the logarithmic function increases slowly when the argument is large.
These observations motivated a different approach to the analysis of the mean
turbulent boundary layer equations.

A non-linear analysis of the equations describing the mean flow based on
the approximation of a constant ratio of the freestream velocity to the friction
velocity was presented. The analysis leads to a relation for the power law, in
which both the pressure gradient parameter and the shape factor appear. This
relation gives better agreement with available numerical and physical experi-
ments than the linearized analysis. It was shown that the agreement is better
over a range of different Reynolds numbers, particularly regarding the param-
eters for which separation occurs. The relation from the linearized, asymptotic
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analysis is recovered from the new relation obtained from the less restricted
analysis by letting the shape factor become one.

Comparison of turbulent statistics from the ZPG and the two APG cases
shows the development of a second peak in the turbulent energy in agreement
with experiment. The analysis of the inner equations and investigation of the
behavior of the total shear stress showed that the pressure gradient parameter
is also important in the inner layer at the low Reynolds number flows per-
formed with DNS. The Reynolds shear stress profiles showed no self-similar
state although the pressure gradient parameter was constant. This is due to
low Reynolds number effects and motivated the use of model predictions to
first try to reproduce the low Reynolds number effects and then increase the
Reynolds number as to obtain the self-similar state.

The differential Reynolds stress model was used to predict the mean flow
at the same low Reynolds number as the DNS. Initial data for the model pre-
dictions were taken from the DNS at the lowest Reynolds number where fully
developed turbulence was obtained. After the decay of some small initial tran-
sients the Reynolds number dependence of mean flow parameters such as the
shape factor and Clauser parameter, was captured by the model. Compari-
son with data from DNS at the highest Reynolds number obtained, showed
that low Reynolds number effects are well captured by the model. The model
predictions could be continued up to high Reynolds numbers to obtain self-
similarity. By comparing the profiles at low and high Reynolds numbers, the
lack of self-similarity in the Reynolds stress profiles in the DNS could thus be
attributed to effects of low Reynolds number.
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Appendix A.

The two-dimensional boundary layer equations for the Differential Reynolds
Stress Model of Hanjalić et al. (1995) are:

Conservation of mass:

∂u

∂x
+

∂v

∂y
= 0. (50)

Conservation of momentum:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
〈u′v′〉. (51)

Equation for the Reynolds shear stress:
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u
∂〈u′v′〉

∂x
+ v

∂〈u′v′〉
∂y

=
∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂〈u′v′〉

∂y

]
+ P12 + Φ12 − ε12, (52)

with

P12 = −〈v′2〉∂u

∂y
,

Φ12 = −
(

C1 +
3
2
Cw

1 fw

)
ε

k
〈u′v′〉 +

(
1 − 3

2
Cw

2 fw

)
C2〈v′2〉∂u

∂y
,

ε12 = εfs
〈u′v′〉

k

1 + fd

1 + 3
2
〈v′2〉

k fd

.

Equations for the Reynolds normal stresses:

u
∂〈u′2〉

∂x
+ v

∂〈u′2〉
∂y

=
∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂〈u′2〉

∂y

]
+ P11 + Φ11 − ε11, (53)

u
∂〈v′2〉

∂x
+ v

∂〈v′2〉
∂y

=
∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂〈v′2〉

∂y

]
+ P22 + Φ22 − ε22, (54)

u
∂〈w′2〉

∂x
+ v

∂〈w′2〉
∂y

=
∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂〈w′2〉

∂y

]
+ P33 + Φ33 − ε33, (55)

with

P11 = 2Pk, P22 = 0, P33 = 0, Pk = −〈u′v′〉∂u

∂y
,

Φ11 = −C1ε

(
〈u′2〉

k
− 2

3

)
+ Cw

1 fw
ε

k
〈v′2〉 − 2

3
C2Pk(2 − Cw

2 fw),

Φ22 = −C1ε

(
〈v′2〉

k
− 2

3

)
− 2Cw

1 fw
ε

k
〈v′2〉 +

2
3
C2Pk(1 − 2Cw

2 fw),

Φ33 = −C1ε

(
〈w′2〉

k
− 2

3

)
+ Cw

1 fw
ε

k
〈v′2〉 +

2
3
C2Pk(1 + Cw

2 fw),

ε11 = ε

[
2
3
(1 − fs) + fs

〈u′2〉
k

1

1 + 3
2
〈v′2〉

k fd

]
,
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ε22 = ε

[
2
3
(1 − fs) + fs

〈v′2〉
k

1 + 3fd

1 + 3
2
〈v′2〉

k fd

]
,

ε33 = ε

[
2
3
(1 − fs) + fs

〈w′2〉
k

1

1 + 3
2
〈v′2〉

k fd

]
.

Equation for the turbulent kinetic energy:

u
∂k

∂x
+ v

∂k

∂y
=

∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂k

∂y

]
+ Pk − ε. (56)

Equation for the dissipation rate of turbulent energy:

u
∂ε

∂x
+ v

∂ε

∂y
=

∂

∂y

[(
ν + Cε

k

ε
〈v′2〉

)
∂ε

∂y

]
+ Cε1fε1

ε

k
Pk − Cε2fε2

εε̃

k
+

+Cε3fµ〈v′2〉
(

∂2u

∂y2

)2

+ Sε4 + Sl, (57)

with

ε̃ = ε − 2ν

(
∂
√

k

∂y

)2

,

Sl = max

{[(
1
Cl

∂l

∂y

)2

− 1

] (
1
Cl

∂l

∂y

)2

; 0

}
εε̃

k
A,

l =
k3/2

ε
,

Sε4 = Cε4
ε

k

(
〈v′2〉 − 〈u′2〉

) ∂u

∂x
.

C1, C2, C
w
1 , Cw

2 are functions which depend on the local turbulence-based
Reynolds number, Ret = k2/(νε), the invariant parameter of the stress anisotropy
tensor, A, and the invariant parameter of the dissipation anisotropy tensor, E.

A is defined as
A = 1 − 9

8
(A2 − A3),

with A2 = aijaji, A3 = aijajkaki and aij = 〈u′
iu

′
j〉/k − (2/3)δij .

E is defined as
E = 1 − 9

8
(E2 − E3),

with E2 = eijeji, E3 = eijejkeki and eij = εij/ε − (2/3)δij .
The functions in the pressure-strain correlation in the equations for the

turbulent stresses are taken as

C1 = C +
√

AE2, C2 = 0.8
√

A,
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Cw
1 = max{1 − 0.7C; 0.3}, Cw

2 = min{A; 0.3},
with

C = 2.5AF 1/4f, F = min{0.6;A2}, f = min

{(
Ret

150

)3/2

; 1

}
.

The functions and constants in the equation for the dissipation rate are
taken as

fs = 1 −
√

AE2, fd =
1

1 + 0.1Ret
,

Cε = 0.18, Cε1 = 1.44, Cε2 = 1.92, Cε3 = 0.25, Cε4 = 2.6,

fµ = 1, fε1 = 1, fε2 = 1 − Cε2 − 1.4
Cε2

exp

[
−

(
Ret

6

)2
]

.

Finally, Cs = 0.22, Cl = 2.5 and

fw = min
{

k3/2

Cwεy
; 1.4

}
with Cw = 2.5.

For further details about the various terms included in the equations above,
see references Henkes (1997) and Hanjalić et al. (1995).
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Hanjalić, K. & Launder, B. E. 1980 Sensitizing the dissipation equation to irro-
tational strains. J. Fluids Eng. 102, 34–40.

Head, M. R. 1976 Equilibrium and near-equilibrium turbulent boundary layers. J.
Fluid Mech. 73, 1–8.



DNS of self-similar turbulent boundary layers 79

Henkes, R. A. W. M. 1997 Comparison of turbulence models for attached boundary
layers relevant to aeronautics. Appl. Sci. Res. 57, 43–65.

Henkes, R. A. W. M. 1998 Scaling of equilibrium boundary layers under adverse
pressure gradient using turbulence models. AIAA J. 36, 320–326.

Henkes, R. A. W. M., Skote, M. & Henningson, D. S. 1997 Application of tur-
bulence models to equilibrium boundary layers under adverse pressure gradient.
Eleventh Symposium on Turbulent Shear Flows, Grenoble, France.

Henningson, D. S. & Lundbladh, A. 1995 Evaluation of turbulence models from
direct numerical simulations of turbulent boundary layers. FFA-TN 1995-09,
Aeronautical Research Institute of Sweden, Bromma.

Lundbladh, A., Henningson, D. S. & Johansson, A. V. 1992 An efficient spectral
integration method for the solution of the Navier-Stokes equations. FFA-TN
1992-28, Aeronautical Research Institute of Sweden, Bromma.

Lundbladh, A., Schmid, P. J., Berlin, S. & Henningson, D. S. 1994 Simula-
tion of bypass transition in spatially evolving flows. Proceedings of the AGARD
Symposium on Application of Direct and Large Eddy Simulation to Transition
and Turbulence, AGARD-CP-551.

Mellor, G. L. & Gibson, D. M. 1966 Equilibrium turbulent boundary layers. J.
Fluid Mech. 24, 225–253.

Na, Y. & Moin, P. 1996 Direct numerical simulation of studies of turbulent bound-
ary layers with adverse pressure gradient and separation. Tech. Rep. TF-68.
Thermosciences Division, Department of Mechanical Engineering, Stanford Uni-
versity.

Nagano, Y., Tagawa, M. & Tsuji, T. 1992 Effects of adverse pressure gradients
on mean flows and turbulence statistics in a boundary layer. In Turbulent Shear
Flows 8 (eds. F. Durst, R. Friedrich, B. E. Launder, F. W. Schmitd, U. Schu-
mann & J. H. Whitelaw), pp. 7–21. Springer-Verlag.

Nordström, J., Nordin, N. & Henningson, D. S. 1999 The fringe region tech-
nique and the fourier method used in the direct numerical simulation of spatially
evolving viscous flows. SIAM J. Sci. Comp. 20 (4), 1365–1393.

Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Prog. Aerospace
Sci. 2, 3–219.

Samuel, A. E. & Joubert, P. N. 1974 A boundary layer developing in an increas-
ingly adverse pressure gradient. J. Fluid Mech. 66, 481–505.

Schofield, W. H. 1981 Equilibrium boundary layers in moderate to strong adverse
pressure gradients. J. Fluid Mech. 113, 91–122.
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Application of turbulence models to equilibrium
boundary layers under adverse pressure

gradient

By Ruud A. W. M. Henkes ∗, Martin Skote†
and Dan S. Henningson†‡

Four classes of turbulence models (algebraic, k− ε, k−ω and a differential
Reynolds-stress model) are applied to boundary layers under adverse pressure

gradient with a constant equilibrium parameter β =
δ∗

τw

dp

dx
. Numerical solu-

tions up to Reθ = 108 give the classical scalings in the inner and outer layer
for all models. Comparison is made with experiments of Clauser at β ≈ 2 and
8 and with recent experiments by Sk̊are and Krogstad at β = 20. We have
also performed new direct numerical simulations at β ≈ 0.25 and 0.65 up to
Reθ = 700. The differential Reynolds-stress model shows the best agreement
with the experiments and the DNS.

1. Introduction

The present study considers the scalings according to four commonly used
turbulence models for equilibrium boundary layers under an adverse pressure
gradient. According to Clauser (1954), the boundary layer is in equilibrium

if the parameter β =
δ∗

τw

dp

dx
is independent of the streamwise position. The

scalings are derived from the turbulence models without making any additional
a priori assumptions, which means that the scalings follow from the straight-
forward numerical solution of the boundary-layer equations. Computations are
made up to the very large Reynolds number of Reθ ≈ 108, which is sufficient
for the similarity scalings to appear. A strong grid refinement was applied close
to the wall. By doubling the number of grid points, the solutions were verified
to be numerically accurate.

The classical theory, which is mainly due to Clauser (1954) and Coles
(1956), finds that the boundary layer can be split up in an inner layer (wall
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function), with length scale ν/uτ and velocity scale uτ , and an outer layer
(defect layer), with the velocity scale uτ and the length scale ∆ = δ∗U/uτ

(where U denotes the local free-stream velocity).
The results for the turbulence models are compared with experiments at

moderate Reynolds numbers (Reθ = 104 to 105) for β ≈ 2 and 8, obtained by
Clauser (1954), and with more recent experiments at β = 20, being close to
separation, due to Sk̊are (1994) and Sk̊are & Krogstad (1994). Furthermore, the
results with the turbulence models are also compared with new direct numerical
simulations for β ≈ 0.25 and 0.65 up to Reθ ≈ 700, which we performed with
a spectral code.

2. Scaling analysis

To derive the scalings of the boundary layer under an adverse pressure gradient
one can start from the turbulent boundary-layer equations for an incompressible
flow, which read

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2
− ∂

∂y
u′v′. (2)

Here x and y are the coordinates along and normal to the wall, respectively;
u and v are the corresponding velocity components; p is the pressure; ρ is the
density; ν is the kinematic viscosity; and −u′v′ is the Reynolds shear stress.

According to the classical theory, the velocity scale in both the inner and
outer layer is the same, namely uτ , which is the wall-shear stress velocity
(τw/ρ)1/2, with τw being the wall-shear stress µ(∂u/∂y)w. The length scale
differs, and is ν/uτ for the inner layer and ∆ = δ∗U/uτ for the outer layer; δ∗ is
the displacement thickness, and U is the local outer-edge velocity. Tennekes &
Lumley (1972) and Wilcox (1993) have derived a so-called defect-layer equation,
which is the equation that describes the similarity solution in the outer layer.
There is, however, a striking difference between the derivations of Tennekes &
Lumley and Wilcox. We have reconsidered the analysis (for more details see
Henkes, 1998) and find agreement with the results by Tennekes & Lumley.

When it is assumed that molecular diffusion can be neglected in the outer
layer, the boundary-layer equations (1)-(2) can be transformed into

(β − 2ω)f + γf2 + (α − 2β − 2ω)ηf ′ − χf ′
∫ η

0

fdη = r′, (3)

with

α =
(

U

uτ

)2
dδ∗

dx
, β =

δ∗

τw

dp

dx
, (4)

ω =
1
2

δ∗

uτ

(
U

uτ

)2
duτ

dx
,

γ =
U

uτ

δ∗

uτ

duτ

dx
, χ =

U

uτ

dδ∗

dx
+

δ∗

uτ

dU

dx
.
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Here η = y/∆, f(η) =
U − u

uτ
, and r(η) = −u′v′

u2
τ

. A prime denotes differentia-

tion to η.
The coefficients can be developed in a series with respect to the small

quantity uτ/U (see Henkes, 1998), which gives

α = 1 + 3β + (1 + β)C∗ uτ

U
+ ..., (5)

ω = −1
2
β − 1

2κ
(1 + 2β)

uτ

U
+ ...,

γ = −β
uτ

U
− 1

κ
(1 + 2β)

(uτ

U

)2

+ ...,

χ = (1 + 2β)
uτ

U
+ ...,

with C∗ =
∫ ∞
0

f2dη, and κ is the Von Kármán constant. To leading order eq.
(5) gives

α = 1 + 3β, ω = −1
2
β, γ = χ = 0. (6)

Therefore, for increasing Reθ (giving uτ/U → 0) equation (3) converges to
the following defect-layer equation for the outer layer

2βf + (1 + 2β)ηf ′ = r′, (7)
with boundary conditions

f → − 1
κ

lnη + C ′ for η → 0, (8)

f → 0 for η → ∞,

and the integral restriction ∫ ∞

0

fdη = 1. (9)

The boundary condition for η → 0 follows from matching with the logarithmic
wall function, and the integral restriction follows from the conservation of mo-
mentum. Equation (7) was also obtained by Tennekes & Lumley, but Wilcox
took ω = 0 (instead of ω = − 1

2β) and thus arrived at a different equation.

3. Turbulence models

To solve the boundary-layer equations (1) and (2) or the defect-layer equation
(7), a turbulence model is needed to represent the Reynolds shear stress. The
following models are considered:

• Algebraic model of Cebeci & Smith (1974)
• Two-equation low-Reynolds-number k − ε model of Launder & Sharma

(1974)
• Two-equation low-Reynolds-number k − ω model of Wilcox (1993)
• Differential Reynolds-Stress Model (DRSM) of Hanjalić et al. (1995)



86 R.A.W.M. Henkes, M. Skote & D.S. Henningson

The algebraic model uses an algebraic relation to approximate the turbu-

lent viscosity which appears in −u′v′ = νt
∂u

∂y
. The k−ε model solves differential

equations for the turbulent kinetic energy and the turbulent dissipation rate ε
to model the turbulent viscosity, whereas the k − ω model solves a differential
equation for ω instead of ε (where ω is proportional to ε/k). The DRSM is the
most complete model, as it solves differential equations for all Reynolds shear
and normal stresses, as well as for ε. More details of the models are given in
the cited references, and in Henkes (1997).

The boundary-layer equations are solved with a marching numerical pro-
cedure, after discretization with a second-order finite-difference scheme. A
Cartesian grid is used with a very strong grid refinement in the lower part of
the inner layer. To account for the growth of the boundary layer in streamwise
direction, at several x positions the outer edge was increased and the y grid
points were redistributed. All results presented in this paper are guaranteed to
be grid independent. This was checked by doubling the number of points in x
and y direction. A typical y grid consists of 200 or 400 points.

The defect-layer equation (7) only depends on the single coordinate η. This
ordinary differential equation was numerically discretized with a second-order
difference scheme, applying 200 or 400 points. An iteration process was used
to satisfy the boundary conditions and the integral restriction.

4. Direct numerical simulations

DNS were carried out for the pressure gradients β ≈ 0.25 and β ≈ 0.65 with a
code developed at KTH and FFA by Lundbladh et al. (1992, 1994). The spec-
tral method applies Fourier modes in the horizontal directions and Chebyshev
modes in the wall-normal direction. Since the boundary layer is developing in
the downstream direction, the physical boundary conditions in that direction
are non-periodic. To capture these with periodic Fourier modes, a fringe re-
gion is added downstream of the physical domain, where the flow is forced from
the outflow of the physical domain to the inflow. In this way the physical do-
main and the fringe region together satisfy periodic boundary conditions. The
fringe region is implemented by the addition of a volume force having a form
designed to minimize the upstream influence. Time integration is performed
using a third-order Runge-Kutta method for the advective and forcing terms
and Crank-Nicolson for the viscous terms.

The simulations start with a laminar boundary layer at the inflow which
is tripped by a random volume force near the wall. All the quantities are
nondimensionalized by the free-stream velocity and the displacement thickness
at the starting position of the simulation (x = 0) where the flow is laminar. At
that position Reδ∗ = 400. The length (including the fringe), height and width
of the computational domain were 450 × 24 × 24 δ∗ units.

The number of modes was 480 × 161 × 96, which gives a resolution in
plus units of ∆x+ = 16 and ∆z+ = 4.3. The useful region was confined to
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x∗ = x/δ∗ = 150 − 350 which corresponds to Reδ∗ from 550 to 1200 or Reθ

from 330 to 700. The simulations were run for a total of 4500 time units (δ∗/U),
and the sampling for the turbulent statistics was performed during the 2000
last time units. The good accuracy of the DNS and its statistics was verified
by repeating the computation on a coarser resolution (320 × 101 × 64 modes),
and with a shorter averaging time (1000 time units).

5. Large-Re behaviour

The boundary-layer equations were solved for the four turbulence models with
different β values. The calculations were started at Reθ = 300, where the
results from DNS by Spalart (1988) for a zero-pressure gradient were used as
starting profiles. At each downstream position the outer-edge velocity was
iteratively updated until the chosen β was obtained. The calculations were
extended up to about Reθ = 108.

For all considered models the classical scalings turn out to appear for in-
creasing Reynolds number. An example is given in Fig. 1, which shows the
velocity and Reynolds-shear stress in the inner and outer layer, as obtained
with the DRSM for β = 1. In the inertial sublayer, being the outer part of the
inner layer, the velocity (Fig. 1a) converges to the logarithmic law-of-the-wall;
the generally accepted best fit to experiments (having κ = 0.41 and C = 5) is
shown as a long-dashed line. The velocity in the outer layer (Fig. 1b), when
scaled with uτ and ∆, converges to a single similarity profile, the so-called
defect law. Only the solution for Reθ = 103 shows some deviation from the
similarity state, but up to at least graphical accuracy no changes are found
from Reθ = 104 on. The Reynolds shear stress in the outer part of the inner
layer (Fig. 1c) approaches the wall function −u′v′+ = 1. The Reynolds shear
stress in the outer layer (Fig. 1d) converges to a similarity shape, which shows
a local maximum. The appearance of a maximum for the Reynolds shear stress
in the outer layer (with −u′v′/u2

τ > 1), and also for the turbulent kinetic en-
ergy, is characteristic for adverse pressure gradient boundary layers (β > 0);
such a maximum is not found for the zero pressure gradient boundary layer
(β = 0). We checked that the similarity profiles for the different quantities in
the inner layer are independent of β, which is in agreement with the classical
theory, showing that the same wall function holds independent of the pressure
gradient.

We verified that the boundary-layer solution in the outer layer converges
to the similarity solution described by the defect-layer equation (7). However,
the convergence rate for increasing Reθ towards the similarity state becomes
slower for increasing β. For example, for all β values the shape factor converges
to H = 1 at Reθ → ∞, but the shape factor at Reθ = 108 for β = 0, 8 and 20
still is 14%, 47%, and 71%, respectively, above its asymptotic value.

An interesting practical question is how the outer-edge velocity should be
chosen to realize an equilibrium turbulent boundary layer, as represented by
a certain constant β value. Bradshaw (1967) has suggested that a practically
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Figure 1. Appearance of the law-of-the-wall and the defect
law for increasing Reynolds number according to the DRSM
with β = 1; Reθ = 103 (− · −), 104 (– –), 105, 106, and
107 (solid lines); Velocity in (a) the inner layer and (b) the
outer layer; Reynolds shear stress in (c) the inner layer and
(d) the outer layer. (long dash in (a) denotes the experimental
wall function for the velocity, and in (c) the theoretical wall
function for the Reynolds shear stress).

constant β results if the outer-edge velocity is chosen as U ∝ (x−xo)m (where
x0 is a virtual origin, and m is a constant power). To verify this we prescribed
m and computed β for increasing Reθ, but β turns out to be very sensitive to
m when m comes closer to −0.25 (that is where turbulent separation is about
to occur). This problem was overcome by prescribing β instead of m. Fig. 2

shows the results for the DRSM. Here the local m value is defined as
x

U

dU

dx
.

The turbulence model does not give a Reynolds-number independent m power
for equilibrium layers; instead the power becomes slightly more negative for
increasing Reynolds number.
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Figure 2. Reynolds-number dependence of the m power in
the outer-edge velocity according to the DRSM.

Some authors, including Clauser (1954) (who measured β ≈ 2 and 8),
have reported difficulties to establish a stable flow in the windtunnel when the
adverse pressure gradient becomes stronger. On the grounds of this experience,
Clauser has suggested that the same outer-edge velocity (represented by the
same m value) can correspond with two equilibrium boundary layers (i.e. two
β values). This means that an established experimental equilibrium boundary
layer can suddenly lose stability and jump to the other flow type. This is indeed
what is found with the DRSM in Fig. 2. For a given Reθ (above 106) the m-
power decreases for β values up to about 8, above which the power increases
again. For example, the m value for β = 3 is almost the same as for β = 20
(for which experiments were performed by Sk̊are & Krogstad, 1994). A similar
nonuniqueness is found with the other turbulence models.
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6. Comparison with experiments

The solution in the outer layer, as computed from the boundary-layer equations
with different turbulence models, is compared with experiments in Fig. 3 for
the streamwise velocity and in Fig. 4 for different turbulence quantities. The
computational curves correspond to Reθ = 106 for β = 2 and 8, and to Reθ =
5 × 104 for β = 20. All models, except for the k − ε model, closely predict the
experimental streamwise velocity (Fig. 3); the k − ε model overpredicts the
experimental wall-shear stress coefficient for β = 20 at Reθ = 5×104 by 145%.
The DRSM is superior, as it gives a value which is only 7% too large, whereas
the algebraic model and the k − ω model give a slightly larger deviation of
−15% and +17%, respectively.

All models also closely reproduce the experimental Reynolds-shear stress
(Fig. 4a), but the k − ε model somewhat overpredicts the boundary-layer
thickness. The DRSM predicts the structure parameter (= −u′v′/k) best (Fig.
4b), and is in fact very close to the experiments for β = 20. The DRSM also
gives a quite good prediction of the Reynolds normal stresses (Fig. 4c).

With respect to the structure parameter, the experiments in Fig. 4b show
that its value is almost constant, and equal to about 0.3, across most of the
outer-layer thickness. This implies that the Reynolds shear stress is propor-
tional to the turbulent kinetic energy, as was also discussed by Bradshaw (1967)
on the grounds of his own experiments for a weaker adverse pressure gradient.
Most turbulence models (including the k − ε model, the k − ω model, and the
DRSM) have chosen the model constants such that the proportionality with
the structure parameter 0.3 is reproduced for flows in which the production of
turbulence energy Pk (= −u′v′∂u/∂y) equals the turbulent dissipation rate ε.
For example the k − ε model has −u′v′ = νt∂u/∂y, with νt = cµk2/ε. As the
constant cµ is set to 0.09 this gives −u′v′/k = 0.3 when Pk = ε.

7. Comparison with DNS

The DNS were performed for the outer edge velocity U ∝ (x − x0)m, with
m = −0.077 and m = −0.15. At the relatively low Reθ up to which the DNS
were feasible, the corresponding equilibrium parameter β is found to be about
0.25 and 0.65, and the shape factor H is about 1.60 and 1.63, respectively.

The calculations with the DRSM at low Reynolds numbers are compared
with the new DNS. Profiles for the velocity and turbulence obtained from the
DNS at x∗ = 150 were used as initial data for the model calculations. We
varied the initial turbulence and dissipation rate in the model computations,
and found that the initial transients already had decayed at x∗ = 335, where
the comparison with the DNS was made. Thus the comparison is meaningful
since the difference between the model predictions at low and high Reynolds
number (see Fig. 5) are due to the dependence on the Reynolds number and
not to the influence of the initial conditions.
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Figure 3. Comparison between turbulence models and exper-
iments for the streamwise velocity under different equilibrium
conditions; (a) β = 2 (• experiments by Clauser), (b) β = 8 (•
experiments by Clauser), (c) β = 20 (• experiments by Sk̊are
and Krogstad), models: O−O algebraic; �−� k− ε; ×−×
k − ω; � − � DRSM
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Figure 4. Comparison between turbulence models and ex-
periments for the turbulence in an equilibrium boundary layer
with β = 20; (a) Reynolds shear stress, (b) structure parame-
ter, (c) Reynolds normal stress along the wall. models: O−O
algebraic; �−� k − ε; ×−× k − ω; � − � DRSM
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Figure 5. Comparison for β ≈ 0.65; — DNS at Reθ = 670;
- - DRSM at Reθ = 670; -◦- similarity solution for the DRSM.
Streamwise velocity in (a) inner-layer scalings, and (b) outer-
layer scalings. Streamwise normal stress in (c) inner-layer scal-
ings and (d) outer-layer scalings.

Figs 5a,b show close agreement for the velocity profile in inner-layer and
outer-layer scalings at Reθ = 670 and β ≈ 0.65, as computed with the DNS and
DRSM. The figure also shows the large-Re similarity state for the DRSM. In
fact Reθ = 670 is still so low that only a small logarithmic part in the inner layer
is found. The streamwise Reynolds normal stress for β ≈ 0.65 is compared in
Figs 5c,d. The results are shown in both inner and outer layer scalings, and the
similarity solution for the DRSM is included as well. Differences between the
solution at Reθ = 670 and the similarity solution are significant. The results
with the DRSM closely agree with the DNS at Reθ = 670, showing that the
DRSM reproduces the physics of adverse pressure-gradient boundary layers at
relatively low Reynolds numbers. The peak in the Reynolds normal stress in
the DNS and DRSM at Reθ = 670 is part of the inner layer, but there already
is a tendency to develop a second peak in the outer layer, which indeed has
been established in the similarity solution with the DRSM. New DNS at larger
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β, which will show an even stronger peak in the outer layer for the turbulent
kinetic energy, are underway.

8. Conclusions

The numerical solution of the boundary-layer equations up to Reθ = 108 shows
that four classes of turbulence models converge to the same classical scalings
in the inner and outer layer for turbulent equilibrium boundary layers under
an adverse pressure gradient. The solution in the outer layer converges to the
defect law described by the defect-layer equation of Tennekes & Lumley, and
not to the defect-layer equation of Wilcox (only for β = 0, both formulations
are equal). Convergence to the similarity solution becomes slower for increasing
β value. There is a nonunique relation between the m power in the outer-edge
velocity and the equilibrium parameter β for all four turbulence models, which
is in agreement with the experimental findings of Clauser.

Comparison with experiments, particularly the recent experiments by Sk̊are
and Krogstad at β = 20, shows that among the tested turbulence models, the
Differential Reynolds Stress Model is superior. But also the algebraic model
and the k−ω model are reasonably accurate. The k−ε model gives rather large
deviations for strong adverse pressure gradients, where it considerably overpre-
dicts the wall-shear stress. The DRSM was also compared with our new DNS
for β ≈ 0.25 and 0.65 at the relatively low Reynolds number Reθ = 670. It
turns out that the DRSM correctly predicts the low-Reynolds-number effects
for the evolution of the boundary layer to its high-Re similarity solution.
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Analysis of the data base from a DNS of a
separating turbulent boundary layer

By Martin Skote∗ and Dan S. Henningson∗†

1. Motivation and objectives

This work was performed at CTR during a month-long visit in May 1999. The
data base analyzed comes from a simulation performed by Na & Moin (1998a).

Although the data from the simulations have been used in the study of the
structure of the wall pressure (Na & Moin 1998b), an analysis of the mean flow
had not been conducted to a great extent. The aim of this work is to investigate
the near wall scalings of the turbulent mean flow close to separation.

The scalings are very important for the correct behavior of wall damp-
ing functions used in turbulence models. For a zero pressure gradient (ZPG)
boundary layer, the damping functions and boundary conditions in the loga-
rithmic layer are based on a theory where the friction velocity,

uτ ≡
√

ν
∂u

∂y

∣∣∣∣
y=0

, (1)

is used as a velocity scale. However, in the case of a boundary layer under an
adverse pressure gradient (APG), uτ is not the correct velocity scale, especially
not for a strong APG and low Reynolds number. In the case of separation this
is clear since uτ becomes zero. In a number of studies the case of separation
has been investigated. The various theories will be presented in the section
where the analysis is presented.

Also, for moderate pressure gradients, the near wall region is influenced if
the Reynolds number is low enough. The combination of a pressure gradient
and low Reynolds number give a flow that deviates from the classical near wall
laws. The equations governing the inner part of the boundary layer can be
analyzed, and the theory is applicable to the results from the direct numerical
simulations investigated here.

In section 2 the numerical method and flow geometry is briefly described.
The results from the investigation of the mean flow are presented in four parts
in section 3. The first part (3.1) is devoted to the total shear stress. Here

∗Department of Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden
†Aeronautical Research Institute of Sweden (FFA), Box 11021, SE-161 11 Bromma, Sweden
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Figure 1. Freestream velocity. — : U ; - - : V .

the alternative velocity scale based on the pressure gradient is introduced, and
the effect of the APG on the inner part of the boundary layer is discussed.
Continued investigation of the total shear stress in the second part (3.2) leads
to the logarithmic law of the velocity profile. The law is extended to the APG
case and is shown to be in fair agreement with DNS data. To further investigate
the different velocity scales, the viscous sub-layer is investigated in the third
part (3.3). And finally, in the fourth part (3.4), some earlier theories regarding
the APG flow and separation are briefly presented.

2. Numerical method and flow characteristics

The simulation evaluated here was performed by Na & Moin (1998a), using a
second-order finite difference method. The computational box was 350×64×50
based on the δ∗ at the turbulent inflow. The number of modes was 513×193×
129. The inflow condition was taken from Spalart’s ZPG simulation. It con-
sists of a mean turbulent velocity profile with superimposed turbulence with
randomized amplitude factors while the phase was unchanged. The bound-
ary conditions applied on the upper boundary are the prescribed wall normal
velocity and zero spanwise vorticity,

v(x,Ly, z) = V (x)
∂u

∂y

∣∣∣∣
x,Ly,z

=
dV (x)

dx
. (2)

In Fig. 1 the two components of the freestream velocity are shown as a
function of the downstream coordinate x. The two components are denoted U
and V in the streamwise and wall normal directions respectively. Elsewhere in
the flow the two components of the mean velocity are denoted u and v. There
is no third direction in the mean flow.

The wall normal velocity (V ) is prescribed in order to create a separation
bubble. The point of separation is at x = 158, and the reattachment occurs at
x = 257.

V varies in the downstream direction and thus induces a gradient in the
u component at the freestream boundary, due to the zero vorticity condition.
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Figure 2. Velocity profiles at x = 157, 200, and 260.
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Figure 3. In the vicinity of the separation. — : U ; - - : uτ × 100.

In Fig. 2 three velocity profiles are shown from different downstream positions
before, inside, and after the separation bubble. The gradients at the freestream
boundary due to the boundary conditions are clearly visible. Since the bound-
ary conditions applied in the simulation do not allow the y−derivative of the
velocity profile to be zero at the upper boundary, all quantities involving δ∗

or other integral quantities become ambiguous. The near wall behavior is not
influenced by this gradient, and the analysis of the boundary layer equations
can be compared with the DNS data.

The quantities shown in Fig. 3 as a function of the downstream direction
in the vicinity of the separation are U and uτ . There is a strong variation of
uτ at the point of separation as seen in Fig. 3.

3. Mean flow profiles

In this section the existing theoretical theories will be presented together with
results from the DNS. Much of the theory is based on the two distinct regions
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Figure 4. Total shear stress at x = 150. — : DNS;
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of the flow, the inner and outer part respectively. Since only the inner part
of the boundary layer will be considered here, the theory concerning the outer
part is omitted.

3.1. The total shear stress

When neglecting the non-linear, advective terms in the equations describing
the mean flow, the equation governing the inner part of the boundary layer is
obtained. This equation can, when using the inner length and velocity scales
ν/uτ and uτ be written,

0 = − ν

u3
τ

1
ρ

dP

dx
+

d2u+

dy+2 − d

dy+
〈u′v′〉+, (3)

where 〈u′v′〉 is the Reynolds shear stress. If the term involving the pressure
gradient is smaller than the other terms, the equation reduces to the equation
governing the inner part of a ZPG boundary layer. However, for the APG case
considered here, this term cannot be neglected. Equation (3) can be integrated
to give an expression for the total shear stress,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1
ρ

dP

dx
y+ (4)

The total shear stress, τ+, from the DNS and the curve τ+(y+) represented by
Eq. (4) are shown in Fig. 4 at the position x = 150. The third and dotted line
is obtained when considering that the pressure gradient is slightly dependent
on the wall normal coordinate, in which case the integration of Eq. (3) yields,

τ+ = 1 +
∫ y+

0

ν

u3
τ

1
ρ

dP

dx
(y+)dy+. (5)

As seen in Fig. 4, the two expressions (4) and (5) are nearly identical. For a
zero pressure gradient case, Eq. (4) predicts a constant shear stress of unity.

The pressure gradient term in Eq. (4) is evidently important for the shear
stress distribution in the inner part of the boundary layer. This was observed in,



Analysis of a separating turbulent boundary layer 103

10
−2

10
−1

10
0

10
1

0

2

4

6

8

10

τp

yp

Figure 5. Total shear stress at x = 150. — : DNS;
- - : Eq. (8); · · · : asymptotic profile τp = yp.

among others, the experiments by Bradshaw (1967), Samuel & Joubert (1974)
and Sk̊are & Krogstad (1994). It can be shown that the pressure gradient term
decreases with increasing Reynolds number. The term is thus important only
for low Reynolds numbers. However, close to separation, where uτ approaches
zero, it is clear that the terms becomes infinite even for large Reynolds numbers.

When considering separation the singularity mentioned above can be avoided
by introducing the velocity scale,

up ≡
(

ν
1
ρ

dP

dx

)1/3

. (6)

First Eq. (4) is formulated as

τ+ = 1 + (
up

uτ
)3y+. (7)

The velocity scale up has to be used instead of uτ if the last term in Eq. (7)
becomes very large, which happens if uτ � up, i.e. the boundary layer is
close to separation. This was noted by Stratford (1959), Townsend (1961) and
Tennekes & Lumley (1972). By multiplying Eq. (7) by (up/uτ )2, the following
expression for τp ≡ τ/u2

p is obtained,

τp = yp + (
uτ

up
)2, (8)

with the asymptotic form τp = yp when separation is approached, where yp ≡
yup/ν. Thus, in this rescaled form, the singularity is avoided.

In Figs. 5 and 6 the shear stress scaled with up is shown at x = 150 and
x = 158. Both the linear expression (8) and its asymptotic form are shown.
At x = 150 the separation has not been reached, thus the asymptotic version
deviates while the profile from Eq. (8) coincides with the DNS data. At x = 158
the asymptotic expression agrees with the profile from DNS since uτ = 0 at
that position.
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Figure 6. Total shear stress at x = 158. — : DNS;
- - : Eq. (8); · · · : asymptotic profile τp = yp.

3.2. The logarithmic region

Now, when the velocity scale up has been introduced, it is possible to investi-
gate how other theoretical results for a ZPG turbulent boundary layer can be
modified by the presence of an APG.

The Eq. (3) and the equation for the outer part of the boundary layer
constitute a problem with inner and outer solutions. This problem has been
treated with the method of matched asymptotic expansions by, among others,
Mellor (1972) and Afzal (1996). The aim is to obtain higher order terms in the
matching of the inner and outer solutions. The small parameter that is used in
the expansions is uτ/U , which is related to the Reynolds number through the
logarithmic friction law.

The presentation here will be very brief and only the inner part is discussed.
For the ZPG case, the scaling of the total shear stress with uτ gives a self-similar
profile (τ+ = 1). From Eqs. (7) and (8) it is observed that neither uτ nor up

as velocity scale results in a self-similar expression. However, Eq. (4) can be
formulated as

τ∗ ≡ 1
u2∗

(
ν

∂u

∂y
− 〈u′v′〉

)
= 1, (9)

where u∗ is a velocity scale that depends on y and can be expressed in either
plus or pressure gradient units,

u2
∗ = u2

τ +
u3

p

uτ
y+ = u2

τ + u2
py

p. (10)

Thus, by scaling the total shear stress with u∗, a self-similar expression is
obtained (τ∗ = 1).

For the ZPG case, the matching of the inner and outer equations results
in the equation,

y+ du+

dy+
=

1
κ

. (11)



Analysis of a separating turbulent boundary layer 105

10
0

10
1

10
2

0

100

200

300

u+

y+

Figure 7. Velocity profiles. — : DNS; - - : Eq. (15) with
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0.41 ln y+ + 5.1.

If now u∗ is used as the velocity scale, the velocity gradient can be formulated
as,

ν
∂u

∂y

1
u2∗

=
(

∂u

∂y

)∗
. (12)

The matching between the inner and outer equations as described by Afzal
(1996) results in

y∗
(

∂u

∂y

)∗
=

1
κ

, (13)

where
y∗ ≡ yu∗/ν =

√
(y+)2 + (yp)3. (14)

In the same way as Eq. (11) can be integrated to give the logarithmic law
for the ZPG case, Eq. (13) above can be integrated. However, Eq. (13) must
be formulated with either uτ or up as velocity scale before being integrated. If
uτ is chosen as velocity scale, the integration of Eq. (13) yields,

u+ =
1
κ

(
ln y+ − 2 ln

√
1 + λy+ + 1

2
+ 2(

√
1 + λy+ − 1)

)
+ B, (15)

with

λ =
(

up

uτ

)3

. (16)

The expression (15) is not self-similar due to the term λ, which is Reynolds
number dependent.

Equation (15) is the same expression as Afzal (1996) arrived at. It is also
similar to the equation which Townsend (1961) derived from mixing length ar-
guments. The velocity profiles from the DNS of Na and Moin close to the point
of separation are shown together with the standard log-law and the extended
log-law (15) in Fig. 7. The separation occurs at x = 158 and the four velocity
profiles are shown at x = 150, 155, 157, 158.
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Figure 8. Velocity profiles. — : DNS; - - : Eq. (18) with
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From Fig. 7 it is clear that the logarithmic law, valid for ZPG flows, is
a poor instrument for obtaining boundary conditions in the log-layer for tur-
bulence models. The extended log-layer, which involves the pressure gradient,
seems to capture the deviation from the logarithmic profile surprisingly well.
The parameters κ and B have not been adjusted to fit the DNS data; rather,
the standard values have been used. In addition, the region where Eq. (15) is
valid can be discussed.

When up → 0, Eq. (13) reduces to the equivalent equation for the ZPG
case (11), and the usual log-law is recovered. If uτ → 0, Eq. (13) reduces to,

√
yp

∂up

∂yp
=

1
κ

, (17)

and the half-power law is obtained,

up ≡ u

up
=

1
κ

2
√

yp + C, (18)

which was first obtained by Stratford (1959).
Since it is shown that the scaling based on up is preferred over uτ close to

separation, the profiles in Fig. 7 should collapse better when scaled with up.
The same velocity profiles as in Fig. 7 are plotted together with the half-power
law (18) in Fig. 8.

An interesting observation is that Eq. (18) leads to a shape factor of
two with a small correction due to the constant C. The correction vanishes
for large Reynolds numbers when up/U → 0. In both DNS at low Reynolds
numbers (Spalart & Leonard 1987) and experiments at large Reynolds numbers
(Sk̊are & Krogstad 1994) of flows near separation, a shape factor close to two
was observed. The shape factor is 1.8 at separation for the flow of Na and
Moin. But, as discussed earlier, the gradient of the velocity profile at the
upper boundary give a value of the shape factor that cannot be considered a
proper one.
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By expressing Eq. (13) in pressure gradient units and integrating, the
following expression for up is obtained,

up =
1
κ

(
2
√

γ2 + yp + γ ln yp − 2γ ln(
√

γ2 + yp + γ)
)

+ C, (19)

where
γ =

uτ

up
.

In the limit of uτ → 0, Eq. (18) is recovered. The velocity profiles collapse
much better in the pressure gradient scaling as can be seen from Fig. 8 where
the asymptotic profile (18) is also shown. The profiles obtained from Eq. (19)
do not vary much for different downstream positions, hence only the asymptotic
profile is shown.

The two expressions (15) and (19) are equivalent; only the choice of scaling
when integrating Eq. (13) differs. They are both dependent on the Reynolds
number through the terms λ and γ respectively. Equation (13) cannot be
integrated directly to yield u∗(y∗) independent on the Reynolds number. This
is due to the term (

∂u

∂y

)∗
,

which cannot be expressed in only u∗ ≡ u/u∗ and y∗. However, these arguments
regarding the lack of self-similarity of the velocity profile will be clearer if the
viscous sub-layer, where the Reynolds stress can be neglected, is considered.

3.3. The viscous sub-layer

In the viscous sub-layer the Reynolds shear stress approaches zero and Eq. (8)
can be integrated to give,

up =
1
2
yp2 +

(
uτ

up

)2

yp (20)

In plus units this equation becomes,

u+ = y+ +
1
2

(
up

uτ

)3

y+2
. (21)

This equation reduces to the usual linear profile in ZPG case.
Figure 9 shows velocity profiles near the wall for x = 150 and x = 158 in

plus units. The higher profile is located at x = 158. The solid lines are DNS
data and the dashed ones are the profiles from Eq. (21). The dotted line is
the profile valid for the ZPG case (up = 0). As seen from Fig. 9, the linear
approximation works reasonably well at x = 150, upstream of separation. But
at x = 158, the effect from the pressure gradient is too large. The profiles
diverge as separation is approached since the second term in Eq. (21) becomes
infinite.

Figure 10 shows velocity profiles near the wall for x = 150 and x = 158
in pressure gradient units. The higher profile is located at x = 150. In this
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Figure 9. Velocity profiles at x = 150 and x = 158.
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Figure 10. Velocity profiles at x = 150 and x = 158.
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case the asymptotic profile (dotted) is valid at separation. The solid lines are
DNS data and the dashed are the profiles given by Eq. (20). From Fig. 10 one
can draw the conclusion that the pressure gradient scaling is preferred since
the profiles approach an asymptotic profile instead of diverging infinitely as uτ

approaches zero.
In both the viscous and logarithmic region, the velocity has been scaled

with two different velocities, uτ and up. Both of these scalings give in an
asymptotic state a Reynolds number independent expression. The representa-
tions in plus units, Eqs. (15) and (21), return to the ZPG formulation when
up approaches zero. The representation in pressure gradient units, Eqs. (19)
and (20), become the square-root and square profiles when separation is ap-
proached.

In both these scalings the velocity profile is dependent of the ratio between
uτ and up as seen in the four equations mentioned above. However, the total
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— : DNS at x = 150; · · · : DNS at x = 158.

shear stress could be made independent of this ratio by scaling with u∗, Eq.
(9). Thus the profiles are self-similar with respect to Reynolds number and
pressure gradient. In order to obtain an expression for the velocity scaled with
u∗ in the viscous sub-layer, Eq. (9) with the Reynolds stress equal to zero must
be solved. Thus, it is

ν
∂u

∂y

1
u2∗

= 1. (22)

that needs to be solved. The solution u∗(y∗) should be independent of the ratio
between uτ and up. Equation (22) formulated in star units gives

∂u∗

∂y∗ +
1
2

(
yp

y∗

)3 (
y∗ ∂u∗

∂y∗ + u∗
)

= 1, (23)

where the relation between y∗ and yp is given by Eq. (14), which can be written

y∗2 =
(

uτ

up

)2

(yp)2 + (yp)3. (24)

The ratio between uτ and up is still present in Eq. (24), thus no independent
solution can be found. This is also evident from DNS data where the profiles
are scattered for different downstream positions as shown in Fig. 11.

3.4. Comparison with other theories for the logarithmic region

According to Tennekes & Lumley (1972), the scaling with pressure gradient
velocity up should lead to the same form of matching as in the zero pressure
gradient case. From this assumption a logarithmic law is obtained in the same
manner as the usual procedure of matching the outer and inner solutions. The
log-law becomes,

up =
1
κ

ln(yp) + B. (25)

Equation (25) is shown in Fig. 12 together with DNS data from the positions
x = 150 and x = 158.
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According to Stratford (1959), the velocity profile should be a half-power
law close to separation. Also Yaglom (1979) showed that a dimensional analysis
gives the following expression for the velocity profile close to separation,

u+ = K+
√

λy+ + K+
1 , (26)

which can be expressed in pressure gradient scaling,

up = K
√

yp + K1. (27)

Yaglom (1979) also proposed a fairly complicated dependence of K and K1

on up and uτ . This dependency was introduced to extend the theory valid
at separation to the region upstream of detachment. It cannot be regarded
as a sound procedure to incorporate a functional behavior in constants of an
expression valid only in an asymptotic state. It seems to be a better approach
to the equations to introduce the mixed velocity scale u∗ and do the analysis
leading to Eq. (19).

4. Conclusion

The scalings in the near wall region of a turbulent boundary layer close to sep-
aration have been analyzed. Two different velocity scales appears naturally in
the governing equation: the friction velocity and the pressure gradient velocity.
With the aid of the momentum equation governing the inner part, it is possible
to derive a mixed velocity scale. By using this velocity scale and matching the
inner and outer solutions, an extended logarithmic law is obtained. When ap-
proaching the zero pressure gradient case, the familiar log-law and plus scales
are recovered. In the limit of separation, the half-power law in pressure gradi-
ent scaling is obtained. In the vicinity of separation, the extended logarithmic
law in plus scaling give profiles in agreement with DNS data. The profiles
are widely scattered when using the friction velocity as a velocity scale due to
the large variation of the friction velocity in the vicinity of separation. When
using pressure gradient scalings, the profiles are much less scattered, and the
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extended logarithmic law in its asymptotic form (half-power law) agrees with
the DNS data.

The mixed velocity scale, which depends on y, was shown to give self-
similar profiles for the total shear stress. For the velocity however, no such
profiles can be derived. Thus, for practical purposes such as boundary con-
ditions for RANS-modeling and wall-damping functions, the extended loga-
rithmic law should give more reasonable results than the corresponding zero
pressure gradient laws. When the friction velocity varies rapidly or approaches
zero, the scaling with pressure gradient velocity is preferred since the singular-
ity at separation is avoided.

Even in the viscous sub-layer, the pressure gradient influences the velocity
profile if the Reynolds number is low enough. The two velocity scales based
on the friction velocity and pressure gradient velocity give profiles that are
independent on Reynolds number only in the limit of zero pressure gradient
and separation respectively. The comparison with data in the viscous sub-
layer from direct numerical simulation shows that the velocity scale based on
the pressure gradient can indeed be used in this region of the flow close to
separation. In fact, such scaling shows that the velocity profiles approach an
asymptotic, self-similar profile at separation. If the friction velocity scaling is
used, the profiles diverge as separation is approached. This scaling gives an
asymptotic self-similar profile (the linear profile) in the limit of zero pressure
gradient.
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Direct numerical simulation of separating
turbulent boundary layers

By Martin Skote and Dan S. Henningson

Dept. of Mechanics, KTH, SE-100 44, Stockholm, Sweden

Direct numerical simulation of two turbulent boundary layer flows has been
performed. The boundary layers are both subject to a strong adverse pressure
gradient. In one case a separation bubble is created while in the other the
boundary layer is everywhere attached. The data from the simulations are
used to investigate scaling laws near the wall, a crucial concept in turbulence
models. Theoretical work concerning the inner region in a boundary layer under
an adverse pressure gradient is reviewed and extended to the case of separa-
tion. Excellent agreement between theory and data from the direct numerical
simulation is found in the viscous sub-layer, while a qualitative agreement is
obtained for the overlap region.

1. Introduction

The separation of boundary layer flow is of crucial importance in many applica-
tions, including airfoils, rear windows on cars, and turbine blades. Separation
is difficult to predict with current turbulence models, and the design of devices
that either loose their functionality or have their optimum performance close
to the onset of separation is an engineering difficulty.

A vast number of theoretical and/or experimental work has been presented
throughout the last decades, and lately direct numerical simulations (DNS)
have become an important tool for further investigation of this type of flows.
Although laboratory experimental techniques have improved and the reliabil-
ity of results from experiments has increased, there is still need for DNS for
improving the results in the near-wall region. Also, turbulent structures and
the instantaneous flow fields are better analyzed using DNS results.

1.1. Theoretical investigations

In most theoretical investigations of boundary layers it is of crucial importance
to determine the relevant velocity scale. For a zero pressure gradient (ZPG)
boundary layer such a velocity scale is naturally chosen as the friction velocity,

uτ ≡
√

ν
∂u

∂y

∣∣∣∣
y=0

. (1)
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However, in the case of a boundary layer under an adverse pressure gradient
(APG), uτ is not the relevant velocity scale. This is true especially for strong
APGs and low Reynolds numbers. For a separating boundary layer this is clear
since uτ becomes zero in this case. In a number of studies the case of a strong
APG and separation has been investigated theoretically. In many such studies
a velocity scale based on the pressure gradient is defined,

up ≡
(

ν
1
ρ

dP

dx

)1/3

. (2)

In an analysis based on up, Stratford (1959) obtained a square-root law for
the velocity profile from the assumption of zero wall stress and mixing length
theory. Townsend (1961) refined the theory based on mixing length to the case
of non-zero (but positive) wall shear stress and obtained a law with both square-
root and logarithmic parts based on uτ as a velocity scale. Kader & Yaglom
(1978) extended the Stratford velocity profile to the case of positive wall stress.
However, they kept the square-root law based on up, and let the influence of
a non-zero wall shear stress be accounted for by varying the constants. Mellor
(1966) arrived at a similar expression as Townsend. The work of Townsend
was later reviewed by McDonald (1969) who included non-linear inertia effects
in the expression for the velocity profile.

Afzal (1996) obtained similar expressions for the velocity profile as
Townsend by using asymptotic matching. Durbin & Belcher (1992) also used
asymptotic theory for the analysis of velocity profiles. They obtained a three
layer structure of the turbulent boundary layer under an APG. Melnik (1989)
also obtained a three layer structure by extending the asymptotic analysis of
Yajnik (1970) and Mellor (1972) with an algebraic turbulence model. Skote
& Henningson (1999) simplified the formulation of Townsend and showed that
the analysis could be valuable for turbulence modelling purposes.

Instead of using uτ or up as the velocity scale and letting the velocity profile
depend on the pressure gradient and Reynolds number, some investigators have
tried to make the profiles collapse on a single curve in an outer scaling. This
seems to be possible only if a velocity scale is determined a posteriori, with the
objective to make the profiles collapse. Coles (1956) proposed a wake function
to account for the variation of the velocity profile in the outer (or wake) region
of the boundary layer. The form of the wake function has later been modified
in a number of ways, see e.g. Musker (1979) for further references. Perry &
Schofield (1973) and Schofield (1981) used a scaling for the outer part of the
velocity profile designed to match the profiles to a half-power law close to the
wall. They claimed that the velocity scale is related to the maximum shear
stress.

Thus, there are two fundamentally different theoretical approaches to the
velocity profile in a turbulent boundary layer under a strong APG. One is
focusing on the local pressure gradient as the important parameter determining
the shape of the velocity profile, the other is focusing on a velocity scale, defined
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through a fitting procedure, that will make the velocity profiles collapse onto a
single curve. In this work we will develop further the analysis where the local
pressure gradient is the key factor.

1.2. Experiments

Many experiments have been performed on separated flows, albeit most of them
consider separation caused by a sharp edge, or an obstacle, see e.g. the review
of Simpson (1996) for a collection of references, and the work of Hancock (2000)
for references to the latest experiments.

The experiments on separation of a flat plate turbulent boundary layer
include the works of Perry & Fairlie (1975), Simpson et al. (1977, 1981a,b),
Dengel & Fernholz (1990), Driver (1991) and Alving & Fernholz (1996, 1995).
Some of these investigations have also tried to develop different scalings of the
velocity profile in both outer and inner variables.

Simpson et al. (1977) showed that the Perry-Schofield scaling is supported
upstream of separation, however with the the streamwise derivative of the lon-
gitudal and normal Reynolds stresses included in the estimation of the maxi-
mum shear stress. They concluded that the shear stress gradient is less than the
streamwise pressure gradient due to the Reynolds stresses and the convective
terms in the momentum equation.

Simpson et al. (1981a,b) developed a scaling based on the maximum back-
flow velocity and its distance from the wall for the back-flow profile, which
was shown to consist of three layers: the layer closest to the wall which is
governed by viscous forces, a relatively flat intermediate layer and the outer
back-flow which is dominated by the large-scale outer region flow. No universal
’back-flow function’ could be found. Upstream of separation the logarithmic
law was valid, as well as the Perry-Schofield scaling for the outer part. As
separation is approached the scalings are not fulfilled. Furthermore, they con-
cluded that the velocity profile in the outer part is not described by a universal
wake function. The normal and streamwise Reynolds stresses contribute to the
turbulence energy production at separation, and the enhanced turbulence en-
ergy production in the outer region supply turbulence energy to the back-flow
region by turbulent diffusion.

Dengel & Fernholz (1990) performed measurements in an axisymmetric
turbulent boundary layer. Three cases were investigated with skin friction zero,
slightly negative, and slightly positive. They concluded that the logarithmic
law is not valid when the first reverse-flow events occur. Furthermore, the
velocity profile does not confirm the Perry-Schofield scaling. Instead they let
a seventh order polynomial represent an asymptotic velocity profile close to
separation. However, Dengel & Fernholz did not base the velocity scale on
the maximum stress. Instead, they obtained the velocity scale by fitting the
velocity profiles to a half-power law, as suggested by Schofield (1981). Reynolds
stresses increased downstream in all three cases and the turbulence production
had its maximum far out in the boundary layer.
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Driver (1991) performed measurements on two boundary layers on an ax-
isymmetric body with similar pressure distributions but very different flows.
One is attached and the other is separated. He concluded that above a certain
value of the pressure gradient (in viscous scaling) the mean flow profile does
not obey the law of the wall. The attached boundary layer was found to be in
equilibrium and the Clauser parameter was nearly constant.

Alving & Fernholz (1996) performed an experiment on an axisymmetric
body with a turbulent boundary layer that separates in a short region. They
reported decreased Reynolds stresses in the inner region and large peaks away
from the wall. After reattachment, the inner region is slower in its recovery
than the outer part and the recovery does not start at the wall. Hence, the
large scale structures are intact over the separation bubble and then interact
with near-wall flow after reattachment. Alving & Fernholz (1995) investigated
the scaling of the velocity profiles from their experiment. They compared the
Durbin-Belcher and Perry-Schofield scalings, with the conclusion that the latter
works better than the former. However, they did not actually use the velocity
scale proposed by Perry & Schofield (1973), but rather determined their velocity
scale so that the velocity profiles close to separation collapse with the profile
given by Dengel & Fernholz (1990).

The consensus from the experiments mentioned above is that the turbu-
lence is intensified above a separated region while it is decreased in the back-flow
itself. Velocity profiles at streamwise positions close to the separation point can
only be made to collapse in the outer part by a fitting procedure of the velocity
scale. Upstream of separation the experiments give no evidence on how the
velocity profiles should be scaled. No universal profile for the back-flow seems
to exist and the proper scaling is still an open question.

1.3. Direct numerical simulations

A few direct numerical simulations (DNS) of separated turbulent boundary
layer flows have been performed earlier.

Na & Moin (1998a,b), hereafter abbreviated as NM, used a second-order
finite difference method to simulate a turbulent separation bubble. The com-
putational box was 350× 64× 50 based on the δ∗ at the turbulent inflow. The
number of points was 513 × 193 × 129. The inflow condition was taken from
Spalart’s temporal ZPG simulation. The velocity profiles were neither linear
in the viscous sub-layer nor logarithmic further from the wall at all streamwise
positions. The location of maximum turbulence intensity occurred above the
separation bubble.

The near-wall flow from the simulation by NM has previously been in-
vestigated by Skote & Henningson (1999). Good agreement between theory
regarding the viscous sub-layer (recapitulated here in section 2.1.1) and DNS
data was found in the region just upstream of separation.

Spalart & Coleman (1997), hereafter abbreviated as SC, performed DNS
of a separation bubble with heat transfer. They used a spectral code with
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640× 200× 256 modes. Their inflow-outflow boundary condition was based on
the fringe region technique with a turbulent inflow. Their results showed that
separation has large effects on the boundary layer, and that many assumptions
which are valid for an attached layer cannot be applied to the separated bound-
ary layer. The Reynolds shear stress increased dramatically over the separation
bubble as did the turbulent kinetic energy. This is explained by a lift-up of
turbulent fluid from the wall region that weakens the blocking effect of the
wall. The increased turbulent energy can also be explained by a contribution
from the normal and streamwise Reynolds stresses as argued by SC. Negative
production of turbulent kinetic energy was observed in the later part of the
separation bubble. This was not further explained by SC but was probably
due to a positive Reynolds shear stress in that part of the flow. However, SC
recognized that the effect of the rapid distortion on the boundary layer might
lead to results which are not valid for turbulent separation bubbles in general.

In both of these simulations the boundary condition on the upper boundary
was set by imposing a normal velocity that varies downstream and thus controls
the separation bubble. Many results are hence similar for both simulations.
The streamwise velocity profiles have a gradient at the upper boundary due
to the boundary condition, thus the velocity profiles constitute a boundary
layer with no freestream edge, where the streamwise velocity gradient and the
normal velocity are small.

Both NM and SC noted that the streaks near the wall are eliminated by
an APG. In NM they concluded that the vortical structures are lifted above
the bubble and impinge on the wall in the reattachment region.

The simulations performed here are different from the ones by NM and SC
in some important aspects. First, the boundary condition used in the present
simulations gives a boundary layer with a well defined freestream edge, thus
permitting an investigation of integral parameters which was not possible in
NM and SC. Second, the separated region is longer than in NM and SC, hence
the local distortion of the boundary layer is less severe. The strength of the
back-flow is also stronger, which reveals new phenomena.

In this work we start with a review and extension of the theory concern-
ing velocity profiles in an attached and separated turbulent boundary layer in
section 2. The results from the simulations are presented in section 3. A pre-
sentation of the numerical methodology, including a resolution check, is given
in section 3.1. This is followed by a general description of the flow, including
both instantaneous structures and turbulence statistics, in section 3.2. The
theoretical results from section 2 are compared with DNS data in section 3.3.
The results are further discussed in section 4, and comparison with NM and
SC will be made, as well as with some experimental data.

In the present work we focus on the near-wall flow since few results from
the near-wall region in a separated flow have previously been reported. The
flow close to the wall is scrutinized by comparing results from theoretical con-
siderations with data obtained from the DNS
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2. The turbulent boundary layer equations

In the past, much effort has been spent to obtain numerically solvable ordinary
differential equations for the parameters quantifying the turbulent boundary
layer. See e.g. Schlichting (1979), Rotta (1962) and Cebeci & Smith (1974) for
references. Using such methods, separation and reattachment can be predicted
in some cases. However, no general formula to predict separation has been
offered. The emphasis today is shifted towards more general closures of the
Navier-Stokes equations, based on turbulence models. Therefore, no attempts
to analyze or improve the methods based on simplified versions of the turbulent
boundary layer equation (TBLE) are conducted here. The TBLE is used to
extend and improve the theoretical understanding of the streamwise velocity
profile in the inner region of the turbulent boundary layer.

The near-wall behavior of a turbulent boundary layer close to separation,
or fully separated, is difficult to analyze with the TBLE, since a separated
flow does not permit the simplifications of the Navier-Stokes equations leading
to the TBLE. However, even if the TBLE is not valid when the downstream
development of a separating boundary layer is to be calculated, it can still be
used to understand what happens locally in the boundary layer.

Results from a straightforward analysis of the TBLE is of importance for
the development and calibration of turbulence models. The near-wall laws de-
rived for ZPG boundary layers have been used extensively for obtaining bound-
ary conditions in calculations of boundary layer flow with turbulence models.
Thus, better near-wall laws for turbulent boundary layers would improve the
predictions made of APG flows using turbulence models. The near-wall laws
presented here can be used for such purposes.

In section 2.1 the analysis of the TBLE will be presented for two reasons.
First we wish to strengthen the arguments and results from some of the previous
authors. The analysis reported here clarifies how and under what circumstances
previous results are applicable. Second, the modified analysis can be repeated
for the separated case. This analysis is presented in section 2.2. The theoretical
results for the separated case are derived from the same arguments as for the
attached case. It is only the changed boundary condition at the wall that
make the resulting expressions for the velocity profile different from the ones
describing an attached boundary layer.

2.1. The attached boundary layer

The analysis of the TBLE will be divided into three parts. The first and second
parts deal with the total shear stress in the inner region of the boundary layer,
where the advective terms in the TBLE are neglected. The analysis in the
first part will lead to a velocity profile in the viscous sub-layer, where also the
Reynolds stress can be neglected. The overlap region is investigated in the
second part.

The third part is devoted to the outer part of the boundary layer, where
the viscous term in the TBLE is neglected. Together with the analysis of the
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outer part, an integration of the TBLE with all terms included, gives some
relations between mean flow parameters, such as shape factor and skin friction.

2.1.1. The inner region

The analysis of the inner region (near-wall flow) will be performed in more detail
than the analysis of the outer part, since the low Reynolds number together
with an adverse pressure gradient give a flow that differs substantially from the
ZPG flow. Also, the results for the separated flow will be based on the analysis
of the APG flow.

When neglecting the non-linear, advective terms in the equations describing
the mean flow, the equation governing the inner part of the boundary layer is
obtained. Using the inner length and velocity scales ν/uτ and uτ , the equation
can be written,

0 = − ν

u3
τ

1
ρ

dP

dx
+

d2u+

dy+2 − d

dy+
〈u′v′〉+, (3)

where 〈u′v′〉 is the Reynolds shear stress. If the term involving the pressure
gradient is negligible small compared to the other terms, the equation reduces
to the equation governing the inner part of a ZPG boundary layer. However, for
strong APG cases at finite Reynolds numbers, this term cannot be neglected.
Equation (3) can be integrated to give an expression for the total shear stress,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1
ρ

dP

dx
y+ (4)

For a ZPG case, equation (4) predicts a constant shear stress of unity in the
inner region.

The pressure gradient term in equation (4) is evidently important for the
shear stress distribution in the inner part of the boundary layer. This was
observed in, among others, the experiments by Bradshaw (1967), Samuel &
Joubert (1974) and Sk̊are & Krogstad (1994), and the DNS by Spalart & Wat-
muff (1993) and Skote et al. (1998). It can be shown that the pressure gradient
term decreases with increasing Reynolds number, and thus is important only
for low Reynolds numbers. However, close to separation, where uτ approaches
zero, it is clear that the pressure gradient term becomes infinite, even for large
Reynolds numbers.

When considering a strong APG or separation, the singularity mentioned
above can be avoided by introducing the velocity scale up, defined in equation
(2). To see this, we first formulate equation (4) as

τ+ = 1 +
(

up

uτ

)3

y+. (5)

The velocity scale up has to be used instead of uτ if the last term in equation
(5) becomes very large which happens if uτ � up, i.e. the boundary layer
is close to separation. This was noted by Stratford (1959), Townsend (1961)
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and Tennekes & Lumley (1972). By multiplying equation (5) by (up/uτ )2, the
following expression for τp ≡ τ/(ρu2

p) as a function of yp ≡ yup/ν is obtained,

τp = yp +
(

uτ

up

)2

. (6)

Equation (6) has the asymptotic form τp = yp when separation is approached.
Thus, in this rescaled form, the singularity is avoided.

There are three possible complications in the above analysis. First, the
pressure gradient may depend on the normal coordinate. This was proved to be
important when the analysis was compared with the data from the simulation
of NM, see Skote & Henningson (1999). However, due to the straightforward
boundary conditions used in the present simulation, no such dependence exists
in the data presented here. The second complication is that the TBLE contains
the streamwise derivative of longitudal and normal Reynolds stresses. These
terms may be important in a strong APG flow as was noted by Rotta (1962).
A third complication is the non-linear inertia terms, which can influence the
total shear stress as argued by McDonald (1969). However, in the present
simulations these two terms are not important and will be disregarded in the
following.

Now, in the viscous sub-layer the Reynolds shear stress approaches zero
and equation (6) can be integrated to give,

up ≡ u

up
=

1
2
(yp)2 +

(
uτ

up

)2

yp. (7)

In the limit of separation, when uτ/up → 0, equation (7) reduces to

up =
1
2
(yp)2. (8)

In viscous units, equation (7) becomes,

u+ = y+ +
1
2

(
up

uτ

)3

(y+)2. (9)

This equation reduces to the usual linear profile in ZPG case, when up/uτ → 0.
The two expressions (5) and (6) are equivalent. It is in the limits of

uτ/up → 0 and up/uτ → 0 respectively that the formulation becomes cru-
cial. The same observation is true for the expressions (7) and (9). However,
when plotting data from the rapidly varying separation bubble of NM, the
scaling based on up gives a much better collapse of the profiles. In the scaling
based on uτ , the profiles are scattered, due to the strong variation of uτ . In
the simulations presented here, the pressure gradient is varying less violently.

2.1.2. The overlap region

The velocity profiles derived in this section will have asymptotic forms that
are consistent with the profiles in the viscous sub-layer derived in the previous
section. That is, the two velocity scales (uτ and up), yield two different velocity
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profiles, valid in the limits of ZPG (up/uτ = 0) and separation (uτ/up = 0)
respectively. In flows between these asymptotic states (APG flows), the two
scalings are equivalent and both give a velocity profile that depends on the
Reynolds number and the pressure gradient through the ratio between uτ and
up.

We now proceed with the analysis by first considering the total shear stress.
For the ZPG case, the scaling of the total shear stress with uτ gives a self-similar
profile (τ+ = 1). From equations (5) and (6) it is observed that neither uτ nor
up as velocity scale results in a self-similar expression. However, equation (4)
can be formulated as

τ∗ ≡ 1
u2∗

(
ν

∂u

∂y
− 〈u′v′〉

)
= 1, (10)

where u∗ is a velocity scale that depends on y and can be expressed in either
viscous or pressure gradient units,

u2
∗ = u2

τ +
u3

p

uτ
y+ = u2

τ + u2
py

p. (11)

Thus, by scaling the total shear stress with u∗, a self-similar expression is
obtained (τ∗ = 1). The velocity scale u∗ reduces to uτ if up becomes zero, i.e.
for a ZPG boundary layer. If instead uτ becomes zero, i.e. for a boundary
layer at separation, the velocity scale becomes u∗ = up

√
yp. However, when

u∗ = up
√

yp is inserted in equation (10) we can write the equation as τp = yp,
i.e. we use up as the velocity scale. Note that for the special case with uτ = 0,
the velocity scale u∗ is zero at the wall. This is natural since the velocity
gradient is zero at the wall.

The logarithmic behavior of the turbulent boundary layer is obtained from
the matching of the velocity gradient, or equivalently, the shear stress, in the
inner and outer regions of the boundary layer. The matching also requires a
consistency condition that results in the logarithmic friction law.

For the matching of the inner and outer equations, it is enough to observe
that the total shear stress can be written in the form (10) in the inner part. In
the outer part it is assumed that the velocity gradient can be written,

∂u

∂y
= F ′u∗/∆, (12)

where F ′ is a function of a similarity variable (y/∆) and ∆ is the outer length
scale. Equation (12) should be considered as the scaled formulation of the ve-
locity gradient for the outer part, corresponding to the scaled velocity gradient
for the inner part, which can be written as

∂u

∂y
= f ′u2

∗/ν, (13)

where f ′ is a function of a similarity variable (yu∗/ν).
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If the total shear stress is scaled with u∗ in the outer and inner parts, and
assumptions (12) and (13) are valid, then the matching of the total shear stress
gives the equation,

y∗
(

∂u

∂y

)∗
=

1
κ

, (14)

where a short notation is used for the scaled velocity derivative,(
∂u

∂y

)∗
≡ ν

∂u

∂y

1
u2∗

. (15)

The scaled normal coordinate is

y∗ ≡ yu∗/ν =
√

(y+)2 + (yp)3. (16)

For the ZPG case, for which up = 0, equation (14) is reduced to,

y+ du+

dy+
=

1
κ

. (17)

When integrated, equation (17) gives the logarithmic velocity profile.
In the same way as equation (17) can be integrated to give the logarithmic

law for the ZPG case, equation (14) above can be integrated to give a velocity
profile in either viscous scaling (u+ ≡ u/uτ = f(y+)) or pressure scaling (up ≡
u/up = g(yp)). Both of these expressions will depend on the ratio between uτ

and up, and are thus not self-similar. A self-similar profile of the form u∗ ≡
u/u∗ = h(y∗) is not consistent with equation (10). This is further discussed at
the end of this section.

If uτ is chosen as velocity scale, the integration of equation (14) yields,

u+ =
1
κ

(
ln y+ − 2 ln

√
1 + λy+ + 1

2
+ 2(

√
1 + λy+ − 1)

)
+ B, (18)

with

λ =
(

up

uτ

)3

.

The expression (18) is not self-similar due to the term λ which is Reynolds
number dependent. Equation (18) is the same expression as Afzal (1996) ar-
rived at. It is also similar to the equation which Townsend (1961) derived from
mixing length arguments.

If up is chosen as velocity scale, then (18) can be written,

up =
1
κ

(
2
√

γ2 + yp + γ ln yp − 2γ ln(
√

γ2 + yp + γ)
)

+ C (19)

where
γ =

uτ

up
.

For a ZPG boundary layer, for which λ = 0, equation (18) reduces to the
logarithmic profile. In the other limit, at separation, when γ is zero, equation
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(19) reduces to the half-power law,

up =
1
κ

2
√

yp + C, (20)

which was first derived by Stratford (1959). Note that equation (20) can be
rewritten in such a manner it is independent on the viscosity, as in the formu-
lation by Stratford.

As mentioned earlier, it is not possible to solve equation (14) directly to
obtain an expression for u∗ as a function of only y∗. This is due to the scaled
(with u∗) velocity gradient, which cannot be formulated independently of uτ

and up. The velocity gradient scaled with a constant velocity scale uτ or up is,
on the other hand, straightforward to express independently of the Reynolds
number,

ν
∂u

∂y

1
u2

τ

=
(

∂u

∂y

)+

=
du+

dy+
. (21)

Thus, in the ZPG case the equation permits a self-similar velocity profile
(the logarithmic function). The same is true for the zero wall stress case (the
half-power law). In all flows between these two asymptotic states, the velocity
profile depends on the Reynolds number through the ratio between uτ and up.

In other words, for all APG boundary layers, including the asymptotic
states ZPG and separation, the total shear stress can be made self-similar by
using the velocity scale u∗. For the ZPG and separating boundary layers, u∗
reduces to a constant (y independent) velocity scale (uτ and up respectively).
This leads to that the velocity profile becomes self-similar for those two cases
(due to equation (21) above). For all APG cases in between, the velocity scale
u∗ is not constant, and hence the velocity profile is not self-similar.

2.1.3. The outer part

The analysis of the integrated TBLE, together with the analysis of the outer
part, where the viscous terms are neglected, was conducted thoroughly by Skote
et al. (1998). Only the resulting equations, linking the mean flow parameters
with each other, will be recapitulated.

The aim here is to simplify the equations under the assumption of self-
similarity. The conditions for self-similarity and the resulting relations between
mean flow parameters are presented. The reason for interest in self-similar
flows originates from at least three arguments. First, the equation of motion
are simpler to analyze. Second, turbulence models can be calibrated using a
single profile, or investigated from an asymptotic approach. Third, calibra-
tion and determination of parameters such as friction velocity can be done in
experiments.

If the viscous term is neglected in the equations describing the mean flow
of a two-dimensional, incompressible, turbulent boundary layer, the equation
governing the outer part of the layer is obtained. From this equation it is
possible to deduce that a necessary condition for self-similarity is that a pressure
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gradient parameter (denoted β) is constant,

β ≡ δ∗

τw

dP

dx
= constant. (22)

Furthermore, if uτ/U is regarded as constant and an outer length scale varies
linearly, the condition β =constant is fulfilled if the freestream variation is of
the form U ∼ xm, which when specifying a profile becomes,

U = U0(1 − x

x0
)m. (23)

If this form of the freestream is inserted in the TBLE together with the
assumption that the velocity defect and Reynolds shear stress, when scaled
with the friction velocity, are functions of an outer variable η,

(u − U)/uτ = F (η), −〈u′v′〉/uτ
2 = R(η),

η = y/∆(x), ∆ = Uδ∗/uτ , (24)

the TBLE becomes,

−2βF +
β

m
(1 + m)η

dF

dη

+
uτ

U

{
−βF 2 +

β

m
(1 + m)

dF

dη

∫ η

0

Fdη

}
=

dR

dη
+

1
Reδ∗

d2F

dη2 . (25)

The equation governing the outer part is obtained if the last term in equa-
tion (25) is neglected.

If F is of order unity, the terms within the bracket after uτ/U can be
neglected, which results in a linearization of the equation. This simplification is
only valid in the limit of infinite Reynolds number, when uτ/U → 0. However,
closer to the wall, and for finite Reynolds number, F is of order U/uτ and
all terms in the equation are of the same order. Thus, when integrating from
the wall to the freestream, the non-linear terms must be kept. The viscous
term is also important since it is zero only for a boundary layer at the point of
separation.

Thus, retaining all terms and integrating equation (25), the relationship,

m = − β

H(1 + β) + 2β
, (26)

is obtained. H is the shape factor. The asymptotic result for infinite Reynolds
number, when uτ/U → 0, is obtained by setting H equal to unity.

In the present APG simulation the Reynolds stress profiles at different
positions are not self-similar, due to the small variation of uτ/U . For large
Reynolds numbers, the profiles tend to a self-similar state. This can be seen
from e.g. the experiments with a strong pressure gradient of Sk̊are & Krogstad
(1994), or from calculations with turbulence models as in Henkes (1998) or
Skote et al. (1998).



DNS of separating turbulent boundary layers 127

From the definition of β, equation (22), and the freestream profile used,
equation (23), it follows that if m and the ratio uτ/U are constants, then,

∆ = (1 − x

x0
)∆0. (27)

All of these conditions and the resulting relations are investigated in the
DNS data presented in section 3.2.1. Now the effect of a different velocity scale
is investigated.

In the previous studies by Skote et al. (1998), the APG was not so strong
that rescaling was required, neither in the inner nor in the outer region. For a
strong APG or separated case, the scaling of the velocity defect with uτ has to
be reconsidered, following the arguments from the preceding sections.

As for the inner part, the rescaling merely means a change of the veloc-
ity scale from uτ to up. When using up instead of uτ as velocity scale, the
parameter occurring in the TBLE is changed from β to βp,

βp ≡ − δ∗

u2
p

U
dU

dx
= β

(
uτ

up

)2

=
δ∗

ν
up. (28)

The TBLE scaled with up is equation (25) multiplied by (up/uτ )3, and
integrated it gives the relation,

m = − βp

H
(
(uτ

up
)2 + βp

)
+ 2βp

, (29)

which is identical to relation (26). If uτ → 0, the relation (29) reduces to,

m = − 1
H + 2

, (30)

which is also what (26) reduces to when uτ → 0, i.e. when β → ∞.
In the analysis of the TBLE with up instead of uτ , the self-similar expres-

sions (24) are replaced with the following expressions,

(u − U)/up = Fp(ηp), −〈u′v′〉/up
2 = Rp(ηp),

ηp = y/∆p(x), ∆p = Uδ∗/up. (31)

The scaling of the velocity defect with up cannot give self-similar profiles
since βp is not constant according to the definition (2) of up. The ratio up/U
is not constant either. Thus, a theoretical expression for the outer part in a
boundary layer close to separation must be based on another kind of scaling.

There have been many attempts to properly describe the velocity profile
in the outer part of the boundary layer, both for ZPG and APG flows. Coles
(1956) proposed a wake function for the description of the velocity profile.
Since then a number of changes and refinements have been presented. Musker
(1979), among others, proposed a velocity profile that is valid from the wall
to the freestream, consisting of a logarithmic function and a wake function of
the polynomial form. Dengel & Fernholz (1990) disregarded the form of the



128 M. Skote & D. S. Henningson

original wake function, and propose a polynomial fit to the velocity profile. A
different approach was chosen by Perry & Schofield (1973), who found their
velocity scale by a fitting procedure similar to the Clauser plot in the ZPG
case. They also related the velocity scale to the maximum shear stress, but
no experimental data have confirmed this relation. Durbin & Belcher (1992)
derived a three-layered structure of the turbulent boundary layer under a strong
adverse pressure gradient. No experimental data have verified their scalings.

With this abundance of theories and proposed functions for the description
of the velocity profile in the outer part, it is difficult to extract the ’best’ theory,
especially with those containing a large number of constants to be adjusted
to obtain the best fit with DNS data. Therefore, in the present work, the
velocity profile in the outer part will not be investigated with respect to the
vast number of suggested profiles described above. We are content with a
comparison between the velocity scales uτ and up.

The difficulties in finding an appropriate description of the velocity profile
in the outer part of the boundary layer in strong APG flows with or without
separation, may be attributed to ’historical effects’, i.e. the flow is not deter-
mined by local parameters (except for equilibrium layers), but is influenced by
downstream and upstream conditions. This is consistent with the arguments of
Perry (1966), who divided the boundary layer into a wall region, where the flow
is determined by local parameters, and a ’historical region’ where this local or
’regional similarity’ does not apply.

2.2. The separated boundary layer

The TBLE cannot be used as a tool if a calculation of the downstream be-
havior of a separated boundary layer from given boundary condition is to be
performed, Rotta (1962), Perry & Fairlie (1975). However, the TBLE can still
be used for the analysis of local velocity profiles.

In this section the case of separation will be discussed. The limit of zero
shear stress (uτ/up → 0) was approached in the analysis above, and the as-
ymptotic version of the expression for the velocity in the viscous sub-layer was
equation (8), and in the logarithmic region it was equation (20). These two
expressions were obtained by setting uτ = 0 in equation (7) and (19) respec-
tively. Now, if a separated flow is considered, the definition of uτ has to be
reconsidered. In the separated region, ∂u

∂y is negative. Thus, the definition of
uτ in equation (1) involves a square root of a negative number. Instead, the
definition will be changed so that the square root will be taken of a positive
number. Thus, to proceed with the analysis of the equations, the definition of
the friction velocity will have to be changed to

uτ ≡
√

−ν
∂u

∂y

∣∣∣∣
y=0

. (32)

This change will affect the analysis outlined in the previous section. It is
the boundary condition at the wall used when integrating the TBLE that will
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be different from the attached case. In this section the analysis will start with
the inner part, continue with the overlap region, and end with the outer part.

The equation for the inner part (3) will not be changed since the scaling
is not affected by the change of definition of uτ . However, in the integration
leading to equation (4), the boundary condition at the wall is used and will
now, with the definition (32), change sign. Thus, the analysis is the same as in
section 2.1. It is only the boundary condition that change the expression from
equation (6) to

τp = yp −
(

uτ

up

)2

. (33)

For the velocity in the viscous sub-layer the expression becomes,

up =
1
2
(yp)2 −

(
uτ

up

)2

yp, (34)

instead of equation (7). Due to the changed boundary condition, the corre-
sponding equation in viscous scaling, equation (9), will read as,

u+ = −y+ +
1
2

(
up

uτ

)3

(y+)2. (35)

Note that the equations (7) (attached boundary layer) and (34) (separated
boundary layer) take the same form,

up =
1
2
(yp)2, (36)

when uτ/up → 0. This asymptotic form is equal for the two cases since the as-
ymptotic state is the onset of separation. On the other hand, the corresponding
equations in the viscous scaling, equations (9) and (35), have the asymptotic
forms u+ = y+ and u+ = −y+ respectively. Thus, the assumption that vis-
cous forces are stronger than the pressure gradient give different profiles in the
attached and separated region.

From equations (7) or (35) it is possible to extract the maximum negative
velocity and the position where it occurs. In pressure gradient scaling the
maximum back-flow is − 1

2 (uτ

up
)4 at yp = (uτ

up
)2. These results are valid if the

back-flow maximum is located in the viscous sub-layer.
Now the logarithmic part of the boundary layer will be discussed. Accord-

ing to equation (33), the velocity scale that produce a self-similar shear stress
(τ∗ = 1) is,

u2
∗ = −u2

τ +
u3

p

uτ
y+ = −u2

τ + u2
py

p. (37)

By inserting either form of u∗ into equation (14), two different expressions for
the velocity profile are obtained. Using the viscous scaling yields,

u+ =
1
κ

[
2
√

λy+ − 1 − 2 arctan
(√

λy+ − 1
)]

+ B, (38)
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with

λ =
(

up

uτ

)3

.

By using the pressure gradient scaling we obtain,

up =
1
κ

[
2
√

yp − γ2 − 2γ arctan
(√

yp

γ2
− 1

)]
+ C, (39)

where

γ =
uτ

up
.

The logarithmic dependence has been replaced by the arctan function.
However, the asymptotic function (20) is recovered from equation (39) when
uτ/up → 0.

The equation (38) was actually derived by McDonald (1969) from
Townsend’s extended log law, however with the velocity scale up replaced with
the shear stress gradient. McDonald argues that the shear stress gradient is dif-
ferent from the streamwise pressure gradient, and that the deviation originates
from inertia effects.

After the analysis of the inner and logarithmic parts, we now proceed with
the outer part. Since the separation (at least the weak one considered here) is a
phenomenon confined to the inner part of the boundary layer, the outer part is
not affected. However, the integration of the TBLE, presented in section 2.1.3,
are affected since the boundary condition will change for a separated boundary
layer compared to the attached one.

When integrating equation (25) in pressure gradient scaling, the changed
boundary condition results in the relation,

m = − βp

H
(
−(uτ

up
)2 + βp

)
+ 2βp

, (40)

This relation is almost identical with the relation (29), and the only difference
is the sign in front of uτ

2, which enters through the boundary condition at
the wall. The asymptotic version for vanishing wall shear stress is the same,
equation (30).

3. Direct numerical simulations

The numerical code and a discussion about the resolution required are presented
is section 3.1. The results from the simulations will be presented in two sections.
The general description of the flow is presented in section 3.2. In section 3.3
the mean flow will be presented and compared to the theoretical results from
section 2.
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3.1. Numerical considerations

The code used for simulation is only a tool to provide the data wanted. How-
ever, the complexity of numerical issues makes it interesting to present the
basic ideas behind the numerical solution procedure. Especially in combina-
tion with the use of super computers, the computational algorithm can itself
lead to research in its own right.

3.1.1. Numerical method and parallelization

The code used for the direct numerical simulations (DNS) was developed at
KTH and FFA, Lundbladh et al. (1999). The numerical approximation consists
of spectral methods with Fourier discretization in the horizontal directions
and Chebyshev discretization in the normal direction. Since the boundary
layer is developing in the downstream direction, it is necessary to use non-
periodic boundary conditions in the streamwise direction. This is possible while
retaining the Fourier discretization if a fringe region is added downstream of
the physical domain. In the fringe region the flow is forced from the outflow
of the physical domain to the inflow. In this way the physical domain and the
fringe region together satisfy periodic boundary conditions. The fringe region
is implemented by the addition of a volume force F , to the Navier-Stokes
equations:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj
2

+ Fi. (41)

The force

Fi = λ(x)(ũi − ui) (42)

is non-zero only in the fringe region; ũi is the laminar inflow velocity profile
which the solution ui is forced to and λ(x) is the strength of the forcing. The
form of λ(x) is designed to minimize the upstream influence. For an analysis of
the fringe region technique, the reader is referred to Nordström et al. (1999).

Time integration is performed using a third order Runge-Kutta method for
the advective and forcing terms and a Crank-Nicolson method for the viscous
terms. A 2/3-dealizing rule is used in the streamwise and spanwise direction.

The numerical code is written in FORTRAN and consists of two major
parts, one linear part where the equations are solved in spectral space, and one
non-linear part where the non-linear terms in the equations are computed in
physical space. The linear part needs data for one spanwise (z) position at a
time since the equations are solved in the wall normal (y) direction. The non-
linear part needs data for one y position at a time since the FFT is performed
in the horizontal directions (spanwise and streamwise). The flow variables are
stored at an intermediate level with spectral representation in the horizontal
directions and physical representation in the y direction. All spatial derivatives
are calculated with spectral accuracy. The main computational effort in these
two parts is in the FFT.
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The simulations were performed to a large extent on computers with dis-
tributed memory. The parallelization and optimization of the code for these
type of computers were performed by Alvelius & Skote (2000). Communica-
tion between processors is necessary when the different operations on the data
set are to be performed in the two different parts of the code. The data set
(velocity field) is divided between the different processors along the z direction.
Thus, in the linear part, no communication is needed. When the non-linear
terms are calculated, each processor needs data for a horizontal plane. The
main storage is kept at its original position on the different processors. In
the non-linear part each processor collects the two-dimensional data from the
other processors, on which it performs the computations and then redistributes
it back to the main storage.

The boundary conditions are no-slip at the wall and at the freestream the
normal derivative of the streamwise and spanwise velocity components are set
to zero, while for the normal component the prescribed value of the APG is
used,

∂v

∂y
=

∂VAPG

∂y
= −∂UAPG

∂x
. (43)

These boundary conditions ensures that the prescribed APG is obtained.

3.1.2. Numerical parameters

The simulations were performed on various computers. The tuning of the pres-
sure gradient for the desired flow situation was performed on a Cray T3E at
NSC in Linköping, using 32 processors. After the design of the pressure gra-
dient, a simulation with 20 million modes was performed on an IBM SP2 at
PDC, KTH in Stockholm, using 32 processors. The results presented here are
mainly from a second simulation with 40 million modes performed at the Na-
tional Aerospace Laboratory (NAL), Tokyo. The same (with some differences
due to the different types of processors) code was used on all three comput-
ers, using MPI (Message-Passing Interface) for the communication between the
processors. The numerical method and the simulation performed at NAL was
presented at the Parallel CFD 2000 conference in Trondheim.

The computer used at NAL was the Numerical Wind Tunnel (NWT), a
parallel computer that consists of 166 vector processors from Fujitsu. The
maximum performance on each processor is 1.7 Gflop/s. The main difference
from the other two computers (CRAY T3E and IBM SP2) is the type of proces-
sor. While the other two consist of super-scalar processors, the NWT utilizes
vector processors. These processors give a higher performance for each of the
processing elements. The fast Fourier transforms (FFT), for which most of the
time is spent during the simulation, have different structure for the scalar and
vector processors.

The simulations start with a laminar boundary layer at the inflow which
is triggered to transition by a random volume force near the wall. All the
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quantities are non-dimensionalized by the freestream velocity (U) and the dis-
placement thickness (δ∗) at the starting position of the simulation (x = 0),
where the flow is laminar. At that position Reδ∗ = Uδ∗/ν = 400. The length
(including the fringe), height and width of the computation box were 700 ×
65 × 80 in these units. The fringe region has a length of 100 and the trip is
located at x = 10.

Results from two simulations are presented. One, which is called APG1,
is a boundary layer subject to a strong APG. The flow in APG1 is everywhere
attached. The second, which is called SEP, is a boundary layer under even
stronger APG, and the flow is separated for a large portion.

Two different resolutions were used for the simulations. For APG1 the
number of modes was 512 × 193 × 192. After a simulation of SEP with
the same resolution, a larger simulation was performed using the NWT. The
number of modes in this simulation was 720 × 217 × 256, which gives a total
of 40 million modes or 90 million collocation points.

The simulations were run for a total of 7500 time units (δ∗/U), and the
sampling for the turbulent statistics was performed during the last 2500 time
units. The statistics were collected during the simulations and averaged in the
spanwise direction. No filtering of the statistics has been used.

3.1.3. Resolution check

The simulation of a separated boundary layer was performed with two different
resolutions and could be compared with each other. The turbulent statistics
for both resolutions were computed from the same amount of simulation time.
The general behavior in the streamwise direction is the same for the two reso-
lution, i.e. there are no large differences in parameters such as friction velocity,
shape factor etc. There were some differences in the region where the back-flow
has its largest magnitude, which is now further investigated. Velocity profiles
from two downstream positions are shown in figure 1, one at x = 350 where
the back-flow is strongest, and one at x = 500, where the boundary layer is at-
tached. A large part of the profile from the less resolved simulation at the point
of maximum back-flow (x = 350) is below the profile from the well resolved
simulation. However, close to the wall they collapse. In the attached region,
the two profiles are essentially similar. Thus, the region where strong back-flow
occurs is sensitive to the resolution, which means that caution is needed when
simulating this type of flow. Also in the Reynolds shear stress some differences
could be detected, most notably in the outer region, near the freestream. In
the attached region there were no differences between the two resolutions for
the Reynolds stresses. It should be noted that even though the history effects
can influence the boundary layer downstream of reattachment, (see e.g. the
investigations of Alving & Fernholz (1996)), the differences upstream of reat-
tachment in the the two resolutions do not influence the boundary layer in the
attached region.
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Figure 1. SEP: Velocity profile in the separated region at
x = 350 and in the attached region at x = 500. — 720 × 217
× 256 modes; - - 512 × 193 × 192 modes.
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Figure 2. SEP: Energy contained in modes in — x; - - y;
· · · z. Thick lines: 720 × 217 × 256; Thin lines: 512 × 193 ×
192.

This investigation shows that the lower resolution is sufficient for the at-
tached region, while in the separated region, the high resolution is crucial for
capturing the correct behavior.

Comparison with the resolution in the simulations by NM and SC is pos-
sible by rescaling the size of the box of their simulations in the coordinates
of the present simulation and divide with number of collocation points. The
result is shown in table 1. The resolution is better for the present simulation
than in NM in all three directions, even though their method has second order
accuracy while our method, as in SC, is spectral.

To further confirm the resolution we show the energy in the flow as function
of the spectral modes for the two resolutions in figure 2. The thick lines are
from the well resolved case. Note that the two velocity fields are from different
times, thus the curves from the two cases do not collapse. The energy decays
consistently in the three directions when the resolution is refined. The small
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present NM SC
∆x 0.65 0.85 0.57
∆y 0.30 0.41 0.27
∆z 0.21 0.48 0.21

Table 1. Comparison of resolution between the present sim-
ulation and the simulations by SC and NM.

contamination in the highest modes moves to higher wavenumbers as resolution
is increased.

3.2. General description of the flow

The general behavior of the mean flow parameters is described and discussed in
section 3.2.1. The instantaneous velocity field will be presented in section 3.2.2,
where a qualitative description of the structures appearing in the flow will be
afforded. In section 3.2.3 a general description of some turbulence statistics are
presented.

3.2.1. Mean flow parameters

In earlier simulations of APG turbulent boundary layers by the authors of the
present work, Skote et al. (1998), the freestream velocity varied according to
a power law in the downstream coordinate, U ∼ xm. The motivation for this
was that a self-similar profile in the outer part could be developed. In the
simulations presented here, the aim was to get a boundary layer as close to a
separated state as possible. The tuning of the pressure gradient is extremely
time consuming since the boundary layer has a slow response to any change in
the pressure distribution.

The pressure gradient is determined through the freestream velocity, which
is of the same functional form as in Skote et al. (1998),

U =
(

1 − x

x0

)m

. (44)

The two parameters that can be changed are x0 and m, and they are summa-
rized in table 2.

The freestream velocity (U) for the two simulations, APG1 and SEP, are
shown in figure 3, together with the skin friction (Cf ). As seen from the figure,
a small change in the freestream velocity has a great impact on the skin friction.
A number of simulations were performed to obtain a boundary layer with a wall
shear stress as close to zero as possible. These two simulations are the ones
where we obtained uτ closest to zero, and were therefore continued for a long
time to get good statistics. The resolution was discussed in section 3.1, and
the conclusion was that both simulations can be considered well resolved.

Even if the boundary condition (U) is almost the same for the two sim-
ulations, the resulting boundary layers contain very different flows. In APG1
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Figure 3. APG1: — U ; · · · Cf ×100. SEP: - - U ; −·− Cf ×
100. S and R denotes point of separation and reattachment
respectively for SEP.
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Figure 4. APG1: — V . SEP: - - V .

the boundary layer is subject to a strong APG, but is everywhere attached.
In SEP the boundary layer is separated for a large portion of the computa-
tional domain. The resulting normal velocity at the freestream boundary (V )
is shown for the two cases in figure 4.

The parameter β for APG1 is shown in figure 5, and is approximately
constant. The shape factor from APG1 is almost exactly constant over the
whole domain x = 150 − 550. The corresponding parameter βp from SEP is
also shown in figure 5 together with the shape factor. The boundary layer with
separation is evidently not near equilibrium since βp is not constant. The shape
factor also varies strongly downstream as a consequence of the non-equilibrium
as seen in figure 5.

Since β is constant in the APG1 case, it is possible to check the relation
given by equation (26). Using β and H from APG1 (shown in figure 5), equation
(26) yields an m close to −0.23, shown as the solid line in figure 6. However,
the value of m was set to −0.25 in the simulation. The difference in the value of
m is explained by the non-uniqueness of the two parameters in the freestream
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Figure 5. APG1: — β; · · · H. SEP: - - βp/10; − · − H.
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Figure 6. APG1: — m from equation (26); - - m from equa-
tion (44) with x0 = −50.

velocity distribution. A specific distribution of U can be closely represented
by different values of m and x0. Thus, the imposed distribution of U can be
obtained by applying a different set of the parameters m and x0 than used in
the definition of the distribution. However, the value of x0 in the simulation
can be determined by looking at the resulting outer length scale, ∆, shown in
figure 7. The dashed line is equation (27) with x0 = −50, thus a different value
than the one used in the profile for U , which is x0 = −62. By using the value
of x0 = −50, the exponent m can be calculated from the expression (44). The
resulting m is shown as the dashed line in figure 6, matching approximately
the m from equation (26). Thus, even if the freestream velocity is defined with
the parameters x0 = −62 and m = −0.25, the same freestream distribution is
represented by x0 = −50 (taken from the distribution of ∆) and m ≈ −0.23
(the exact value of m is the dashed line in figure 6). These latter values of m
and x0 are the apparent parameters actually felt by the boundary layer and
are called ma and xa

0 in table 2.
The ratio between the two velocity scales (uτ/up) is shown in figure 8 for

the two cases. The ratio is fairly constant for APG1, and even in the case of
separation the variation is not violent. This is in strong contrast to the rapid
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Figure 7. APG1: — ∆; - - equation (27) with x0 = −50.

Case m x0 ma xa
0

APG1 -0.25 -62 -0.23 50
SEP -0.35 -50

Table 2. Freestream parameters. m and x0 are the values
in the simulation specifying the freestream velocity through
equation (44). xa

0 and ma are the actual values corresponding
to equilibrium theory.
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Figure 8. uτ/up. APG1: — ; SEP: - -.

separation and attachment simulated by SC and NM. The constant ratio will
have some consequences for the scaling of the velocity profiles shown in section
3.3.

The strong decrease in the skin friction before the reattachment cannot
be explained by the mean momentum equation alone. The point of reattach-
ment cannot be predicted either, but can be detected from the behavior of
the normal velocity at the freestream boundary (figure 4). In the beginning of
the computational domain the flow out of the box is generated by the strong
decrease in the streamwise velocity. Later, the flow is inward, due to the fringe
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Figure 9. APG1: Streamwise velocity fluctuation in a plane
at y+ = 10. The dark area represents low-speed fluid
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Figure 10. SEP: Streamwise velocity fluctuation in a plane
at y+ = 10. The dark area represents low-speed fluid

region, where the original, laminar boundary layer is restored. With a longer
computational box, the point of reattachment would move downstream. The
influence of the fringe is however not unphysical, since it only determines the
boundary condition at the outflow. The boundary layer has to end somewhere,
and this scenario is just one example. If a ZPG or APG layer is studied, where
the exact form of the pressure gradient is important, the upstream influence of
the fringe is important, since the equilibrium conditions are changed.

3.2.2. Structures in the flow

The streamwise velocity fluctuations form elongated structures near the wall in
a ZPG boundary layer. It is generally thought that the structures are weakened
in an APG flow. This is illustrated in figure 9, where shades of positive and
negative fluctuations are shown for the APG1 case. The figure shows the
whole computational box in the spanwise direction but the transitional part and
fringe region are excluded in the streamwise direction. The normal position is
y+ = 11.8 in the beginning and y+ = 9.2 at the end. The length in the
streamwise direction is about 3400 in viscous units based on uτ at x = 350.
The structures are weakened at the end of the domain as compared with those
in the beginning, showing the damping effect of the APG on the structures.
The spacing between the structures increases from 100 (the same as for a ZPG
layer) at the beginning to about 130 at the end, based on the local uτ .

The SEP case is shown in figure 10. The normal position is also in this case
around y+ = 10 and the length of the region shown is about 2400. There are
still some structures in the separated flow, though not at all as long and frequent
as in APG1. Before separation, which occurs at approximately x = 140, the
streaks are visible, but are rapidly vanishing in the beginning of the separated
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Figure 11. The separated boundary layer. Only a part of the
computational box is shown. The light grey structures repre-
sent positive normal velocity and the darker ones represent
positive streamwise velocity.
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region. There is notable increase in the streak formation around x = 350,
where the friction coefficient is at its lowest values, c.f. figure 3. Thus, there
are indications that streaks may reappear in a separated region if the back-
flow is strong enough. After the reattachment at x = 412 the streaks are not
immediately appearing, but are clearly visible after x = 450.

To illustrate some more features of the instantaneous flow structures in the
separated case, contour plots of constant streamwise and normal velocity are
plotted in a part of the computational box. In figures 11 and 12, the streamwise
velocity, plotted in dark grey color, show a less ordered structure than in a ZPG
boundary layer. However, the constant streamwise velocity show the same
features above the separation bubble as after the reattachment point. The
sheet formed by the constant value is bent upward over the recirculation region
and comes down again when approaching reattachment. This is in agreement
with various experimental observations, see the introduction. In figure 11, a
positive constant value of the normal velocity is shown in light grey color. The
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Figure 12. The separated boundary layer. Only a part of the
computational box is shown. The light grey structures repre-
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positive streamwise velocity.
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normal velocity is of the same disorganized form as the streamwise velocity.
An opposite effect is revealed in figure 12, where a negative value of the normal
velocity is shown. Here the structure is more ordered and forms tube-like
structures where the fluid rushes from the freestream down towards the wall.

3.2.3. Turbulence statistics

A general description of the turbulent kinetic energy and its production is
presented here. In this section the scaling of the turbulent statistics is based
on the local freestream velocity. For the APG1 case the development of the
turbulent kinetic energy is typical for an APG turbulent boundary layer. In
figure 13 contours of constant levels of turbulent kinetic energy from 0.0005 to
0.006 are shown. The peak value is at all streamwise positions around 0.006.
It is slightly larger in the beginning and decreases slowly downstream, while
the position for the peak is shifted outward from y = 4 at x = 150 to y = 18 at
x = 550. The turbulent kinetic energy development in SEP is more complicated
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Figure 13. APG1: contours of turbulent kinetic energy.
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Figure 14. SEP: contours of turbulent kinetic energy.

and the discussion will be made with the aid of figure 14. In figure 14 contours
of constant levels of turbulent kinetic energy from 0.005 to 0.025 are shown.
At x = 150 the boundary layer has barely separated and the energy has one
maximum of 0.0016 located far out in the boundary layer (approximately at
y = 18). Further downstream, at position x = 250, the energy maximum has
shifted outward to y = 30 with the larger value 0.025. The profile then stays
approximately the same until the maximum starts to decrease and is moving
towards the wall after x = 330. When comparing with the mean streamwise
velocity in figure 15, it is noted that the peak in turbulent kinetic energy is
located outside the recirculation zone. This was also noted by SC and Alving
& Fernholz (1996) among others, (see the introduction in the present work).
At x = 350 the profile of the energy is almost identical with the one at x = 150,
but the maximum continues to decrease downstream, even though the location
(y = 18) of the maximum is constant. The boundary layer is still subjected
to an adverse pressure gradient, and the peak located far out in the boundary
layer is a consequence of this. Nothing spectacular happens at the point of
reattachment (x = 412). The peak value is stabilized after x = 450 at a value
of 0.006, which is the same value as observed in the APG1 case.

The shear stress contribution to the production is shown in figure 16 for
SEP. Approximately the same behavior as for the energy itself is observed up to
x = 330. The maximum occurs closer to the wall, but still above the recircula-
tion region. The streamwise Reynolds stresses do contribute to the production
(not shown in the figure), but their contribution is fluctuating rapidly over
the boundary layer and is much smaller than the production originating from
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Figure 15. SEP: contours of mean velocity. Positive values
shown as solid lines, negative as dashed.
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Figure 16. SEP: contours of production of turbulent kinetic
energy. Positive values shown as solid lines, negative as
dashed.

the shear stress, except close to the wall at some streamwise positions. From
figure 16 it is also observed that there is a negative production (destruction)
of turbulence kinetic energy in an area away from the wall, upstream of reat-
tachment. This was also observed in the DNS of SC. The destruction is not a
contribution from the streamwise production, but originates from positive val-
ues of the Reynolds shear stress in that region. In the DNS of NM no negative
total production in the middle of the layer occurred, even if the production of
Reynolds shear stress showed negative values both close to the wall and in the
middle of the boundary layer. The destruction, and hence the positive values
of the Reynolds shear stress, occur in the same region of the flow where the
tube-like structures in the downward normal velocity are visible, c.f. figure 12.

3.3. Comparison with analysis

To compare the DNS data with the results from section 2, the mean flow profiles
will be presented in different scalings and from different parts of the boundary
layer. From figure 1 it is observed that the back-flow is very weak compared
to the freestream velocity. The portion of the boundary layer where back-flow
exists is small compared to the portion of positive streamwise velocity. But,
the flow close to the wall is of course important, because it determines many
of the features of the flow that are crucial from an engineering aspect.

From APG1 the data is compared with the results from the analysis of
the TBLE for an attached boundary layer (section 2.1). From SEP the data
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Figure 17. Velocity profiles at x = 150 to x = 500. a) APG1:
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is compared with the results from the analysis of the TBLE for a separated
boundary layer (section 2.2).

3.3.1. The viscous sub-layer

The near-wall profiles are plotted in the viscous scaling in figure 17 and are
compared with the profiles given by the asymptotic versions of equations (9)
and (35). For APG1 the collapse is good as seen in figure 17a. For the case
SEP, shown in figure 17b, the profiles close to the u+ = y+ profile are the
two in the attached region at positions x = 450 and x = 500. The profiles
furthest from both asymptotes is from the positions closest to separation and
reattachment, while the lowest (closest to u+ = −y+) is from the position with
strongest back-flow.
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In figure 18 the same profiles are shown in pressure gradient scaling and
are compared with the profiles given by the asymptotic expression (36), which
is the same for the attached and separated case. The spreading is the same as
in the viscous scaling. That the profiles spread equally in the viscous scaling
as in the pressure gradient scaling is due to the fact that the ratio uτ/up is
nearly constant, see figure 8. This is in strong contrast to the simulation of
NM, where the variation in uτ was enhanced by the rapidly growing pressure
gradient. In their simulation, the velocity profiles collapsed much better when
scaled with up than uτ , (see Skote & Henningson (1999)). Figure 18 shows
that the profiles are further from the asymptotic state (separation), than in
the viscous scaling (figure 17), where the profiles showed some similarity with
the asymptotic (ZPG) profile.

Velocity profiles in the pressure gradient scaling at two downstream posi-
tions are shown in figure 19, together with the theoretical expressions for the
velocity profile in the viscous sub-layer. For APG1 (figure 19a) the positions
are x = 200 and x = 450, and for SEP (figure 19b) they are x = 200 and
x = 300. Here the asymptotic curve is not shown, but the pressure gradient
dependent curves from equation (34) are shown. The DNS profiles and the
corresponding curves given by equation (34) follow each other and show that
even if the profiles are far from the asymptotic state (as shown in figure 18),
the inclusion of the pressure gradient term gives a good agreement.

In summary, figure 17 shows that the scaling with uτ works for APG1 but
not for SEP. Figure 18 shows that the scaling with up does not work for APG1,
nor for SEP, while figure 19 shows that with the inclusion of the pressure
gradient term, the scaling with up works well in both cases.



146 M. Skote & D. S. Henningson

10
0

10
1

10
2

0

2

4

6

8

10

12

14

16

18

20

10
1

10
2

−5

0

5

10

15

20

25

30

35

(a) (b)

u+

y+

u+

y+

Figure 20. a) APG1: Velocity profile at x = 350. — DNS;
- - equation (18) with κ = 0.41 and B = 1.5; · · · u+ =

1
0.41 ln y+ + 5.1. b) SEP: Velocity profile at x = 450. — DNS;
- - equation (18) with κ = 0.41 and B = −2; · · · u+ =

1
0.41 ln y+ + 5.1.

10
1

10
2

−10

0

10

20

30

40

50

60

70

80

10
0

10
1

10
2

0

10

20

30

40

50

60

(a) (b)

u+

y+

x = 150
up

yp

Figure 21. a) SEP: Velocity profiles at x = 150 and x = 300.
— DNS; - - equation (38) with κ = 0.41 and B = −7;
· · · u+ = 1

0.41 ln y+ + 5.1. b) SEP: Velocity profile at reattach-
ment x = 412. — DNS; - - up = 1

0.412
√

yp − 7.

3.3.2. The overlap region

The laws presented in section 2.1.2 are compared with data from the simulations
in figure 20. And the results from section 2.2 regarding the logarithmic region
are presented in figure 21.

For APG1 the extended logarithmic law (18) gives profiles that are more
in agreement than the usual ZPG logarithmic law, see figure 20a. However, the
value of the additive constant B in equation (18), which has a value of −2 close
to separation in both DNS and experiments, had to be set to +1.5 to fit the
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DNS data in APG1. This is true for all streamwise positions, and hence the
value of the additive constant seems to depend on the pressure gradient, and not
the Reynolds number. In the attached region of separating boundary layer, the
profile from equation (18) with B = −2 gives the best approximation, shown
in figure 20b. This is in agreement with the earlier investigation of the flow
just upstream of separation in the simulation of NM, see Skote & Henningson
(1999).

The profiles in the separated region, figure 21a, are compared with the
arctan law derived in section 2.2. The profile given by equation (38) is in much
better agreement with DNS than the corresponding ZPG law, also shown in
the figure. The additive constant is −7 for the separated case. It should
also be noted that the extended logarithmic law derived for an attached layer
under a strong APG, equation (18), gives a poor agreement with DNS data in
the separated region (not shown in the figure). At the point of reattachment
(x = 412) the profile is given in pressure gradient scaling in figure 21b. The
asymptotic version of equation (39) is in good agreement with DNS data since
uτ is close to zero.

Thus, the conclusion is that the equations describing the overlap region
derived in section 2 are in qualitative agreement with DNS data, and are far
more consistent with DNS data than the corresponding ZPG laws.

However, due to the low Reynolds numbers, it is not possible to draw any
definite conclusions regarding the overlap region. To properly clarify these mat-
ters, high Reynolds number data are required, and the experiments of Alving
& Fernholz (1996) are therefore analyzed in section 4.

3.3.3. The outer part

As discussed earlier in section 2.1.3, there are many theories for describing the
profiles in the outer part. All of these are at some point dependent on either
experimental evidence or curve-fitting. An overall comparison and criticism
of each of these theories is beyond the scope of the present investigation. In
figure 22 the velocity profiles are plotted against the outer variable η for both
cases but in different scalings. For APG1 the profiles collapse in the ZPG
scaling despite the strong APG as seen in figure 22a. For the separated case
in figure 22b, the profiles are shown in the pressure gradient scaling. The
profiles are spread and do not collapse at all. However, the profiles collapse if
plotted in the separated region and in the attached region separately, which
is indicated with solid and dashed profiles. Thus, the profiles fall on a single
curve if the distinction between the separated and attached region is made.
However, since the viscous and pressure gradient velocity scales are almost
constant throughout the boundary layer, the advantage with up over uτ is
confined to the point around separation or in a case where uτ fluctuate more
than up.
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4. Discussion

In this section a comprehensive discussion about the relation between our re-
sults and others is presented.

4.1. Comparison with earlier DNS

The separated turbulent boundary layer simulated by DNS presented here has
different characteristics compared to earlier DNS of a separation bubble. Efforts
have earlier been made to create a bubble that starts and ends with a ZPG
turbulent boundary layer. In the simulation presented here, the boundary
layer is everywhere subject to an APG. To obtain a bubble with such a small
extension in the streamwise direction as in the simulations of NM and SC,
requires a strongly varying pressure gradient in order to force the boundary
layer to separate and then reattach. The pressure gradient in those simulations
was imposed by a strongly varying normal velocity at the freestream edge.
This, in turn, creates a large normal gradient in the mean flow at the upper
boundary. Here, the streamwise pressure gradient does not vary as rapidly as
in the earlier DNS. However, the boundary layer reattaches upstream of the
fringe region even if no favorable pressure gradient is applied. The variation of
the normal velocity is much weaker than in NM, see figure 23. The freestream
V varies approximately in the same way in SC as in NM.

The integrated quantities, such as the shape factor and momentum thick-
ness, cannot be compared with data from earlier DNS of separated flow by SC
and NM. This is due to the behavior of the velocity profiles at the freestream
in those simulations. At some streamwise position the maximum value of u
is located in the middle of the boundary layer, and the value at the upper
boundary is three times lower. Figure 24 shows velocity profiles at the position
of maximum back-flow from the three different simulations. The profiles from
NM and SC show a considerable velocity gradient at the upper boundary, and
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the value at the upper boundary of U varies strongly in NM, as seen from
figure 23. Here the x values have been recalculated in our simulation coordi-
nates. However, the relative starting positions of the boundary layers cannot
be calculated and is here matched by letting the starting points of all three
simulations be located at x = 0. Furthermore, from figure 24 it is clear that
the back-flow is stronger in the present simulation than in NM and SC.

The strong gradient at the freestream makes it difficult to define a boundary
layer edge. In the simulation presented here, no such ambiguity about the
boundary layer edge and thickness exists. Since there was no real freestream in
SC and NM, the friction coefficient, Cf , was calculated with the value of unity
for the freestream velocity U at all streamwise positions. Comparison of the
Cf from NM and SC with our simulation is made in figure 25. It is clear from
figure 25 that our separation bubble is longer than the other two. In figure 25
the Cf from our simulation has been calculated using the same technique as in
NM and SC, i.e. with a value of unity for the freestream velocity.
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4.2. The overlap region in experiments

To further investigate the theoretical expressions from section 2.1.2, but at a
larger Reynolds number than is possible to reach with DNS, the experimental
data from Alving & Fernholz (1996, 1995) are investigated.

In the work of Alving & Fernholz (1995) the velocity profiles showed con-
siderable departure from the law of the wall valid for ZPG flow. By using the
Perry-Schofield coordinates, modified by Dengel & Fernholz (1990), the curves
were forced to collapse. However, the procedure of determining the velocity
scale a posteriori, from the collapsed velocity profiles, make the analysis less
valuable. The measured profiles are here examined from the other standpoint,
the extended law of the wall. In figure 26 the profiles before separation and in
the separated region are shown. Upstream of separation the extended logarith-
mic law (18) with the standard value of −2 for the additive constant predicts
the profiles well. In the separated region (only one profile available) the profile
given by equation (38) gives a better prediction than equation (18). However, a
change in the additive constant in equation (18) can make the agreement with
the experimental profile equally good.

Thus, the experimental data of Alving & Fernholz confirm and strengthen
the conclusion drawn from our DNS data in section 3.3.2.

4.3. Comparison with other theories for the overlap region

A number of investigators have, with different methods, tried to obtain the the-
oretical velocity profile in APG flows, corresponding to the logarithmic profile
in a ZPG flow.

According to Tennekes & Lumley (1972), the scaling with the pressure
gradient velocity up (with uτ = 0) should lead to the same form of matching
as in the zero pressure gradient case. From this assumption a logarithmic law
is obtained in the same manner as the usual procedure of matching the outer
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Figure 26. Experimental data from Alving & Fernholz
(1995). a): Velocity profiles upstream of separation. - - equa-
tion (18) with κ = 0.41 and B = −2. b): Velocity profiles
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and inner solutions. The log law becomes,

up =
1
κ

ln(yp) + B. (45)

This is clearly wrong, since the scaling with up leads to the the half-power law,
equation (20).

According to Stratford (1959), the velocity profile should be a half-power
law close to separation. Also Yaglom (1979) showed that a dimensional analysis
gives the following expression for the velocity profile close to separation,

u+ = K+
√

λy+ + K+
1 , (46)

which can be expressed in pressure gradient scaling,

up = K
√

yp + K1. (47)

Yaglom (1979) also proposed a fairly complicated dependence of K and K1

on up and uτ . This dependency was introduced to extend the theory valid
at separation to the region upstream of detachment. It may not be regarded
as a sound procedure to incorporate a functional behavior in constants of an
expression valid only in an asymptotic state.

4.4. Alternative scaling of the back-flow

As suggested by Simpson (1983), the back-flow mean profiles may be scaled
by the maximum mean back-flow velocity (uN ), together with the normal co-
ordinate scaled with the distance from the wall to the maximum (N). The
profiles scaled in this way are plotted in figure 27. Simpson (1983) also gives a
logarithmic profile to be valid for 0.02 < y/N < 1.0 with a constant A involved.
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u

uN
= A

[ y

N
− ln

( y

N

)
− 1

]
− 1. (48)

The constant A has been given a number of different values in numerous experi-
mental investigations by, e.g. Dianat & Castro (1989) and Devenport & Sutton
(1991). Thus, the law seems to be of limited value. For comparison, the profile
given by equation (48) is also shown in figure 27 with A = 0.3 as suggested by
Simpson (1983). The collapse of the profiles is poor, and the agreement with
equation (48) is as bad as in the DNS of a backward-facing step by Le et al.
(1997).

5. Conclusion

Direct numerical simulations of two turbulent boundary layers have been per-
formed. The flows are subject to slightly different adverse pressure gradients,
resulting in two very different flows. One is everywhere attached while the
other is separated. The case with separation still forms a boundary layer with
a clearly defined freestream edge, distinguishing it from earlier attempts to
simulate a separation bubble.

The near-wall flow was shown to be predicted by a straightforward analysis
of the turbulent boundary layer equations. The theory is based on two different
velocity scales easily extracted from the parameters of the flow. Thus, the
theory is applicable to turbulence modelling. Furthermore, it was possible to
extend the theory to the case of separation.

The velocity profile in the viscous sub-layer was shown to obey a law de-
pendent on the pressure gradient, in both the attached and separated cases. A
velocity profile for the overlap region was derived and showed better consistency
with DNS data than the corresponding law of the wall for a zero pressure gradi-
ent boundary layer. In the attached boundary layer the overlap profile consists
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of square-root and logarithmic parts, while in the separated region it consists
of square-root and arc-tangents functions.

The near-wall streaks are weakened by the adverse pressure gradient, and
the spacing in viscous units is reduced. In the separated case streaks reappeared
in the region with strong back-flow. The turbulent structures convecting from
the region upstream of separation are lifted above the separation bubble, and
are weakened before reaching reattachment. The normal velocity towards the
wall in the vicinity of reattachment show a tube-like structure, where also
positive Reynolds shear stress results in destruction of turbulence energy.

Comparison with earlier DNS of separated turbulent boundary layers shows
that the present simulation is well resolved and has a stronger and larger re-
circulation region.
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Near-wall damping in model predictions of
separated flows

By Martin Skote∗ and Stefan Wallin†

Data from the near-wall region of an attached and a separated turbulent bound-
ary layer are used for the development of near-wall damping functions utilized
in turbulence modelling. The model considered is an explicit algebraic Rey-
nolds stress model. The data are taken from two direct numerical simulations.
The turbulent boundary layer equation is analyzed in order to extend the va-
lidity of existing wall damping functions to turbulent boundary layers under
severe adverse pressure gradients.

1. Introduction

Two turbulent boundary layers subject to adverse pressure gradients (APG)
were investigated through direct numerical simulation (DNS) by Skote & Hen-
ningson (2000). The two APG distributions are quite similar, but the influence
of the APG on the flow is strong, creating two very different boundary layer
flows. One is everywhere attached (APG1), and the other is separated for a
long streamwise section (SEP).

The data are here used for assessing the near-wall scaling of wall damp-
ing functions used in turbulence modelling. The particular model studied is
the fully self-consistent explicit algebraic Reynolds stress model (EARSM) de-
veloped by Wallin & Johansson (2000), which can, in contrast to standard
eddy-viscosity two-equation models, be successfully damped in the vicinity of
a wall in zero pressure-gradient boundary layers by employing the standard van
Driest damping function.

A relevant velocity scale is crucial for the correct behaviour of wall damp-
ing functions used in turbulence models. For a zero pressure gradient (ZPG)
boundary layer, the damping functions and boundary conditions in the loga-
rithmic layer are based on a theory in which the friction velocity,

uτ ≡
√

ν
∂u

∂y

∣∣∣∣
y=0

, (1)

is used as a velocity scale. However, in the case of a boundary layer under
an APG, uτ is not the relevant velocity scale, especially not for a strong APG

∗Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden
†Aeronautical Research Institute of Sweden,Box 11021, SE-161 11 Bromma, Sweden
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and low Reynolds number. In the case of separation this is clear since uτ

becomes zero. Wall damping functions based on y+ ≡ yuτ/ν are, thus, not
appropriate. Other possibilities than y+ that are used in near-wall damping
functions are Rey ≡ √

Ky/ν or the turbulent Reynolds number Ret ≡ K2/νε
(see e.g. Wilcox (1993)). These alternatives do not have the singularity caused
by that uτ becomes zero.

The scaling laws developed in many previous studies have been in a form
not suitable for turbulence models. Instead, the aim for the scaling of the veloc-
ity profile has often been to create a tool for different prediction methods based
on the simplified turbulent boundary-layer equations (TBLE). The motivation
for the thorough scaling analysis performed here is that the turbulence mod-
elling can be improved if the correct scaling is used. However, the scalings are
entirely motivated by the TBLE itself, i.e. turbulence modelling is disregarded
when performing the scaling analysis of the TBLE.

Many of the earlier theoretical analyses were not performed with the same
objectives as we have today. Hence, the results, though interesting in many
aspects, perhaps lack a natural potential for direct application to the final goal
— to calculate and predict a turbulent boundary layer flow.

Some basic ideas concerning the velocity scale in the inner part of the
turbulent boundary layer under an APG are presented in section 2. It is shown
that the total shear stress varies linearly in a turbulent boundary layer under
an APG, if the Reynolds number is not large compared with the APG. The
linear behaviour leads to a velocity scale dependent on the normal coordinate,
replacing the friction velocity as a velocity scale.

The new velocity scale is used in the wall damping of the EARSM model
in section 3. Comparison with the damping based on Rey proposed by Wallin
& Johansson (2000) is made, and an example of the performance of EARSM
with the improved damping is given.

2. Scalings in the near-wall region

When neglecting the non-linear, advective terms in the equations describing
the mean flow, the equation governing the inner part of the boundary layer is
obtained. This equation can, when using the inner length and velocity scales
ν/uτ and uτ be written,

0 = − ν

u3
τ

1
ρ

dP

dx
+

d2u+

dy+2 − d

dy+
〈u′v′〉+, (2)

where 〈u′v′〉 is the Reynolds shear stress. If the term involving the pressure
gradient is smaller than the other terms, the equation reduces to the equation
governing the inner part of a ZPG boundary layer. However, for strong APG
cases at finite Reynolds numbers, this term cannot be neglected. Equation (2)
can be integrated to give an expression for the total shear stress,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1
ρ

dP

dx
y+. (3)
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For a zero pressure gradient case, equation (3) predicts a constant shear stress
of unity. For an APG case with a freestream distribution of the form U ∼ xm,
the last term in equation (3) can be shown (Skote et al. 1998) to decrease with
increasing Reynolds number.

When considering a strong APG or separation, A singularity occurs when
uτ becomes zero, which can be avoided by introducing the velocity scale,

up ≡
(

ν
1
ρ

dP

dx

)1/3

. (4)

First equation (3) is formulated as

τ+ = 1 +
(

up

uτ

)3

y+. (5)

The velocity scale up has to be used instead of uτ if the last term in equation
(5) becomes very large which happens if uτ � up, i.e. the boundary layer
is close to separation. This was noted by Stratford (1959), Townsend (1961)
and Tennekes & Lumley (1972). By multiplying equation (5) by (up/uτ )2, the
following expression for τp ≡ τ/u2

p as a function of yp ≡ yup/ν is obtained,

τp = yp +
(

uτ

up

)2

. (6)

Equation (6) has the asymptotic form τp = yp when separation is approached.
Thus, in this rescaled form, the singularity is avoided.

For the ZPG case, the scaling of the total shear stress with uτ gives a
self-similar profile (τ+ = 1). From equations (5) and (6) it is observed that
neither uτ nor up as velocity scale results in a self-similar expression. However,
equation (3) can be formulated as

τ∗ ≡ 1
u2∗

(
ν

∂u

∂y
− 〈u′v′〉

)
= 1, (7)

where u∗ is a velocity scale that depends on y and can be expressed in either
plus or pressure gradient units,

u2
∗ = u2

τ +
u3

p

uτ
y+ = u2

τ + u2
py

p. (8)

Thus, by scaling the total shear stress with u∗, a self-similar expression is
obtained (τ∗ = 1). The velocity scale u∗ reduces to uτ if up becomes zero, i.e.
for a ZPG boundary layer. If instead uτ becomes zero, i.e. a boundary layer
at separation, the velocity scales becomes u∗ = up

√
yp.

For the special case with uτ = 0, the velocity scale u∗ is zero at the
wall. This is natural since the velocity gradient is zero at the wall. Previous
investigators of the mixing length theory have also observed the importance of
u∗, see Granville (1989) for references.
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From u∗ it is possible to define the length scale ν/u∗, and thus a normalized
normal coordinate, y∗ ≡ yu∗/ν which can be written,

y∗ =
√

(y+)2 + (yp)3. (9)

If a separated flow is considered, the definition of uτ has to be reconsidered.
In the separated region, ∂u

∂y is negative. Thus, the definition of uτ in equation
(1) involves a square root of a negative number. Instead, the definition will be
changed so that the square root will be taken of a positive number.

To proceed with the analysis of the equations, the definition of the friction
velocity will have to be changed to

uτ ≡
√

−ν
∂u

∂y

∣∣∣∣
y=0

. (10)

In the case of a separated flow, the change of sign of the wall shear stress
leads to a u∗ as,

u2
∗ = −u2

τ +
u3

p

uτ
y+ (11)

The velocity scale u2
∗ is in the case of separation negative for y+ < (uτ/up)3,

because the shear stress is negative at those values of y+. Hence, the length
scale ν/u∗ has to be used with a restriction to positive values of u2

∗. This leads
to a y∗ of the form,

y∗ =
√

max{0,−(y+)2 + (yp)3}. (12)

3. Evaluation of turbulence models

The aim with this part of the work is to investigate how predictions of turbu-
lent boundary layer flow is affected by the complication of a severe APG and
separation. In the near-wall part of the flow, turbulence models often utilize
damping functions. Their purpose is to damp various physical quantities in the
neighborhood of a wall. One important step towards better model predictions
in APG flows is the refinement of the damping functions.

The results regarding the near-wall flow reported in Skote & Henningson
(1999) and Skote & Henningson (2000) can be utilized in turbulence model
predictions directly as, so called, wall-function boundary conditions. Here we
are instead interested in resolving the turbulent boundary layer all the way to
the wall and thus the wall damping functions become important.

A short description of the DNS and the turbulent boundary layer flows is
given in section 3.1. The specific turbulence model used in the present work
(EARSM), is described in section 3.2. A priori tests done with DNS data from
both simulations are presented in section 3.3, together with the development
of damping functions. The relation between two length scales used in the near-
wall damping is analyzed in section 3.4. In section 3.5 some examples of the
performance of the EARSM model is shown, using the data from DNS.
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Figure 1. APG1: — U ; · · · Cf ×100. SEP: - - U ; −·− Cf ×
100. S and R denote the points of separation and reattachment
respectively for SEP.

APG1 SEP
x = 150 x = 300 x = 412 x = 450

U 0.73 0.51 0.46 0.45
uτ 0.0287 0.0165 0.0024 0.0166
up 0.0117 0.0086 0.0074 0.0071

Table 1. Some parameters of the turbulent boundary layers
at different downstream positions.

3.1. Description of the test cases

The data from the two turbulent boundary layers considered in the present
work were taken from a DNS performed by Skote & Henningson (2000).

The freestream velocity (U) for the two simulations, APG1 and SEP, are
shown in figure 1, together with the skin friction (Cf ). As seen from the figure,
a small change in the freestream velocity has a great impact on the skin friction.
In APG1, the boundary layer is subject to a strong APG, but is everywhere
attached. In SEP the boundary layer is separated for a large portion of the
computational domain.

The simulations start with a laminar boundary layer at the inflow (x = 0)
which is triggered to transition by a random volume force near the wall. The
flow is fully turbulent at x = 100.

The downstream coordinate x is scaled with the displacement thickness (δ∗)
at the starting position of the simulation (x = 0), where the flow is laminar
and Reδ∗ = 400.

Table 3.1 serves as a comparison of the two cases at the downstream posi-
tions investigated in the present work.
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3.2. The basic models

In two-dimensional mean flows, the fully self-consistent explicit algebraic Rey-
nolds stress model may be formulated based on any (quasi-)linear pressure-
strain model (see Wallin & Johansson (2000) and Girimaji (1997) for de-
tails). Neglecting the advection and diffusion of the Reynolds stress anisotropy
aij ≡ 〈u′

iu
′
j〉/K − 2δij/3 results in an implicit and non-linear relation

0 =
(

A3 + A4
P
ε

)
aij + A1Sij − (aikΩkj − Ωikakj)

+ A2

(
aikSkj + Sikakj − 2

3
aklSlkδij

)
. (13)

where Sij ≡ τ/2(Ui,j + Uj,i) and Ωij ≡ τ/2(Ui,j − Uj,i) are the symmetric and
antisymmetric parts of the velocity gradient tensor normalized by the turbulent
time scale τ ≡ K/ε.

In a two-dimensional mean flow the solution for the anisotropy becomes

a12 = β1S12 + 2β4S11Ω12

a11 = β1S11 + β2

(
S2

11 + S2
12 −

1
3
IIS

)
− 2β4S12Ω12

a22 = −β1S11 + β2

(
S2

11 + S2
12 −

1
3
IIS

)
+ 2β4S12Ω12

a33 = β2

(
−1

3
IIS

)
(14)

where the β coefficients are functions of the flow invariants IIS ≡ SijSji and
IIΩ ≡ ΩijΩji and the model coefficients A1−4 in equation (13). Two different
EARSMs will be considered; the ”W&J” model, Wallin & Johansson (2000),
based on a recalibrated LRR (Launder et al. 1975) pressure-strain rate model
and the ”Gir” model, Girimaji (1997), based on the linearized SSG (Speziale
et al. 1991) pressure-strain rate model. The corresponding A1−4 coefficients
are given in table 3.2. The ”W&J” model results in that the β2 coefficient is
zero and as a consequence a33 = 0.

In two-dimensional mean flows the β coefficients are given by

β1 = −A1N

Q
, β2 = 2

A1A2

Q
, β4 = −A1

Q
, (15)

where the denominator is

Q = N2 − 2IIΩ − 2
3
A2

2IIS . (16)
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A1 A2 A3 A4

W&J (Recalibrated LRR) 1.20 0 1.80 2.25
Gir (Linearized SSG) 1.22 0.47 0.88 2.37

Table 2. The values of the A-coefficients for different quasi-
linear pressure-strain models.

N is given by

N =

{ A3

3
+

(
P1 +

√
P2

)1/3

+ sign
(
P1 −

√
P2

)
| P1 −

√
P2 |1/3, P2 ≥ 0

A3

3
+ 2

(
P 2

1 − P2

)1/6
cos

(
1
3

arccos

(
P1√

P 2
1 − P2

))
, P2 < 0

(17)
where

P1 =
(

A3
2

27
+

(
A1A4

6
− 2

9
A2

2

)
IIS − 2

3
IIΩ

)
A3

P2 = P 2
1 −

(
A3

2

9
+

(
A1A4

3
+

2
9
A2

2

)
IIS +

2
3
IIΩ

)3

. (18)

3.3. Near-wall treatments

In the model proposed by Wallin & Johansson (2000) the correct near-wall be-
haviour for zero pressure-gradient boundary layers was obtained by modifying
the β coefficients using a damping function of the van Driest type. The original
form was based on y+, but an alternative suggestion of the damping function
was based on yT = yT (Rey) in order of avoiding the singularity in separated
flows. The function yT was constructed to be similar to y+ for y+ < 100 in
zero pressure-gradient boundary layers. In this section the different near-wall
scalings will be assessed by comparing model predictions using y+, yT as well
as y∗.

In a two-dimensional mean flow the near-wall corrections for the ”W&J”
model reads

β1 = f1β
∗
1

β2 = f2
1 β∗

2 + (1 − f2
1 )

3B2 − 4
max (IIS , IIeq

S )

β4 = f2
1 β∗

4 − (1 − f2
1 )

B2

2max (IIS , IIeq
S )

(19)

where β∗
1 , β∗

2 and β∗
4 are the ”high-Re” uncorrected coefficients given by (15)

and the damping function

f1 = 1 − exp(−y+/A+) (20)
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Figure 2. APG1 at x = 150: (a) ◦ DNS; — non-
damped ”W&J”; · · · non-damped ”W&J” with β4 = 0;
- - non-damped ”Gir”; -·- non-damped ”Gir” with β4 = 0.
(b) ◦ DNS. Damped ”W&J” with the scaled coordinate in f1

as — y+; - - y∗; · · · yT . -·- damped ”W&J” with y+ and A+ =
11.

and the model coefficients

IIeq
S = 5.74 B2 = 1.8 (21)

For the damped expressions the turbulent time scale used for normalizing
the velocity gradient tensors must be limited by the viscous scale, such as

τ ≡ max
(

K

ε
,Cτ

√
ν

ε

)
(22)

where Cτ = 6.0 is used.
For the Girimaji (1997) model based on the linearized SSG model no near-

wall corrections are present and, thus, only the non-damped ”Gir” model will
be tested.

3.3.1. APG1

In this section different modelling assumptions are tested by using DNS data
from the attached APG boundary layer (APG1). The anisotropies are calcu-
lated from equation (14) with Sij and Ωij computed from DNS data. The
resulting anisotropies are then compared with those taken directly from the
DNS.

The shear anisotropy a12 is plotted for one streamwise position (x = 150) in
figure 2. The behaviour is approximately the same at all streamwise positions
for APG1. The anisotropy taken directly from DNS data is shown with circles.
The non-damped models ”W&J” and ”Gir” are shown in figure 2a. Both
models overpredict the asymptotic value at large y+, which is around -0.3 in
the DNS data. The failure to correctly predict the asymptotic value is due
to that the basic, undamped, models do not correctly respond to the pressure
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gradient. The error enters mainly through the non-linear term in equation (14a)
and the best result is actually obtained with β4 = 0 for the ”W&J” model, as
shown in figure 2a with the dotted line. Setting β4 = 0 should, however,
not be considered as an alternative for improving the model behaviour since
the β4 term results from a formal approximation of the basic Reynolds stress
transport model. Moreover, the β4 term gives important contributions for the
normal anisotropy components.

Near the wall, damping with f1 becomes important. The a12 profiles from
the damped ”W&J” model are shown in figure 2b. The standard van Driest
damping, equation (20), with the standard value of A+ = 26, does not give
the correct near-wall damping (the solid line in figure 2b). Thus, the standard
van Driest damping, which gives a good agreement for a ZPG boundary layer,
must be improved in order to give reasonable results for an APG flow. The
most straight forward correction is to change the value of A+ in equation (20).

The damped profiles give very different results depending on the value of
A+. The value of A+ = 11 was observed to give the best agreement with the
DNS data, (the dash-dotted profile in figure 2b), and by setting β4 = 0 almost
perfect agreement with DNS was obtained.

There are many relations between A+ and the ratio up/uτ proposed in the
literature. Kays (1971) proposed the relation,

A+ =
26

1 + 30.18
(

up

uτ

)3 , (23)

which gives a value of A+ = 8.6 for APG1. This value is far from the standard
value of 26, but does not agree with the best fitted value of 11 for APG1. In
the experimental work of Nagano et al. (1992) however, the formula (23) gave
good predictions. Cebeci (1970) proposed the relation,

A+ =
26√

1 + 11.8
(

up

uτ

)3
, (24)

which gives a value of A+ = 19.4 for APG1. This value is closer to 26, but far
from the value of 11. Granville (1989) proposed a relation which is similar to
equation (24), with a factor of 12.6 instead of 11.8, which gives very similar
values of A+ as the relation (24).

A list of other relations is included in the work of Granville (1989). How-
ever, the above relations were derived from a mixing length hypothesis, which
states that the Reynolds shear stress is linked to the velocity gradient through,

−〈u′v′〉+ = (l+)2
(

du+

dy+

)2

, (25)

with
l+ = κy+f1 or l+ = κy∗f1, (26)
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and f1 as in equation (20). The coordinate y∗ is given in equation (9). The
second form of l+ above (26b) was, among others, used by Granville (1989).
However, he let a factor α reduce the influence of the pressure gradient,

y∗ =

√
(y+)2 + α

(
up

uτ

)3

(y+)3 (27)

There is some discrepancy regarding the value of α in the literature. Perry et al.
(1966) proposed a varying α from 0.65 to 0.9, while Granville (1989) specified
0.9 and McDonald (1969) 0.7. When Sk̊are & Krogstad (1994) investigated the
formula (26b), they had to change the value of κ from 0.41 to 0.78 to fit with
experimental data through the logarithmic layer. In the present investigation,
the influence of α and κ will not be considered important, since the goal is not
to create a mixing length theory, but to use the best damping function for the
EARSM model.

In the EARSM model, the relation between the Reynolds shear stress and
the velocity gradient is more complicated than equation (25), and an analysis
is not as straightforward. The damping with f1 as in equation (20), which
was developed from the mixing-length theory, has proved to work well for the
EARSM model for channel flow and ZPG boundary layer flow. For the APG
boundary layer flow however, the damping of both the mixing-length theory,
equation (25), and the EARSM has to be developed. To further investigate this
idea for the EARSM model, where no mixing length exists, the viscous scaling
of the normal coordinate in f1 is substituted with the y∗, defined in section 2.

Arguing that uτ no longer is the relevant velocity scale, the scaled normal
coordinate y+ in equation (20) may be changed to y∗. A different length scale
was proposed by Wallin & Johansson (2000), and their scaled normal coordinate
yT , is defined as,

yT = Cy1

√
Rey + Cy2Re2

y, (28)

where Rey =
√

Ky/ν, Cy1 = 2.4 and Cy2 = 0.003.
Thus, the damping function f1 can be expressed as,

f1 = 1 − exp(−y∗/A+), (29)

or
f1 = 1 − exp(−yT /A+). (30)

The formulation of f1 as in equation (29) was actually used for the mixing
length damping by Cebeci & Smith (1968).

A third possibility would be to use yp. However, to change from y+ to yp

cannot give any improvement since they are linearly dependent of each other.
Thus, the same f1 profile can be obtained by using y+ or yp if the constant A+

is adjusted.
In figure 2b, the ”W&J” model damped with f1 based on the scaled normal

coordinates y∗ and yT are shown. They work almost equally well and the
original value of A+ = 26 was kept.
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Figure 3. APG1 at x = 150: (a) ◦ DNS; — non-
damped ”W&J”; · · · non-damped ”W&J” with β4 = 0;
- - non-damped ”Gir”; -·- non-damped ”Gir” with β4 = 0.
(b) ◦ DNS. Damped ”W&J” with the scaled coordinate in f1

as — y+; - - y∗; · · · yT . -·- damped ”W&J” with y+ and A+ =
11.
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Figure 4. APG1 at x = 150. (a) a11. (b) a33. ◦ DNS;
— non-damped ”W&J”; - - non-damped ”Gir”; · · · damped
”W&J” with the scaled coordinate in f1 as yT ; -·- same as the
previous profile but with B2=1.52.

Since the dependency of A+ on the pressure gradient and Reynolds number
(up/uτ ) seems difficult to describe correctly, the rescaled functions (29) and (30)
are good alternatives for achieving proper damping in APG flows.

The good results obtained with β4 = 0 for a12 is not consistent with the
results for a22, shown in figure 3. Here, the β4 coefficient is important to get
agreement with DNS data for large values of y+. Both the ”W&J” and ”Gir”
models predict the asymptotic value of a22 well. The profiles from the damped
”W&J” model are shown in figure 3b. The alternative length scales y∗ and yT

with A+ = 26 are also here very similar and give clear improvements compared
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Figure 5. APG1 at x = 150: (a) f1 using — y+ and A+ = 11;
- - y∗ and A+ = 26; · · · yT and A+ = 26; -·- y+ and A+ = 26.
(b) — y+; - - y∗; · · · yT ; -·- yp.

to the y+ scaling. The best fit is obtained by using y+ with A+ = 11 also in
this case.

The anisotropies a11 and a33 are shown in figure 4a and b. For a11 the
”W&J” model gives better agreement with DNS data at large y+ than the
”Gir” model. The damped ”W&J” model gives profiles with the same trend
as for a12 and a22, i.e. the alternative length scales y∗ and yT with A+ = 26
work equally well as y+ with A+ = 11. Only the yT damped profile is shown
(dotted line) in figure 4a . For a33 (figure 4b), the non-damped ”W&J” model
predicts a value of zero. However, the ”Gir” model does not give a better
prediction even though it is non-zero. The damped ”W&J” model results in a
profile (dotted line) that gives a poor agreement with DNS data close to the
wall. The wall values of a11 and a33 are controlled by the B2 coefficient, and by
modifying that to 1.52 almost perfect agreement is obtained (see figure 4). The
original value B2 = 1.8 was calibrated from channel flow and the different value
obtained for this case indicates that there are a pressure-gradient dependency
in B2.

The damping functions are shown in figure 5a. The function based on y+

with the optimal value of A+ = 11, and the functions based on y∗ and yT

reach unity after approximately y+ = 40. Thus, the damping has no effect for
y+ over approximately 40. The change from the original shape (with y+ and
A+ = 26) is large. In figure 5b the scaled normal coordinates are shown as a
function of y+. From figure 5b it is noted that yp is proportional to y+, which
is obvious since both uτ and up are independent on y.

In conclusion, the change from y+ to y∗ or yT , is recommended in favour
of keeping the y+ scaling where the value of A+ has to be changed for different
APG layers. A specific value has to be obtained for each APG and also for
each downstream position if the range of Reynolds numbers is large. The value
of A+ = 11 is only valid for the APG1 case presented here. For a less severe
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Figure 6. SEP at x = 300: (a) ◦ DNS; — non-damped
”W&J” · · · non-damped ”W&J” with β4 = 0; - - non-
damped ”Gir”; -·- non-damped ”Gir” with β4 = 0. (b) ◦
DNS. Damped ”W&J” with the scaled coordinate in f1 as
— y+; - - y∗; · · · yT . -·- damped ”W&J” with y+ and A+ =
11.

APG, the value of A+ has to be increased, whereas the scaling with y∗ or yT

can be kept intact. In the extreme case of uτ = 0, the formulation with y∗ or
yT is still valid, whereas the y+ formulation encounters a singularity, no matter
what value of A+ being used. The extreme case of ZPG is the limit where the
value of A+ is 26 in y+ formulation and the formulation with y∗ is equivalent
with the y+ damping since y∗ = y+ for a ZPG boundary layer.

3.3.2. SEP

From the case with separation (SEP), three positions will be investigated. The
positions are taken from the separated region (x = 300), at the reattachment
point (x = 412), and in the recovery region (x = 450). The profiles are pre-
sented as functions of y+ at all positions. Observe that the friction velocity is
defined from (1) and (10), so it is everywhere positive.

At x = 300 the boundary layer is separated. At this position the non-linear
term in the model expression for a12 does not give the same strong contribution
to the distribution of a12 as in the APG1 case (see figure 6a).

The difference between the ”W&J” and ”Gir” models is supressed at this
position where the boundary layer is separated, as seen from figure 6a.

The near-wall behaviour is entirely different from an attached layer. The
non-damped profiles reach up to a positive value of 0.3 at the wall, due to that
S12 is negative in a separated case. S12 at x = 300 is shown in figure 9a as the
solid line. The two other profiles are the S12 for x = 412 and x = 450. Both
in the APG1 case and in the SEP case in the attached region (x = 450), the
non-damped profiles reach a value of −0.3 at the wall, because S12 is positive
at those positions.
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Figure 7. SEP at (a) x = 412. (b) x = 450. ◦ DNS; — non-
damped ”W&J”. Damped ”W&J” with the scaled coordinate
in f1 as - - y∗; · · · yT ; -·- y+.

The damped ”W&J” model at x = 300 is shown in figure 6b. Since the
pressure gradient is more severe in this case (SEP), we do not expect the same
value of A+ to give the good agreement as for APG1 (remember that A+

depends strongly on up/uτ ). Actually, the value of A+ = 26 (solid line) gives
better agreement than A+ = 11 (dash-dotted line) in this case, as seen in figure
6b.

When using yT in the expression for f1, no much difference from the case
of y+ together with A+ = 11 can be detected, see figure 6b. The y∗ damping
(dashed line in figure 6b) gives a better agreement near the wall. This is due to
that y∗ is zero close to the wall where the back-flow occurs, see equation (12).

At x = 412 the boundary layer is at its reattachment point. The DNS
data and profiles from the EARSM are shown in figure 7a. At this position
the non-damped profile from the ”W&J” model stretches up to zero instead of
approaching a constant value at the wall. This is due to that S12 goes to zero
at the wall (zero wall shear stress). S12 at x = 412 is shown in figure 9a as
the dashed line. Note that the boundary layer is much thinner in the viscous
scaling at x = 412 due to the low value of uτ at reattachment.

It is interesting to note in the DNS data that a12 is negative also in the
separation bubble where S12 is negative. That means that an effective eddy
viscosity is actually negative, which an algebraic model cannot reproduce. This
effect is probably due to transport of the anisotropy in the thin near-wall layer.

At x = 450 the boundary layer is attached, and the near-wall behaviour is
the same for as for APG1. The value of −0.3 is obtained with the non-damped
”W&J” model, shown with the solid line in figure 7b. There is not much
difference between the three different versions of the damping function, shown
in figure 7b. The value A+ = 26 was used for the damped model predictions
in figures 7a and b. However, the damping is insensitive to the the value of
A+ at both positions x = 450 and x = 412. The damping is insufficient for
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Figure 8. a12 = f1β1S12. SEP at (a) x = 412. (b) x = 450.
◦ DNS; — undamped ”W&J” (f1 = 1). Damped ”W&J” with
the scaled coordinate in f1 as - - y∗; · · · yT ; -·- y+.

all versions of f1, and the reason is that the non-linear terms have influence in
this region.

The general near-wall behaviour is the same for both positions x = 450 and
x = 412, except for the important fact that also the non-damped profile at the
wall is zero at x = 412, due to that the boundary layer is at its reattachment
point. Even though the non-damped profiles are ’naturally’ damped due to the
value of zero at the wall, the damping works just as bad as for the position
x = 450.

Thus, at both positions x = 450 and x = 412 (figures 7a and b), it is
observed that the damping does not work very well. However, since the equa-
tion (14) is dependent on both the linear and non-linear terms, the effect of
the damping is complicated. To isolate the effect of the damping of the linear
term, only the first part of the expression for a12 is shown in figure 8a and
b. The damping works very well on the linear part, especially for the position
where the boundary layer is attached, figure 8b. The damping based on y∗ or
yT gives as good agreement as y+.

The different versions of the function f1 (20, 29, 30) are shown at two
downstream positions in figure 9b. The formulation with y+ yields very differ-
ent shapes at the two positions, whereas y∗ and yT give profiles close to each
other. Note that f1 based on y∗ is zero up to y+ = 1 at x = 412.

The damping functions at x = 412 are shown in figure 10a. The function
based on y+ increases very slowly while the functions based on y∗ and yT

reach unity after approximately y+ = 8. In figure 10b, the scaled normal
coordinates are shown as a function of y+. The largest difference between
the three coordinates are found at this position where reattachment occurs
(x = 412).
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Figure 9. SEP: (a) S12 at — x = 300; - - x = 412;
· · · x = 450. (b) f1 at x = 412 and x = 300, using — y+;
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Figure 10. SEP at x = 412: (a) — y+; - - y∗; · · · yT . (b) f1

using — y+; - - y∗; · · · yT .

3.4. Similarities between the y∗ and yT scalings

Let us try to analyze why the y∗ and yT scalings behave similar. The yT

relation is written in terms of Rey according to (28). The dominating term, at
least for small Rey, is the

√
Rey term so essentially yT ∼ √

Rey. The
√

Rey

term is simply motivated by that Rey ∼ y2 since K ∼ y2 and the wanted
behaviour is yT ∼ y in the very near-wall region (the viscous sub-layer).

In the log region of the boundary layer there is another relation between
Rey and the y∗ scaling that may be derived from the following. Let us first
rewrite Rey by using that 〈u′v′〉 = Ka12 as

Rey ≡ y
√

K

ν
= y+

√
K+ =

1√−a12
y+

√
−〈u′v′〉+ (31)
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Figure 11. Computed skin friction coefficient Cf of the flat
plate APG1 boundary layer compared to DNS data: — W&J
EARSM with yT damping; – – W&J EARSM with y+ damp-
ing; - - - Girimaji EARSM with yT damping; – - – Chien K−ε;
– - - – Hanjalić RST.

Away from the viscous sub-layer, the viscosity may be neglected and then
−〈u′v′〉+ ≈ 1 + (up/uτ )3y+ (see equation 5). By using the relation (9) the
Reynolds number may be related to y∗ as

Rey ≈ 1√−a12

√
(y+)2 +

(
up

uτ

)3

(y+)3 =
y∗

√−a12
(32)

Since a12 is rather constant (and independent of the pressure gradient) away
from the wall there is a linear relation Rey ∼ y∗ in the log layer and Ret and
y∗ could be expected to respond similarly to pressure gradients.

However, the leading order term in the yT scaling is proportional to
√

Rey

and, thus, yT ∼ √
y∗. The

√
Rey dependency is adopted considering the

viscous sub-layer where the assumption of neglected viscosity in (32) is basically
wrong. This analysis, thus, only gives a qualitative explanation of the relation
between y∗ and yT but gives an idea of why the two scalings behave similarly.

3.5. Performance of the EARSM model

The APG1 boundary layer was computed with a boundary layer solver using
different turbulence models. The DNS data at x = 150 were used as inflow
condition to the boundary layer computations.

The turbulence models tested are the Wallin & Johansson (2000) EARSM
with the wall-damping function based both on y+ and yT , the corresponding
EARSM based on the linearized SSG model (Girimaji 1997) with the Wallin &
Johansson wall-damping function based on yT , the Chien (1982) eddy-viscosity
K − ε model, and the Hanjalić et al. (1995) RST model. All three EARSMs
are solved together with the Wilcox (1994) low-Reynolds number K−ω model.
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Figure 12. Computed mean velocity profiles at x = 350 for
APG1 compared to DNS data. ◦ DNS data; — W&J EARSM
with yT damping; – – W&J EARSM with y+ damping; - - -
Girimaji EARSM with yT damping; – - – Chien K − ε; – - - –
Hanjalić RST.

Figure 11 shows the computed skin friction coefficient compared with DNS
data. After an initial transient the computed skin friction levels out to some
asymptotic behaviour. The transient is caused by inconsistency between the
inflow data and the turbulence model. In the computations the coefficient
β ≡ δ∗

τw

dP
dx was kept constant which leads to a reduced effect of the transient.

Even though, the extent of the transient is rather large since the Reynolds
number is relatively low. Computations with a given pressure gradient resulted
in a separated flow for the y+ based models, which will not be reported here.

There are two models that significantly deviates from the other models.
These are the Chien K−ε and the Wallin & Johansson EARSM with the wall-
damping function based on y+. The wall-damping function in the Chien model
is also based on y+. The other models do not use wall-damping functions based
on y+ and it is a reasonable assumption that the y+ scaling is the major cause
of the deviations. That is clearly seen if one compares the two computations
using the Wallin & Johansson EARSM where the only difference between these
two is the wall length scaling (y+ or yT ).

Figure 12 shows the computed velocity profile compared with DNS data.
Also here it is observed that the models with y+ based near-wall damping com-
pares bad with the DNS data while the other models are reasonably accurate.
Also here one can notice the difference between the two computations using
the Wallin & Johansson EARSM.

4. Conclusion

The viscous sub-layer in the near-wall boundary layer is largely governed by
transport and non-equilibrium phenomena, which, in principle, only can be
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captured by full Reynolds stress models. Eddy-viscosity models as well as alge-
braic Reynolds stress models must, thus, be modified by more or less empirical
near-wall damping functions in order to have the correct near-wall asymptotic
behaviour.

Near-wall damping functions based on y+ become singular in separation or
reattachment points and it was shown that the y+ scaling also behaves badly
in attached boundary layers with adverse pressure gradients. An alternative to
y+ was suggested by Wallin & Johansson (2000) and is basically yT ∼ √

Rey

where Rey≡yuτ/ν. It was found by use of the DNS data (APG1 and SEP)
that the yT scaling is reasonably similar to the pressure-gradient corrected
analytical scaling y∗ even close to separation.

In a general three-dimensional CFD method the formulation in terms of yT

is more attractive since that can be derived in every grid point by using local
field variables and the wall distance. The use of Y ∗ involves the skin friction
of the nearest wall and also the local pressure gradient. Moreover, in general
three-dimensional cases the skin friction, pressure gradient, and external flow
are not in general aligned which introduces additional complications.

When damping the a12 component of the anisotropy with a van Driest type
of wall damping function it was found that the model predictions were much
improved by using yT or y∗ compared to y+ but there was still a significant
deviation from the DNS data for the APG1 case. It is obvious that there are
other aspects of damping the a12 anisotropy in adverse pressure gradients than
the wall distance scaling which could not be resolved within this study.

Comparisons between the Wallin & Johansson EARSM based on a LRR-
type of pressure-strain model and the Girimaji EARSM which is based on the
linearized SSG show no major differences. The only significant difference is
that the a33 anisotropy component is non-zero for the Girimaji model whereas
it is zero for the Wallin & Johansson model away from the viscous sub-layer.
However, the deviation from the DNS data is about the same for both models.
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Reynolds stress budgets in Couette and
boundary layer flows

By Jukka Komminaho and Martin Skote

Dept. of Mechanics, KTH, SE-100 44, Stockholm, Sweden

Reynolds stress budgets for both Couette and boundary layer flows are eval-
uated and presented. Data are taken from direct numerical simulations of
rotating and non-rotating plane turbulent Couette flow and turbulent bound-
ary layer with and without adverse pressure gradient. Comparison of the total
shear stress for the two flows suggests that the Couette case may be regarded
as the high Reynolds number limit for the boundary layer flow close to the wall.
The direction of rotation is chosen so that it has a stabilizing effect, whereas
the adverse pressure gradient is destabilizing. The pressure strain-rate tensor
is in the Couette flow case presented for a split into slow, rapid and Stokes
terms.

1. Introduction

The development of cheap, powerful, computers has lead to wide use of CFD
codes for the prediction of turbulent flows. These codes almost always use
turbulence models to try to capture the characteristics of the turbulent flow,
and the prediction is no better than the weakest link in computational chain.
Often the weakest link is the turbulence model. But to develop better turbu-
lence models one must have data to compare them against. In the early days
of turbulence modelling one had to rely on indirect methods to test the various
closure models. Experimental difficulties in measuring pressure and velocity
with sufficient resolution did not make direct comparisons possible.

With the development of high-speed supercomputers, and new algorithms,
Orszag (1969, 1970); Kreiss & Oliger (1972); Basdevant (1983), it became pos-
sible to simulate turbulent flows directly without resorting to large eddy simu-
lations or turbulence models. Now it became possible to evaluate any desirable
quantity and use them to test turbulence models. The channel flow simulation
by Kim et al. (1987) was the first fully resolved simulation of a pressure-driven
channel flow, and the database from the simulation has been used extensively
to evaluate various turbulence models, Mansour et al. (1988).

There are few experimental studies of Couette flow with reports of turbu-
lence statistics. In the study of Couette flow at a Reynolds number of 1300,
Bech et al. (1995), report both second and higher order statistics from both
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experiments and simulations. The agreement between the experiments and the
simulation is good for the statistics, but their simulations do not fully capture
the very large scale structures of the experiments. This is e.g. seen from the
two-point correlations which are lower in the simulation than in the experiment.
In Bech & Andersson (1994) they used three different sizes of computational
domain and observed large structures in one box, but not in the other two.
The reason behind this is unclear.

In Bech (1995) they present Reynolds stress budgets from the simulation
in Bech et al. (1995), and they look very similar to the ones presented here,
despite the higher Reynolds number in their simulation.

In the present paper the budget data for the Reynolds stresses in the Cou-
ette flow case are evaluated from the flow fields of the plane Couette flow
simulation by Komminaho et al. (1996).

Data are also presented from three different turbulent boundary layers.
One is a zero pressure gradient (ZPG) boundary layer, and two are boundary
layers subject to an adverse pressure gradient (APG). Data from the ZPG
boundary layer have not previously been presented. The simulation with a
moderate APG (APG1) has been analyzed in Skote et al. (1998), while the
strong APG case (APG2) has been presented in Skote & Henningson (2000).

The ZPG turbulent boundary layer flow has been studied in a large number
of investigations, see e.g. the assessment of data by Fernholz & Finley (1996).
Turbulent statistics close to the wall were obtained through DNS by Spalart
(1988), and were confirmed later in the experiment of a low Reynolds number
ZPG turbulent boundary layer by Ching et al. (1995). Various Reynolds stress
budgets from DNS of both ZPG and APG boundary layers were presented by
Na & Moin (1996). Near-wall limit values of an APG boundary layer were also
investigated in the DNS of Spalart & Watmuff (1993) and in the experiment
of Nagano et al. (1992).

The results from the simulations of Komminaho et al. (1996), Skote et al.
(1998) and Skote & Henningson (2000) are documented here for future use
in turbulence model development, in particular for near-wall modelling. The
present plane Couette flow data are well suited for this purpose since the con-
dition of a constant total shear is, unlike the situation in the boundary layer,
fulfilled for all Reynolds numbers. The boundary layer data can be used for
the development of low Reynolds number turbulence models.

2. Data analysis

One can write the Navier–Stokes and continuity equations in a rotating refer-
ence frame as,

∂u′
i

∂t
+

∂

∂xj
(u′

iu
′
j) = −1

ρ

∂p′

∂xi
+ ν

∂2u′
i

∂xj∂xj
+ 2εijku′

jΩk (1a)

∂u′
i

∂xi
= 0. (1b)
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The effect of the system rotation can be seen as a volume force in the fluid,
also known as the Coriolis force and the centrifugal force. The Coriolis force
is the last term in the momentum equation, and the centrifugal force has been
included in the pressure.

Divide the flow into a mean and a fluctuating part, u′ = U + u, where the
mean part is defined as an ensemble average over N different times, and also
an average over the homogeneous directions (x and z in the Couette flow and
z in the boundary layer)

u′ ≡ U(y, t) =
1

NLxLz

N∑
i=1

∫ Lx

0

∫ Lz

0

u′(x, y, z, t)dxdz. (2)

The Reynolds equation for the mean flow is now obtained as

∂Ui

∂t
+

∂

∂xj
(UiUj) = −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj
− ∂

∂xj
Rij + εijkUjΩk (3)

where Rij = uiuj is the velocity correlation tensor, and will here be referred
to as the ’Reynolds stress tensor’.

2.1. Couette data

Plane Couette flow is the flow between two parallel planes, moving in opposite
directions with velocity ±Uw in the x-direction, at a distance 2h. The wall-
normal direction is denoted y. The system rotation Ω applied in the present
work is around the z axis.

The various statistical quantities have been evaluated and averaged from
12 different velocity fields, and the average was taken in both x and z direction.
The time between the samples was T = 40, and they are statistically indepen-
dent for all but the very largest scales, see Komminaho et al. (1996) where
the time scale for the integral length scale (Λuux defined as

∫
Ruu(∆x)dx, Ruu

being the two-point velocity correlation) was found to be more than 50.

2.2. Boundary layer data

The statistics have been produced in the same manner as in the Couette case,
except for the important difference that the flow is not homogeneous in the
streamwise (x) direction. The boundary layer is growing and developing in the
x−direction due to the increasing Reynolds number. Thus, the statistics are
unique for each streamwise position. However, here we are only dealing with
the near-wall statistics, which in the viscous scaling should be invariant under
the Reynolds number. But in the low Reynolds number flows simulated with
DNS, there is a small influence of the increasing Reynolds number. This effect
is confined to the part very close to the wall (y+ < 3). In the ZPG simulation
e.g., the boundary layer undergoes a doubling of the Reynolds number, but the
budgets fall on top of each other for different streamwise positions, except for
the small increase of the values at the wall. The statistics are therefore shown
for one streamwise position in all three cases.
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Figure 1. Total shear stress. Couette (· · · ). Boundary layer:
(- -) Reδ∗ = 539, (—) Reδ∗ = 920.

The simulations APG1 and APG2 were performed with a pressure distri-
bution leading to a self-similar boundary layer at high Reynolds numbers. The
pressure gradient parameter β,

β ≡ δ∗
τw

dP

dx
, (4)

defines the APG in these two simulations.
The Reynolds number at the position where the budgets have been evalu-

ated is shown in table 1, together with the local value of the friction velocity,
freestream velocity and pressure gradient parameter.

Case Reδ∗ ReΘ uτ U β

ZPG 920 606 0.048 1.0 0.0
APG1 1064 655 0.036 0.76 0.65
APG2 2573 1309 0.020 0.60 5.0

Table 1. Reynolds number, friction velocity, freestream ve-
locity and pressure gradient at the streamwise position where
the Reynolds stress budgets have been evaluated.

Another effect of the Reynolds number is the increasing length of the region
with constant shear stress (τ+). This is illustrated in figure 1, which shows
the total shear stress at two Reynolds numbers for the ZPG case, as well as
for Couette flow. From figure 1 it is clear that the total shear stress for the
boundary layer becomes more constant when the Reynolds number is increased.
Since τ+ is constant for the Couette flow, it might be argued that this flow
approximates a high Reynolds number boundary layer close to the wall.
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2.3. Reynolds stress budget

The transport equations for the Reynolds stress tensor are obtained by multi-
plying (1a) (after subtracting the mean equation 3) with uj , adding the cor-
responding equation with switched indices i, j and ensemble averaging. The
resulting equations read

DRij

Dt
≡

(
∂

∂t
+ Uj

∂

∂xj

)
Rij = Pij − εij + Πij + Gij + Dij + Tij + Cij (5)

where

Pij ≡ −uiuk
∂Uj

∂xk
− ujuk

∂Ui

∂xk
, (6a)

εij ≡ 2νui,kuj,k, (6b)

Dij ≡ ∂

∂xk
(νRij,k) , (6c)

Πij ≡ 1
ρ

(
p

∂ui

∂xj
+ p

∂uj

∂xi

)
, (6d)

Gij ≡ − ∂

∂xk

(
1
ρ
ujpδik +

1
ρ
uipδjk

)
, (6e)

Tij ≡ − ∂

∂xk
uiujuk, (6f)

Cij ≡ −2Ωk (Rljεikl + Rilεjkl) . (6g)

Here Pij is the production due to mean field gradients, whose trace (Pii) rep-
resents twice the production of turbulent energy, the transfer of energy from
the mean flow to the turbulent fluctuations.

εij is the dissipation rate tensor, and Dij is the diffusion tensor. They
both represent viscous effects, but whereas Dij is a molecular diffusion term
acting to even out the turbulent stresses by spatial redistribution, εij act as a
destruction term of turbulent energy (and stresses).

Πij is the pressure-strain rate correlation tensor, which is traceless and
represents inter-component transfer between Reynolds stress terms. Gij is the
divergence of the pressure-velocity correlation, and represents transport driven
by pressure fluctuations. This split in the above two terms is not unique, there
are several different ways in which one may separate the pressure-velocity term
when deriving the RST equations, but as the investigation in Groth (1991)
shows the above separation seems to make most physical sense.

Tij is the divergence of the triple correlation tensor, acting as a spatial
redistribution term.

Cij is the traceless Coriolis tensor, which acts as a redistributive term
among the stress components.

The transport equation for the kinetic energy, K ≡ 1
2Pii is

DK

Dt
= P − ε + D, (7)
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Figure 2. Terms in the Couette flow R11-budget for (a) the
non-rotating case and (b) the rotating case, Ω = −0.005. The
different terms are: (· · · ) P11, (- -) −ε11, (- · -) D11, (- · · -) Π11,
(—) T11, (+) C11.

where P = 1
2Pii is the turbulent energy production, ε = 1

2εii is the viscous dis-
sipation, and D = 1

2 (Tii + Gii + Dii) is the sum of the molecular and turbulent
diffusion of K. This term acts as a spatial redistribution of K.

In a fully developed plane Couette flow, the flow is homogeneous in the x
and z directions, and the relevant non-zero stresses are R11, R12, R22 and R33.
Figures 2–9 show the terms in the budget of these stresses, as functions of the
wall-normal distance y+ = yuτ/ν, where uτ =

√
τw/ρ is the friction velocity.

Note that in the non-rotating case the Coriolis term, Cij , is zero. All quantities
are shown in +-units, non-dimensionalized with u4

τ/ν. The simulation flow
fields represent a plane Couette flow at a Reynolds number Reτ = uτh/ν = 52
(Reτ = 48 for the rotating case) based on friction velocity uτ and channel
half-height h. This corresponds to a Reynolds number 750 based on wall-
velocity and h. Despite this very low Reynolds number it is twice that of the
transition Reynolds number of 360, Lundbladh & Johansson (1991); Tillmark &
Alfredsson (1992); Komminaho et al. (1997). For the rotating case the rotation
is as low as Ω = −0.005, corresponding to a Rossby number of 200.

The budgets for the Reynolds stresses in the ZPG case are essentially the
same as in Spalart (1988). The moderate APG case, APG1, show very similar
profiles in the Reynolds stress budgets as the APG simulation of Na & Moin
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Figure 3. Terms in the R11-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
(· · · ) P11, (- -) −ε11, (- · -) D11, (- · · -) Π11, (—) T11.

(1996). The effects of the APG will be stronger in the APG2 case, which has
a skin friction approximately 60 % of that in APG1. In this work, in contrast
to the budgets in Spalart (1988) and Na & Moin (1996), the pressure term
is divided into pressure-strain and pressure-velocity diffusion, for comparison
with the Couette data.

In figures 2 to 9 the budgets for the Reynolds stresses are shown. The
figures include both non-rotating and rotating Couette flow as well as all three
boundary layer cases and the profiles from the ZPG case can be compared with
the Couette case with zero rotation.
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Figure 4. Terms in the Couette flow R22-budget for (a) the
non-rotating case and (b) the rotating case, Ω = −0.005. The
different terms are: (- -) −ε22, (- · -) D22, (- · · -) Π22,
(- - · ·) G22, (—) T22, (+) C22.

2.3.1. Longitudal Reynolds stress

One may note that the maximum of the production term P11 is 0.5. This
is easily obtained by integrating the stream-wise momentum equation once,
and multiplying with dU+

dy+ . The advection term is zero in the Couette flow
case negligible in the near-wall region for boundary layers. By neglecting the
advection term and assuming wall similarity, we obtain the following relation
for the turbulence production:

P11 ≡ −2
uv

u2
τ

dU+

dy+
= 2

dU+

dy+

(
1 − dU+

dy+
+

ν

ρu3
τ

dP

dx
y+

)
, (8)

where the pressure gradient term is non-zero only in the adverse pressure gra-
dient (APG) cases. The last term within the parenthesis can be rewritten
as βy+/δ+

∗ . From the above relation it follows that the maximum of P11 is
0.5 occurring at a position where dU+/dy+ = 0.5 for Couette flow and ZPG
boundary layer. This holds irrespective of the value of the Reynolds number
and the system rotation and was shown to accurately describe also the low-
Reynolds number plane Couette flow simulation of Komminaho et al. (1997)
where the Reynolds number was as low as 375.
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Figure 5. Terms in the R22-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
(- -) −ε22, (- · -) D22, (- · · -) Π22, (- - · ·) G22, (—) T22.

The overall character of the different terms in the Reynolds stress budget
for Rij is the same as for the channel flow in Mansour et al. (1988). Figure 2
shows that the production term P11 is the dominant positive term in the range
y+ > 5, and has a maximum of 0.5 in the buffer region, at y+ = 11, falling
to 0.10 in the centre of the channel. The location of the peak production can
be found to be y+ ≈ 11 also in channel and pipe flow, Sahay & Sreenivasan
(1999). The non-zero production in the central region is a consequence of the
non-zero mean shear in this region.

Π11 is negative throughout the channel, thereby transferring energy from
R11 to R22 and R33.
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Despite the very low rotation rate for the Couette flow case the effects on
some terms in the budgets are significant, away from the wall. The production
P11 is about 60% larger in the centre of the channel for the rotating case.
The dissipation ε11 and the pressure-strain-rate Π11 are both 30% larger for
the rotating case, whereas the redistributive term T11 is about 20% smaller.
Near the walls the non-rotating and rotating cases are very similar, as can be
expected since the maximum production is 0.5 in both cases.

In figure 3a the budget for the longitudal Reynolds stress is shown for the
ZPG case. The maximum of the production term P11 is 0.5 as in the Couette
case. The other terms in the budget for R11 corresponds very closely to those in
the Couette case. The adverse pressure gradient increases the production P11

as seen in figures 3b and c. For APG1 it is 0.6 and APG2 0.9. The increase of
the maximum is not explained by the contribution from the streamwise velocity
gradient since that part of the production term is negligible close to the wall.

The increased value of P11 is thus explained from the contribution from
the pressure gradient in equation (8). For the case APG2 we have a δ+

∗ of 86 so
that the last term within the parenthesis in equation (8) βy+/δ+

∗ is about 0.58
at y+ = 10, i.e. near the maximum in production. It can, hence, be seen to be
of the order one influence. Since βy+/δ+

∗ = βy+ U∞
uτ

/Reδ∗ we can see that the
effect of the pressure gradient term decreases with increasing Reynolds number.

The position of the maximum is shifted towards the wall, most notably in
the APG2 case (figure 3c).

Also the rest of terms show more extreme values in the APG cases, even
though the shape of the profiles remain roughly the same. The enhanced values
in the near-wall region are partly due to the decrease in the friction velocity
(which all the terms in the budget are scaled with). The lower value of uτ is a
consequence of the adverse pressure gradient. One might argue that uτ is not
the correct scaling in an APG flow, since the total shear stress is not constant
in this scaling. Alternative scalings, including a velocity scale dependent on
the wall normal distance that produce a constant shear stress, are discussed in
Skote & Henningson (1999) and Skote & Henningson (2000).

2.3.2. Normal Reynolds stress

In figure 4 the budget for R22 in the Couette flow case is shown. Π22 is negative
close to the wall, and positive towards the centre. Thus it transfers energy from
the wall-normal components to the horizontal components near the wall. This
reversal of the sign was attributed to the splatting effect in the LES study of
turbulent channel flow by Moin & Kim (1982) (see also Hunt & Graham 1978).
In the turbulence modelling context this effect is normally referred to as the
wall-reflection contribution to the pressure strain. The attempts to model this
(see Gibson & Launder 1978) typically assumes a variation on a length-scale of
the order of the macro-scale. The present results and those of Aronson et al.
(1997) and Perot & Moin (1995) however show that the effect is confined to a
thin region near the wall. In some recent model development (see e.g. Sjögren
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Figure 6. Terms in the Couette flow R33-budget for (a) the
non-rotating case and (b) the rotating case, Ω = −0.005. The
different terms are: (- -) −ε33, (- · -) D33, (- · · -) Π33, (—) T33,
(+) C33.

& Johansson 2000) this effect is only indirectly accounted for through realizable
models.

The same trend regarding the dissipation and the pressure-strain rate can
also be seen in figures 4 and 6 for R22 and R33 budgets.

In figure 5a the budget for R22 in the ZPG case is shown. All the terms
show slightly lower values than in the Couette case, while the shapes of the
profiles are similar. As the pressure gradient increases, all the terms become
larger, as seen from figures 5b and c. A peak in the pressure-strain term has
developed in the APG2 case at the position y+ = 8, and exceeds the maximum
value of the pressure diffusion. The formation of a peak is not observed in the
ZPG and APG1 cases, where a plateau is developed in the pressure-strain, and
the value is lower than the pressure-velocity gradient.

2.3.3. Spanwise Reynolds stress

In the ZPG budget for the spanwise Reynolds stress, shown in figure 7a, the
values of the different terms are, as in the R22 budget, lower than in the Couette
flow. The shapes of the profiles are similar to those in the Couette case. The
pressure gradient enhances the values, but nothing else seems to be affected
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Figure 7. Terms in the R33-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
(- -) −ε33, (- · -) D33, (- · · -) Π33, (—) T33.

in the APG1 case. In APG2 however, the turbulent transport is of the same
magnitude as the pressure-strain.

2.3.4. Reynolds shear stress

The budget for the Reynolds shear stress in Couette flow is presented in figure
8. The pressure strain (Π12) and pressure diffusion (G12) balance each other
at the wall. This is also the case in Mansour et al. (1988). The value of Π12

at the wall in Couette flow is more than twice the value found in the channel
flow simulation Mansour et al., and also for ZPG flow it is higher.

The budget for the Reynolds shear stress in boundary layer flow is presented
in figure 9. The profiles are approximately the same as in the Couette case,
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Figure 8. Terms in the Couette flow R12-budget for (a) the
non-rotating case and (b) the rotating case, Ω = −0.005. The
different terms are: (· · · ) P12, (- -) −ε12, (- · -) D12, (- · · -) Π12,
(- - · ·) G12, (—) T12, (+) C12.

except for the pressure-strain and pressure diffusion at the wall which shows
larger values in the Couette case. The outer (y+ > 5) values are however the
same in the two flows.

The outer peak (at y+ = 6) of the pressure-strain equals the value at the
wall in ZPG and APG2 cases. In the weaker APG boundary layer, APG1, the
outer peak has a lower value than at the wall.

2.4. Near-wall behavior

There is a balance between dissipation and viscous diffusion on the wall. From
the data in figures 2–6 we may also compute the dissipation rate anisotropies,
eij = εij/ε− 2

3δij . The limiting values of these (along with the stress anisotro-
pies aij = Rij/K− 2

3δij) are given in table 2 and compared with the predictions
obtained by the algebraic dissipation rate anisotropy models of Hallbäck et al.
(1990) and Sjögren & Johansson (2000). The agreement is quite satisfactory
for both models in the Couette case, while the Hallbäck et al. model is in
better agreement with DNS data for the ZPG boundary layer. In the Hallbäck
et al. model eij is given by

eij =
[
1 + α(

1
2
IIa − 2

3
)
]

aij − α(aikakj − 1
3
IIaδij), α =

3
4
, (9)
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Figure 9. Terms in the R12-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
(· · · ) P12, (- -) −ε12, (- · -) D12, (- · · -) Π12, (- - · ·) G12,
(—) T12.

whereas in the Sjögren & Johansson model we have

eij = (1 − 1
2
F )aij , F = 1 − 9

8
(IIa − IIIa). (10)

In the above expressions we have introduced the two nonzero invariants of the
anisotropy tensor,

IIa = aijaji, (11)

IIIa = aijajkaki. (12)

The latter model gives eij = aij as limiting value in the two-component limit,
such as on a solid wall. This describes the situation very accurately in both
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component 1,1 2,2 3,3

aij 0.72 − 2
3 −0.05

eij 0.73 − 2
3 −0.06

(eij)Hallbäck 0.67 − 2
3 0.00

(eij)Sjögren 0.72 − 2
3 −0.05

Table 2. Couette data: Limiting values for the stress
anisotropies aij and dissipation rate anisotropies eij , and com-
parison with models.

component 1,1 2,2 3,3

aij 0.76 − 2
3 −0.09

eij 0.76 − 2
3 −0.09

(eij)Hallbäck 0.50 − 2
3 0.17

(eij)Sjögren 0.76 − 2
3 −0.09

Table 3. Boundary layer data: Limiting values for the stress
anisotropies aij and dissipation rate anisotropies eij , and com-
parison with models.

Case Reδ∗ u+
rms/y+ v+

rms/y+2
w+

rms/y+ −〈uv〉+/y+3
ε+

ZPG 539 0.385 0.0112 0.232 0.00099 0.203
ZPG 920 0.398 0.0119 0.252 0.00102 0.223
Couette 0.414 0.0135 0.268 0.00121 0.246

Table 4. Limit values for y+ → 0

cases. One may note that for this extremely low Reynolds number the dissipa-
tion rate is highly anisotropic also at the centreline in the Couette case.

Some important limiting values at the wall are given in table 4 and 5. The
dependence of the Reynolds number in the boundary layer is strong as seen in
table 4. All the values increase for higher Reynolds number, but they do not
reach the values of the Couette flow. Hence, one might argue that the Couette
data constitute a high Reynolds number limit for the boundary layer.

The effect of the APG on the boundary layer is quite severe as seen from
table 5. All limit values are increased when the boundary layer is subject to an
APG. The rotation in the Couette case has the opposite effect; all limit values
decreases.
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Case u+
rms/y+ v+

rms/y+2
w+

rms/y+ −〈uv〉+/y+3
ε+

APG1 β = 0.65 0.476 0.0177 0.344 0.00181 0.346
APG2 β = 5.0 0.728 0.0470 0.764 0.00598 1.35

Couette Ω = −0.005 0.387 0.0124 0.243 0.00093 0.238
Table 5. Limit values for y+ → 0
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Figure 10. The anisotropy invariant map. a) AIM paths for
the non-rotating (+) and rotating (·) case. b) AIM paths for
ZPG (+) ; APG1 (·); APG2 (�).

2.5. Anisotropy tensor

The Reynolds stress anisotropy tensor aij has, as already mentioned above,
two nonzero invariants, IIa and IIIa. All anisotropic states can be represented
in the anisotropy invariant map (Lumley & Newman 1977) which are bounded
by the lines 8/9 + IIIa = IIa and 6III2a = II3a. They represent two-component
and axisymmetric turbulence, respectively.
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In figure 10a the AIM paths for both the non-rotating and rotating Couette
cases are shown. Their main characteristics are the same as for the channel
flow simulations of Moser et al. (1999). Close to the wall the turbulence is
very near the two-component limit, approaching the one-component limit near
the edge of the viscous sublayer. At y+ ≈ 8 the AIM path turns towards the
isotropic state. For the present cases the Reτ is so low that there is nearly no
real log-layer in the profiles with corresponding agglomeration of points in the
AIM, as observed in the higher-Re channel flow simulations.

The AIM paths for the boundary layer flows are shown in figure 10b. The
ZPG case is very similar to the Couette flow. There is some agglomeration of
points at the end of the path which is y+ ≈ 150 (for ZPG). The path for APG1
starts at a lower value of IIIa and represents a lower degree of anisotropy
than in the ZPG case. The end of the APG1-path is at y+ ≈ 100. The
differences between ZPG and APG1 are not so large in comparison with the
APG2 case, where the path starts in the lower left corner and represents much
lower degrees of anisotropy than in the other cases. This is explained by the less
structured turbulence in a strong APG boundary layer. The path for APG3
was terminated at y+ ≈ 50, and is similar to the anisotropy states from a
backward-facing step, see Le & Moin (1992).

2.6. Pressure-strain rate split

The results from a split of the pressure-strain rate is here presented for the
Couette flow. The result from taking the divergence of the Navier–Stokes
equation is a Poisson equation for the pressure,

∂2p

∂xi∂xi
= − ∂

∂xi

∂

∂xj
(u′

iu
′
j) − 2εijkΩs

j

∂u′
k

∂xi
(13)

with the wall boundary condition,

∂p

∂y
=

1
Re

∂2v′

∂y2
− 2UΩs. (14)

By splitting the source term in the Poisson equation into one part con-
taining the mean velocity gradient and one part containing only gradients of
the fluctuating part, we may derive equations for the rapid, slow and Stokes
pressure, respectively.

∇2p(r) = −2
(

∂Ui

∂xk
+ εijkΩs

j

)
∂uk

∂xi
,

∂p

∂y
= 0 (15)

∇2p(s) = − ∂ui

∂xj

∂uj

∂xi
,

∂p

∂y
= 0 (16)

∇2p(St) = 0,
∂p

∂y
=

1
Re

∂2v

∂y2
− 2UΩs. (17)

The Stokes pressure is solely due to the inhomogeneous boundary condition,
and may be added to either the rapid or the slow pressure. Note that the last
term in the boundary condition for the Stokes pressure is non-zero only for
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Figure 11. The Π11-split for (a) the non-rotating case and
(b) the rotating case, Ω = −0.005. The different terms are:
(+) Π(tot)
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Figure 12. The Π22-split for (a) the non-rotating case and
(b) the rotating case, Ω = −0.005. The different terms are:
(+) Π(tot)
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22 , (�) Π(r)

22 , (�) Π(St)
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a moving wall, e.g. Couette flow. Restricting ourself to the present case of a
channel with two homogeneous directions the rapid part simplifies further,

∇2p(r) = −2
dU

dy

∂v

∂x
− 2Ωsω3. (18)

The split into rapid, slow and Stokes pressure strain-rate can be seen in
figure 11–14 for Π11–Π12. The slow part of Π11 is larger than the rapid except
near the wall, y+ < 10, where the mean velocity gradient is large. The rapid
part is more affected by the rotation than the slow part.

Also for the Π22-term the slow part is larger than the rapid part, and
contribute most to the pressure strain-rate. Here the slow part is more affected
by the rotation.

For the Π33-terms the rapid part contributes most, except for y+ < 10,
and is also most affected by the rotation.

The Stokes part for Π22, Π33 and Π12 is significant only in the region
y+ < 10, and for Π11 it is negligible throughout the channel.
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The general character and amplitude of the various pressure strain rate
terms are almost identical even for Re = 375, despite the low Reynolds number.

3. Summary

We have used the Couette flow simulation data of Komminaho et al. (1996)
and the boundary layer data of Skote et al. (1998); Skote & Henningson (2000)
to compute terms in the transport equation for the Reynolds stresses. For the
Couette flow we have also presented data for a split of the pressure strain rate
term in rapid, slow and Stokes. Data was presented for both rotating (slow
stabilizing rotation) and non-rotating Couette flow. One can see a small effect
of the rotation on the limiting values at the wall in the Couette flow, but it is
small as could be expected, since it is a very slow rotation. In the centre of the
channel the budgets were strongly influenced by the rotation.

Boundary layer data were presented for one zero pressure gradient flow and
two adverse pressure gradient flows. Strong influence on the budgets from the
adverse pressure gradient were detected. The near-wall limits of turbulence
statistics were shown to increase with Reynolds number in the zero pressure
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gradient boundary layer, but they did not reach the values obtained from the
Couette flow.
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Sjögren, T. & Johansson, A. V. 2000 Development and calibration of algebraic
nonlinear models for terms in the Reynolds stress transport equations. Phys.
Fluids 12 (6), 1554–1572.

Skote, M., Henkes, R. A. W. M. & Henningson, D. S. 1998 Direct numerical
simulation of self-similar turbulent boundary layers in adverse pressure gradients.
Flow, Turbulence and Combustion 60, 47–85.

Skote, M. & Henningson, D. 1999 Analysis of the data base from a dns of a
separating turbulent boundary layer. Center for Turbulence Research, Annual
Research Briefs 1999, 225–237.

Skote, M. & Henningson, D. S. 2000 Direct numerical simulation of a separating
turbulent boundary layer. J. Fluid Mech. (Submitted).

Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Reθ =
1410. J. Fluid Mech. 187, 61–98.

Spalart, P. R. & Watmuff, J. H. 1993 Experimental and numerical study of a
turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337–371.



202 J. Komminaho & M. Skote

Tillmark, N. & Alfredsson, P. H. 1992 Experiments on transition in plane Cou-
ette flow. J. Fluid Mech. 235, 89–102.



Paper 7

P7





Instabilities in turbulent boundary layers

By Martin Skote∗, Joseph H. Haritonidis† and Dan S.
Henningson∗‡

An investigation of a model of turbulence generation in the wall region of
a turbulent boundary layer is made through direct numerical simulations. The
model is based on the instability of a streak.

First, a laminar boundary layer disturbed by a continuous blowing through
a slot is simulated in order to reproduce and further investigate the results
reported from the experiments of Acarlar & Smith (1987). An isolated streak
with an inflectional profile is generated that becomes unstable, resulting in a
train of horseshoe vortices. The frequency of the vortex generation is equal to
the experimental results. Comparison of the instability characteristics to those
predicted through an Orr-Sommerfeld analysis are in good agreement.

Second, a direct numerical simulation of a turbulent boundary layer is
performed to point out the similarities between the horseshoe vortices in a
turbulent and a laminar boundary layer. The characteristics of streaks and the
vortical structures surrounding them in a turbulent boundary layer compare
well with the model streak. The results of the present study suggest that
the primary mechanism for the generation of horseshoe vortices in turbulent
boundary layers is related to an inflectional instability of the streaks.

1. Introduction

1.1. Detection of coherent structures

The occurrence of coherent vortices in wall-bounded turbulent flows has been
observed in a large number of investigations by different means. The experimen-
tal observations have relied on dye injections or hydrogen bubbles introduced
in the flow. Lately, low Reynolds number flows have been investigated numer-
ically through direct numerical simulations (DNS). The flow field variables are
all available at the same time and thus more sophisticated detection methods
have been developed. Robinson (1991a) used the pressure successfully for re-
vealing horseshoe vortices in a data base from a DNS of a turbulent boundary
layer. Singer & Joslin (1994) also used the pressure in a numerical simulation

∗Department of Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden
†Department of Aerospace Engineering and Aviation, Ohio State University, U.S.A.
‡Aeronautical Research Institute of Sweden (FFA), Box 11021, SE-161 11 Bromma, Sweden
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for visualizing a horseshoe vortex generated by blowing through a slot. Chong
et al. (1998) used the discriminant of the deformation rate tensor for identify-
ing flow structures in turbulent boundary layers. They found structures that
to a great extent consist of attached vortex loops. Zhou et al. (1999) used
the imaginary part of the complex eigenvalue of the deformation rate tensor to
identify hairpin structures in channel flow. The structures originated from a
vortical structure imposed in the flow. By plotting the imaginary part a clear
picture of the structure was obtained and the shape was not sensitive to the
level chosen for visualization. Jeong & Hussain (1997) and Schoppa & Hussain
(1997) used an eigenvalue based on the Hessian of the pressure for identifica-
tion of vortices in a turbulent channel flow, and used conditional sampling to
extract the precise form of the coherent structure.

1.2. Streamwise versus horseshoe vortex structures

Jeong & Hussain (1997) did not detect any horseshoe vortices in the channel
flow simulation by Kim et al. (1987). Instead they extracted a coherent struc-
ture consisting of quasi-streamwise vortices by conditional sampling. Jimenez
& Moin (1991) and Hamilton et al. (1995) observed, by shrinking the computa-
tional box, that the self-sustained turbulence is linked to the quasi-streamwise
vortices, and does not depend on the outer part of the flow. This scenario is
consistent with the model of Waleffe (1997) which states that the vortex is fed
by energy from the break up of the streak. Jimenez & Pinelli (1999) used a
method of reducing the influence of the outer flow in a numerical simulation
to show that the regeneration cycle is independent on the outer flow. Thus,
according to these findings, there is little interaction between the inner and
outer flow. Consequently, it is possible to model the regeneration of turbulence
via a self-sustaining process involving low-speed streak and quasi-streamwise
vortex, independent on the outer flow.

On the other hand, horseshoe vortices observed in boundary layer flows
reach into the outer flow. The regeneration of horseshoe vortices has been
studied numerically by Singer & Joslin (1994) and Zhou et al. (1999) and in
experiments by Acarlar & Smith (1987). Recently, Adrian et al. (2000) have
visualized hairpin vortices in a turbulent boundary layer using particle image
velocimetry (PIV). They show that hairpin packets (groups of horseshoe vor-
tices) build up the turbulent boundary layer. The number of vortices that
constitute a packet is lower in a low Reynolds number flow than in high Rey-
nolds number flows.

The size of the horseshoe vortices seems to vary within the flow and also
vary with Reynolds number. A turbulence model for Reynolds average Navier-
Stokes (RANS) calculations of turbulent flows has been developed by Perry
et al. (1994) based on size and strength of the horseshoe structures.
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1.3. Streak instability and turbulence regeneration

The vortex structures present in turbulent boundary layers seem to be related to
streak instabilities. However, the type of instability that occurs in the streaks
is not agreed upon. Robinson (1991b) proposed that a normal inflectional
instability of the instantaneous velocity profile may produce horseshoe vortices.
Singer (1992) showed that a normal inflectional instability of the velocity profile
may be responsible for the generation of secondary horseshoe vortices. Kim
et al. (1971) were the first to show that a normal inflectional instability of the
instantaneous velocity profile is of importance in the turbulence regeneration
cycle. They observed the inflectional velocity profiles in connection with the
rapid lift up of the low-speed streaks in the later part of the process of the
streak break up.

On the other hand, in the model of Waleffe (1997) the basic state is two-
dimensional and consists of the turbulent mean flow with a simple construction
of the streak imposed. He found that the dominating instability is sinuous and
that it is correlated with the spanwise inflection of the basic state. Kawahara
et al. (1998) and Schoppa & Hussain (1997) also used such a model and showed
that the varicose mode is stable. Schoppa & Hussain argued that this is con-
sistent with the absence of horseshoe vortices in their examination of the DNS
data base generated by Kim et al. (1987).

Although the references cited above form only a small part of the work
that has been put into the detection and analysis of coherent structures, there
is surprising disagreement between the studies of what is the important mech-
anisms in turbulence regeneration. In the last section of this paper we propose
a reconciliation of this apparent disagreement, partly based on the results of
the present investigation.

1.4. Present study

In this work we will pursue the horseshoe vortex dynamics. In the experiments
by Acarlar & Smith (1987), hereafter denoted AS, an artificial low-speed streak
was generated in a laminar boundary layer by blowing fluid through a slot in
the wall. The streak became unstable and horseshoe vortices were formed and
were followed downstream. In the present study we reproduce the flow stud-
ied by AS through DNS. Moreover, the hypothesis indicated by AS regarding
the instability causing the vortices is here further investigated. One of the
objectives in the AS experiment was to give insight to the mechanisms and
structures in a turbulent boundary layer. In the present work, a stronger link
to turbulence is made through comparison with a simulation of a zero pressure
gradient turbulent boundary layer.

After a presentation of the numerical method and parameters in section 2,
we present the results in section 3. The emphasis is on the results from the
laminar simulation, which is compared with the experimental results from AS.
Further investigations of the instability mechanism are made. Also comparison



208 M. Skote, J. H. Haritonidis & D. S. Henningson

with the turbulent simulation is done, from which strong similarities between
the two cases are presented.

2. Numerical methodology

2.1. Direct numerical simulations

The code used for the simulation is developed at KTH and FFA (Lundbladh
et al. 1999). The program uses spectral methods with Fourier discretization in
the horizontal directions and Chebyshev discretization in the normal direction.
Since the boundary layer is developing in the downstream direction, it is neces-
sary to use non-periodic boundary conditions in the streamwise direction. This
is possible while retaining the Fourier discretization if a fringe region is added
downstream of the physical domain. In the fringe region the flow is forced from
the outflow of the physical domain to the inflow. In this way the physical do-
main and the fringe region together satisfy periodic boundary conditions. The
fringe region is implemented by the addition of a volume force whose form is
designed to minimize the upstream influence. Time integration is performed
using a third order Runge-Kutta scheme for the advective and forcing terms
and Crank-Nicholson for the viscous terms.

All quantities are non-dimensionalized by the freestream velocity (U) and
the displacement thickness (δ∗) at the starting position of the simulation (x =
0) where the flow is laminar. At that position Reδ∗ = Uδ∗/ν = 450 for all
simulations, except for some simulations performed at Reδ∗ = 290 for the
comparison of frequency characteristics. The length (including the fringe),
height and width of the computation box were 260 × 7 × 14 in these units.
The number of modes was 432 × 65 × 72. The size and resolution were checked
to be sufficient for all cases.

The simulations were performed with an initial objective of reproducing
some of the results obtained in the experiments of AS. In their experiments
the slot was 63.5 mm in length and 1 mm in width. The simulations were
performed with a slot with the same length but twice the width, i.e. 2 mm.
This change in geometry results in an enormous decrease in computational cost.
The slot in simulation coordinates (δ∗) is approximately 30 long and 1 wide.
The flow through the slot is set by a velocity profile resembling a channel flow
parabola in the spanwise direction and is increasing from zero to the maximum
value during the first 10 % of the slot length at the upstream end, and is
likewise terminated at the downstream end. The blowing through the slot was
continued without interruption through all of the simulations. To avoid large
transients in the beginning of the simulation we ramped up the blowing from
zero to the maximum value during an initial time of 10 (δ∗/U). The time step
was considerably decreased when the blowing through the wall is applied. The
strength of the blowing was varied from 6.5 to 20 % of the freestream velocity.

A low-speed streak is formed immediately above the slot due to the lift-up
of low-speed fluid to the flow further out in the boundary layer. A disturbance
on this streak was detected and the frequency was observed during a long period
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of time, and was then locked by letting a small (1 % of the original blowing)
additional time-periodic blowing be superimposed on the blowing forming the
streak. The frequency of the initial disturbance on the streak was locked to be
able to calculate the growth rate of the disturbance through a Fourier transform
in time.

A simulation of a turbulent boundary layer was performed to investigate
how the streak instabilities observed in the isolated streak in the laminar bound-
ary layer could be applicable to a turbulent flow. The same code was used, but
the laminar boundary layer was disturbed at the beginning of the computa-
tional box by a random volume force near the wall. The length (including the
fringe), height and width of the computation box were 600 × 30 × 34. The
number of modes was 640 × 201 × 128. The simulations were performed at
Reδ∗ = 450 for the laminar inflow before the tripping, which gives a turbulent
ReΘ : 343− 636. The resolution in plus units was ∆X+ = 19, ∆Z+ = 5.5, and
ranging from ∆Y + = 0.04 close to the wall to ∆Y + = 5.6 at the coarsest part
of the grid.

2.2. The linear stability analysis

One of the main conclusions of this work will concern the instability mechanism
of a low-speed streak leading to horse shoe-shaped vortices. Linear stability
theory will be used to describe the early stages of this instability. The distur-
bance occurring due to the instability of the streak will be denoted secondary
disturbance, since the primary disturbance is the streak itself. The velocity pro-
files close to where the secondary disturbance start to appear, below denoted
U = U(y), were analyzed by solving the Orr-Sommerfeld (O-S) equation. The
results from the O-S equation are only relevant as long as the disturbance is
small enough and variations of the base flow (streak) in the horizontal direc-
tions and time is much smaller than the length scale of the instability waves.
The O-S equation is the linearized Navier-Stokes equations for the disturbance,

φ
′′′′ − 2α2φ′′ + α4φ = iαR[(U − c)(φ′′ − α2φ) − U ′′φ]. (1)

The two-dimensional disturbance is written as a stream function,

ψ = φ(y) exp[iα(x − ct)] = φ(y) exp[i(αx − ωt)] (2)

Because the secondary disturbance is characterized by its frequency and
its growth in space in the simulations, spatial analysis of the O-S equation will
be used. In the case of spatial analysis the eigenvalue problem (1) is solved
for a given R and ω, which is real. The solution is φ(y) (eigenfunction) and
α = αr + iαi (eigenvalue). The value of −αi is the growth rate, and αr is the
streamwise wavenumber.

The results from the analysis of the O-S equation are compared with the
actual behavior of the flow in the DNS. The eigenvalue −αi is compared with
the growth rate of the disturbance. Furthermore, the eigenvalue αr is compared
with the streamwise wavenumber of the disturbance. The analysis of the time
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Figure 1. The flow field downstream of the slot. The light
grey structures represent the low-speed streaks and the darker
ones represent regions with low pressure. Contour levels are
−0.08 for the streamwise velocity fluctuations and −0.01 for
the pressure.

signal from DNS is done through a Fourier transform in time of the velocity
fields. For a given frequency, we take the maximum over the spanwise and
normal directions. Thus, the results from DNS is contained in a function û(x).
The growth rate of the disturbance is,

σ = −Re

{
1
û

d

dx
û

}
, (3)

and the streamwise wavenumber of the disturbance is,

α̃ = Im

{
1
û

d

dx
û

}
. (4)
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Figure 2. The flow field far downstream of the slot. The light
grey structures represent the low-speed streaks and the darker
ones represent regions with low pressure. Contour levels are
−0.11 for the streamwise velocity fluctuations and −0.005 for
the pressure.

3. Results

3.1. Initial observations

3.1.1. Comparison with AS experiment

The development of the streak downstream of the slot is shown in figure 1.
Only the part immediately after the slot is shown. The light grey iso-surface
represents the low-speed streak, and the dark grey represents the low pressure.
The slot ends at x = 60 and the first low-pressure structure is observed at that
point. The subsequent pressure structures develop downstream and become
stronger. Additional streaks on either side are being induced by the pressure
structure at x = 70. This will be further discussed in section 3.2. Around
x = 94 the last structure in the train of vortices is observed, and the streak
has been lifted upward. The low-pressure structure vanishes, but the streak
and the additional, induced streaks persist downstream, as seen from figure 2,
where the region downstream of the breakup is also shown. The three streaks
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continues far downstream until more complicated low-pressure structures occur
at x = 145, marked with an arrow in figure 2. Here the flow has more of a
turbulent nature, which is also seen from the rms−values shown in figure 3.
The urms profile from a position at the end of the slot is shown in figure 3
(a). This profile has a shape which is a result of an inflectional instability,
which will be further discussed in section 3.4. The urms from a position far
downstream (x = 160) is shown in figure 3 (b). This profile resembles a profile
from a turbulent boundary layer. Thus, the more turbulent like flow at the
far downstream region is revealed both in the structures themselves and in the
statistical profiles. The streak spacing is actually 100 in viscous units in this
region, further indicating attributes of a turbulent boundary layer.

In AS no spreading of the structures were observed and they argue that
this is due to the sub-critical laminar boundary layer in their experiment. On
the other hand, Singer & Joslin (1994) performed DNS at a larger Reynolds
number, and a turbulent spot was developed from a horseshoe vortex. AS do
however observe a more turbulent like profile downstream and also three elon-
gated low-speed streaks, originating from secondary streamwise vortices. Our
simulation continue further downstream than the experiment by AS, and the
persistent low-speed streaks were observed downstream until the more compli-
cated vortices appeared at x = 145, see figure 2.

The low-pressure structures seen in figure 1 are vortex loops, consisting of
swirling flow. To illustrate that the low-pressure regions consist of rotational
flow, the imaginary part of the complex eigenvalue of the deformation rate
tensor can be used (Chong et al. 1990). Because the vorticity indicates both
shear and rotation, showing vorticity can be misleading when seeking parts of
the flow where rotating structures are of interest. The imaginary part of the
eigenvalue on the other hand, indicates where ’solid-body’ rotation, or swirling,
occurs.



Instabilities in turbulent boundary layers 213

In figure 4 the low-pressure structures in figure 1 are shown without the
low-speed streak to get a clearer picture of the structures themselves. The
structures in figure 5 consist of iso-surfaces of the imaginary part of the eigen-
value. The strong correlation indicate that the structures in figure 4 are due
to rapid rotation of the flow in the regions of low pressure.

Observe that the Ω-shape of the last structure in figure 5 is reminiscent of
the structure observed by Zhou et al. (1999). Also, the kink of the legs about
one-third of the length from the upstream end are present in the last structure.
Note that the background flow in the present simulation is laminar whereas
it was turbulent in the study of Zhou et al. (1999). The kinked legs and the
curled back head of the last structure in figure 5 was also observed by AS at
the same downstream position.

A secondary vortex is observed above the primary horseshoe vortex in the
two structures before the last one in figure 5. The secondary vortex is also
visible in one of the corresponding pressure structures as marked in figure 1.
The secondary vortex is visible at approximately the same position as in AS.
Zhou et al. (1999) found not only secondary horseshoe vortices developing up-
stream of the primary vortex, but also downstream, which was not observed
in the present simulation. Singer & Joslin (1994) observed different kinds of
subsidiary vortices (such as necklace or U-shaped vortices) and the initial vor-
tex generated by the blowing finally develops into a turbulent spot. In the
experiments of AS, a secondary vortex appears to originate from the position
above the legs of primary vortex. It either grows to be an independent vortex,
or agglomerates with the upstream or downstream vortex. The same behavior
is observed in the present simulations.

Thus, the secondary vortices appearing upstream, above the legs, of the
primary one are in common with many of the experimental and numerical
investigations, while the generation of downstream secondary vortices depends
on the strength and duration of blowing.

3.1.2. Near-wall turbulence

The presence of streaky structures in a near-wall turbulent flow has been ob-
served in many experiments and simulations. These structures are low speed
regions, where the streamwise velocity is lower than the mean velocity, the
mean taken in the spanwise (z) direction for each x− and y−position. They
are narrow in the spanwise direction and elongated in the streamwise direction
with a spanwise spacing of about 100 in wall units. Streaks lying at different
positions in z break down at different positions in x. Also, a new streak seems
to be born where the old one breaks down. In a number of investigations,
events referred to as burst have been observed, and are generally considered to
be part of the streak break up.
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Figure 4. Iso-surface of low pressure just downstream of the
slot. Same part of the flow field as in figure 1.

Figure 5. Iso-surface of the imaginary part of the eigenvalue
of deformation rate tensor. The figure show the eigenvalue
calculated from the same velocity field as in figure 4. Contour
level at 0.32.
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Figure 6. Turbulent boundary layer. Only a part of the com-
putational box is shown. The light grey structures represent
the low-speed streaks and the darker ones represent regions
with low pressure. Contour levels are −0.07 for the stream-
wise velocity fluctuations and −0.003 for the pressure. The
arrows point to some typical horseshoe vortices.

An instantaneous flow field from the simulation of a turbulent boundary
layer is shown in figure 6. Only a part of the computational box at approxi-
mately ReΘ = 450 is shown. The spanwise width is about 300 in wall units
and the height is 200. The light grey regions represent the low-speed streaks.
Also shown in the figure, in the dark grey color, are regions of low pressure.
The presence of horseshoe or hairpin vortices is well illustrated by this picture.
The most clearly visible ones are marked with arrows in figure 6. It is observed
that the vortices are strongly connected to the streaks, since the vortices are
positioned with their head above a streak and their leg or legs on either side of
the streak. This feature is common to both the laminar and turbulent streaks,
c.f. figures 1 and 6.
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Figure 7. Vertical planes in the spanwise (z) and normal (y)
directions. Arrows represent the spanwise and normal veloc-
ity. Blue through green lines represent constant streamwise
velocity from 0 to 0.5. Red lines represent constant pressure.
a) x = 30 b) x = 38 c) x = 53 d) x = 59 e) x = 60 f) x = 62

3.2. Horseshoe vortex formation

The mechanisms behind the formation of vortices from the streak is here studied
in detail in the laminar flow with an artificial streak introduced. The proposed
mechanism is that the low-speed streak makes the streamwise velocity profile
highly inflectional. The instability is very strong (with a large growth rate).
The disturbance grows downstream and higher harmonics occur. The stability
analysis is presented in section 3.4.

The results in this section are taken from the simulation at a Reynolds
number Reδ∗ = Uδ∗/ν = 450 at x = 0, which corresponds to a Reynolds
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number Reδ∗ = 490 at the beginning of the slot. The normal velocity blowing
out of the slot was Vw = 0.0657, resulting in a slot Reynolds number of ReVw

=
28.3. The blowing was introduced between x = 30 and x = 59 in the streamwise
direction, and between z = −0.48 and z = 0.48 in the spanwise direction.

3.2.1. Vortex formation above the slot

One velocity field is studied, using plots in two dimensions of different planes.
In figures 7 (a)—(f) the planes are from different positions in x, showing what
happens with the flow above the slot. The lines in the horizontal direction,
from blue to green, are the iso-lines of streamwise velocity, while the arrows
represents the normal and spanwise velocity components. The first (7a) figure
shows the undisturbed laminar boundary layer at the point where the slot
starts. The next one (7b) shows a plane further downstream. Here the injection
is visible as the strong flow out from the wall. The lines representing constant
streamwise velocity are bent outward and thus forming a low-speed streak.
The low-speed streak is formed because of the injection velocity that lifts up
low-speed fluid from the near-wall region higher up in the laminar boundary
layer. In (7c) a swirling flow is observed at either side of the low-speed streak.
As the vortical motion becomes stronger it deforms the streak as seen in (7d),
where also the vortex is strong enough to be represented with low pressure
regions at the center of the vortex. Iso-lines of constant low pressure are shown
as red lines. These low pressure regions that evolve from the center of the
vortex at either side of the streak are the legs of the first low pressure structure
seen in figure 1. The plane in (7d) is located at the end of the slot, thus no
more injection velocity can be observed. In (7e) the low pressure region is
above the streak and the motion in the region is a flow upward. The plane
in (7e) is located a short distance downstream of the plane in (7d). Thus,
immediately after the legs have appeared an upward motion is seen in (7e) in
the low pressure region now located above the streak, and hence forms the head
of the first structure. At the other side (downstream side) of the low pressure
region the motion is a downward flow, as seen in figure (7f). This downward
velocity at the downstream side of the head indicates that the low pressure
structure is a vortex loop. Since the head is observed right after the legs, the
structure is very short, which was also observed in figure 1.

3.2.2. Vortex formation downstream of the slot

Now that the flow above the slot and around the first structure has been stud-
ied, the flow further downstream will be investigated. The same technique is
used to get an idea about what happens with the flow around the well devel-
oped structure indicated as number three in figure 1. The structure in the
laminar simulation is compared with a typical structure found in the turbulent
field.

In figure 8 vertical xy−planes are shown. In figure 8 (a) the plane is located
at the centerline (z = 0) in the laminar field. The blue line is an iso-line
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Figure 8. Vertical planes in the streamwise (x) and nor-
mal (y) directions. Arrows represent the streamwise distur-
bance velocity and normal velocity components. The blue lines
represent constant streamwise disturbance velocity (low-speed
streak). The red color represent constant pressure (low pres-
sure). (a) from the laminar simulation. (b) from the turbulent
simulation at z = 1.

of constant streamwise disturbance velocity and thus represent the low-speed
streak, while the red lines are iso-lines of low pressure. The arrows indicate
the normal velocity and the streamwise disturbance velocity. The streamwise
disturbance velocity is calculated by subtracting the mean velocity (the mean
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Figure 9. Vertical planes in the spanwise (z) and normal (y)
directions. Arrows represent the spanwise and normal veloc-
ity. Blue through green lines represent constant streamwise
velocity. Red lines represent constant pressure. (a) from the
laminar simulation. (b) from the turbulent simulation at x =
196.

taken in the spanwise direction) at each point. The flow is from left to right and
arrows pointing to the left merely indicate low speed compared to the mean.
What is seen in figure 8 (a) is thus the head of the pressure structure. The
swirling flow around the head is the relative motion when the mean streamwise
velocity is subtracted. Contour levels are −0.08 for the streamwise velocity
fluctuations and from −0.05 to −0.01 for the pressure.

In figure 8 (b) a structure from the turbulent simulation is shown. The
horseshoe vortex was identified with a pressure plot as in figure 6. The structure
is representative for a turbulent structure since many can be identified in the
same instantaneous pressure field. The specific structure shown in figures 8 (b)
and 9 (b) is located approximately in the middle of the computational domain
(x = 200, z = 1), and is similar to the one in the upper right corner in figure 6.
Then a horizontal plane is cut through the center (in the spanwise direction)
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of the structure and its head is seen as the low pressure region in figure 8
(b). Contour levels are −0.04 for the streamwise velocity fluctuations and from
−0.02 to −0.01 for the pressure.

The similarities between figures 8 (a) and (b) are remarkable. In both
figures the center of rotation (relative the mean flow) is displaced from the
center of low pressure. An additional, but weaker low pressure region is found
below the head of both structures. The head of the turbulent structure in figure
8 (b) is located at y+ = 135.

In figure 9, vertical cross-stream (yz−) planes are shown. The red contours
represent low pressure and blue to yellow lines are the iso-levels of streamwise
velocity. The arrows consist of normal and spanwise velocity components. In
figure 9 (a) the legs of the structure in the laminar field are clearly visible as the
two low pressure regions, and the flow is circling around the low pressure. Also
seen are the induced vortices further out from the centerline. These induced
vortices were also observed in the experiments by AS. The plane in figure 9 (a)
is located at x = 70, thus showing the legs belonging to the structure whose
head was shown in figure 8 (a). The blue to green contour lines represent
streamwise velocity from zero to 0.5.

In figure 9 (b), a cross-stream plane from the turbulent simulation is shown.
The plane is located at x = 196 (referring to the coordinates in figure 8 (b)),
which corresponds to a distance of x+ = 184 (wall units) upstream of the head
located at x = 204 in figure 8 (b). The legs belonging to the horseshoe vortex
whose head was observed in figure 8 (b) are the two low pressure regions located
furthest from the wall, located at z = 5 and z = −3. The normal position of
the legs is y+ = 70, and they are separated with a distance z+ = 190. The
other low pressure regions close to the wall belong to streamwise vortices. The
blue to yellow contour lines represent streamwise velocity from zero to 0.7. In
figures 8 (b) and 9 (b) every second point in all directions is omitted for clarity.

The positions of the head and legs of the horseshoe vortex in the laminar
simulation are in agreement with the experimental findings in AS. The strength
of the transverse and longitudal vortices corresponding to the head and legs
were calculated in AS by assuming constant vorticity within the vortex core.
However, in the present DNS we find that the vorticity varies through the core.
For the vortical structures visualized by low-pressure in figures 8 (a) and 9
(a), the vorticity lines (spanwise and streamwise respectively) formed the same
pattern as the corresponding pressure contours. The vorticity ranged from −1
to −0.5 in the transverse vortex and from ±1.5 to 0 in the longitudal vortices.

3.3. Frequency characteristics

In the experiments by AS the frequency of the roll up was measured. Their
observations led to the conclusion that the frequency increased when the injec-
tion velocity or the freestream velocity was increased. They present the results
as a non-dimensionalized frequency (fδ∗/U) as a function of slot Reynolds
number (ReVw

≡ wVw/ν) and boundary layer Reynolds number (Reδ∗) at the
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Figure 10. Non-dimensional frequency f∗ of the disturbance
versus Reδ∗ . Symbols correspond to different injection ve-
locities. ReVw

= wVw/ν. ReVw
= 28.3 �; ReVw

= 33.6 ◦;
ReVw

= 38.7 �. Bold symbols represent experimental data
from AS.

beginning of the slot. Here w is the width of the slot. The simulations were
performed at two Reδ∗ , each with three different ReVw

, for comparison with
experimental results from AS. The Reδ∗ at the beginning of the computational
box were 450 and 290, corresponding to 490 and 330 at the point where the
slot starts.

In the present simulations the frequency was calculated using the time-
signal of the velocity from various locations in the flow. The frequency of the
disturbance was observed over the full extent of the slot at a number of posi-
tions in the normal direction. When either of the two Reynolds numbers were
changed, the frequency also changed. The frequencies for three different ReVw

at two Reδ∗ are plotted in figure 10, together with the results from AS (thick
symbols). When the frequency is plotted as a function of the two Reynolds
numbers as was done in AS, it is observed that the frequency for ReVw

= 28.3
is half of that observed by AS (figure 10). Also, reducing ReVw

further in the
simulation caused the vortex generation to cease. In the experiment by AS,
ReVw

= 28.3 was the largest slot Reynolds number for which an ordered vortex
generation was observed, while as low values as ReVw

= 11.3 were shown to
generate vortices.

Thus, the ReVw
for which vortex generation was observed in the simulations

was larger than the corresponding ReVw
in the experiments. For the value

of ReVw
= 28.3, common to both simulation and experiment, the frequency

observed in the simulation was half of that observed in the experiment. These
discrepancies might be explained by the value of the blowing velocity, which is
half the value in the simulation as compared to the experiment by AS. However,
the slot has double width in the simulation, making the slot Reynolds number
equal to the experimental value. If the blowing velocity itself, normalized by the
freestream velocity, is used as the parameter in the comparison, the frequency
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Figure 11. Non-dimensional frequency f∗ of the disturbance
versus Vw/U . Symbols correspond to different Reynolds num-
ber. Reδ∗ = 490 �; Reδ∗ = 330 ◦. Bold symbols represent
experimental data from AS.
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Figure 12. Time signal of the normal velocity component at
x = 60 and x = 70.

for various blowing velocities compare well, as seen from figure 11. Thus, the
initial guess that the slot Reynolds number in the simulation should be equal
to the experimental value to obtain the same frequency is not supported by
figure 10. Instead, it is the ratio of blowing velocity to freestream velocity that
apparently is the crucial parameter in this respect, as indicated in figure 11.
This was also suggested by AS, although they present their frequency data as
in figure 10.

From simulation data it was observed that the frequency was doubled when
going from a point above the slot to a position further downstream, as shown
in figure 12, where the time signal of the normal component (v) of the velocity
at the two downstream locations at y = 0.5 are shown. As was shown in section
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Figure 13. Velocity profile at x = 45.

3.2, the roll up the structures starts right at the downstream end of the slot
(x = 60), and the frequency of the primary structures is thus the one measured
at x = 60 and not the frequency of double value at x = 70. The doubling of the
frequency is consistent with the growth of a second harmonic of the disturbance
further investigated in the next section.

3.4. Stability analysis

In this section the laminar and turbulent simulations are treated separately. In
both cases the instantaneous velocity profile will be examined. Kim et al. (1971)
showed that the instantaneous profile in a turbulent boundary layer contained
an inflectional instability in the later stages of the low-speed streak lift-up and
the instability lead to oscillations. The O-S analysis performed by Kim et al.
showed good agreement between the growth rates and eigenfunction shape. On
the other hand, the mean velocity profile in a turbulent channel flow, deformed
by the low-speed streak modeled by a trigonometric function, was shown to be
stable to the varicose mode by Schoppa & Hussain (1997) and Kawahara et al.
(1998).

We believe the instantaneous profile gives more realistic results from the
stability analysis in the turbulent case since the growth rate is very strong and
the instantaneous profile is far from the mean profile in shape. In the laminar
case, the mean and instantaneous profiles are equivalent at the position where
the stability calculation is performed.

3.4.1. The laminar case

From the observations of their experiment, AS speculate that an inflectional
instability causes the oscillations on the low-speed streak leading to vortex roll
up. We will here show that this is the most plausible explanation.

As described in section 2.2, the spatial stability analysis is performed with
the O-S equation. The input is the Reynolds number, frequency of the distur-
bance, and the velocity profile. The three inputs are well defined and taken
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Figure 15. Normal component. a) x = 45. b) x = 55.
— rms−value; - - Eigenfunction

from the DNS. The output is the eigenfunction, which contains information of
the disturbance shape, and the eigenvalue, which gives the growth rate and the
streamwise wavenumber.

Throughout this section the laminar simulation with Reδ∗ = 490 at the
beginning of the slot and a slot Reynolds number of ReVw

= 28.3 will be
considered. In figure 13 the velocity profile at x = 45 and z = 0, corresponding
to the center of the slot, is shown. The profile is highly inflectional and the
O-S analysis will give a large value of the growth rate.

Figures 14 and 15 show the eigenfunction from the O-S together with the
rms−value of the velocity from DNS at positions x = 45 and x = 55. The
eigenfunctions are calculated using the instantaneous velocity profile at the
two x−positions as basic states. The rms−value from DNS is calculated over
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Figure 16. Maximum of u. — first harmonic; - - second
harmonic; · · · linear fit; - · - curve fit of first harmonic.

one period of the disturbance, which was T = 14.8 (in units of δ∗/U) and the
corresponding frequency was Ω = 0.425.

The eigenfunction in the streamwise direction is shown in figures 14 (a)
and (b), together with the corresponding urms from the DNS. The solid line
is DNS data and the dashed line is from the O-S analysis. The wall normal
coordinate is scaled with the boundary layer thickness. The sharp peak in the
profile is due to the shear layer instability. At both x-positions the shape is well
predicted. The double inner peak observed in the urms profile is over predicted
by the O-S analysis at x = 45 and is lacking at x = 55.

The eigenfunction in the normal direction is shown in figures 15 (a) and
(b), together with the corresponding vrms from the DNS. The profiles are well
predicted by the linear O-S analysis. However, the second, outer peak is over
predicted by the linear O-S analysis. Observe that vrms is not zero at the wall
due to the injection through the slot.

The results shown in figures 14 and 15 are based on an instantaneous
two-dimensional approximation of the basic state. The agreement between
the calculated eigenfunctions and the rms−profiles found in the fully three-
dimensional DNS is remarkable, indicating that the instability mechanism is
determined mainly by the local flow conditions.

The growth rate from DNS data is calculated from the Fourier transform in
time of velocity fields as a function of x. When comparing the growth rate and
streamwise wave number from the O-S analysis with the corresponding values
from DNS data, the DNS data has to be smoothed since taking derivatives
directly will give spurious oscillations.
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Figure 17. ◦ The growth rate from the O-S analysis. —
Smoothed DNS data (curve fit). · · · Linear approximation to
DNS data.

The growth rate from the DNS data, denoted by σ, is calculated from the
development in time of the maximum value of the velocity in the downstream
direction. The maximum value is extracted for different frequencies from the
Fourier transform in time. The transformed velocity is,

û(x, y, z, ω) =
∫ ∞

−∞
u(x, y, z, t)e−iωtdt (5)

By taking the maximum over y and z and specifying which frequency of interest,
only the x-dependency is left, û = û(x).

In figure 16 the maximum of û in the first and second harmonics are shown.
The maximum occurs at the centerline. By showing the logarithm of the maxi-
mum as in figure 16, a curve fit is possible, shown as the dash-dotted line. Also
in figure 16 the linear approximations to both the first and second harmonics
are shown as the dotted lines. The slope for the second harmonic is twice the
slope for the first.

Now, the growth rate is calculated from equation (3), which can be written
as,

σ =
1
|û|

d

dx
|û| =

d

dx
(ln |û|) . (6)

The linear approximation to the maximum of û in the first harmonic (shown
in figure 16) is used for calculating the growth rate, which becomes a constant
and is shown as the dotted line in figure 17. By using the curve fit of û instead
of the linear approximation, the growth rate becomes as the solid line shown in
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Figure 18. ◦ The streamwise wavenumber from O-S the anal-
ysis. — Smoothed DNS data (curve fit). · · · Linear approxi-
mation to DNS data.

figure 17. The circles are the corresponding growth rates calculated from O-S
using the instantaneous velocity profiles.

The real part of the eigenvalue (αr) from the O-S analysis, is shown in
figure 18 as circles. To calculate the corresponding αr from DNS, which is
denoted α̃, equation (4) is used. This equation also involves derivatives in
the downstream direction which cause spurious oscillations. To equivalently
smooth the α̃, equation (4) is rewritten, by noting that û = eiΘ, in the form,

α̃ = Re

{
dΘ
dx

}
. (7)

Thus, it is a matter of smoothing Θ, which is defined by

Θ = −i ln û. (8)

The resulting smoothed α̃ is shown in figure 18. The linear approximation
becomes a constant and is also shown in the figure.

3.4.2. The turbulent case

So far, the the detailed analysis of the low-speed streak in an otherwise lam-
inar boundary layer has confirmed some of the results from the experiment
of AS. Furthermore, a thorough analysis of the origin of the instability of the
streak was made with linear stability analysis. The simulations also showed
the development of more complicated structures further downstream, where
the statistics resembled turbulence.
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Figure 19. Time signal of the streamwise velocity component
at x = 170, y = 0.4, z = −6.5.

These results, together with the striking resemblance of the streak devel-
opment between figures 6 and 1 lead to the hypothesis that, at least to some
degree, the break up of streaks in a turbulent field is governed by the same
mechanisms as for the isolated streak in the laminar boundary layer.

To qualitatively show that the instabilities of the streaks in a turbulent
boundary layer is of the same normal inflectional type as in the laminar case, the
O-S analysis was performed with a velocity profile from the turbulent velocity
field.

When a horseshoe structure in the turbulent field has been identified, it can
be followed backward in time, if velocity fields from earlier times are available.
Since the life cycle of a structure is long (over T = 150 δ∗/U), the requirement
for data storage is demanding. As the structure is followed backward in time,
it is found further upstream and is weaker. At some point in time and space
the structure vanishes. Thus, at this point the birth of the structure can
be investigated. By examining the time signal of the velocity from points
just upstream of the first appearance of the structure, the frequency of the
disturbance leading to the vortex formation can be determined. One example
of a time signal of the streamwise velocity is shown in figure 19. The instability
wave appears at time 15588.

The point (x = 170, y = 0.4, z = −6.5) where the velocity signal was
examined is located just upstream of the first appearance of a structure. The
newly born structure is shown in figure 20. The figure shows the low pressure
signature of the structure at the time 15596 (referring to figure 19).

The velocity profile was extracted from the turbulent field at a point where
the disturbance was small compared to further downstream, i.e. before roll up
of the vortex. In this particular case the point was located at (x = 170,
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Figure 20. Iso-surface of pressure at time 15596. Contour
level at −0.004. The height of the box shown is 4.5, corre-
sponding to 80 in wall units.

z = −6.5) at the time 15584. This profile was used together with the observed
frequency in the O-S equation.

To compare the DNS data with the eigenfunctions from the O-S analysis,
the rms−profiles were extracted by collecting statistics during a simulation
over one period of the disturbance. The rms−profiles were taken from the
same position as where the frequency of the disturbance was observed for the
longest period of time. This position is (x = 170, z = −6.5) in the example
discussed above. The time interval over which the rms−profiles were taken
was 15584—15596.

This whole procedure was performed for three independent structures, each
separated in time over 2000 (δ∗/U). All three of the structures could be traced
back to their point of roll up, and the analysis of the velocity profiles gave
similar results.

Furthermore, the O-S analysis showed that the resulting eigenfuctions are
not sensitive to changes in Reδ∗ and frequency (ω). The independence of Rey-
nolds number is explained by the inviscid nature of the inflectional instability.
The insensitivity on ω shows that the time-scale of the disturbance is not im-
portant for the instability mechanism. This points towards an instability of a
Kelvin-Helmholz character.

One example of the velocity profile just before roll up is shown in figure 21.
The frequency in this case was ω = 0.78 and the O-S analysis gave a growth rate
of −αi = 0.024. The eigenfunctions from the O-S analysis were then compared
to rms−values taken over one period of the disturbance. The results from this
analysis are shown in figures 22 (a) and (b). In the streamwise component
(22a), the double peak is predicted by the linear analysis, even though the
outer peak is located further out in the urms profile. In the normal component
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Figure 21. Velocity profile from a turbulent boundary layer.
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Figure 22. (a) Streamwise component. (b) Normal compo-
nent. — rms−value of velocity. - - Eigenfunction from the
O-S equation.

(22b), the inner peak is located slightly closer to the wall in the predicted
profile. Also a tendency to a second peak is seen, though the vrms profile has
a much stronger peak.

Although we have only investigated three randomly picked events, the re-
sults are promising and a larger investigation with an objective method for
detecting structures, followed by tracing them back in time to their point of
origin and the associated inflectional velocity profile, could provide statistical
evidence of the horseshoe vortex formation. This is however beyond the scope
of the present investigation. The method described here is not suitable since
it is too time and storage consuming for any larger statistical evaluation.

4. Discussion and conclusions

A DNS of a laminar boundary layer disturbed by a continuous blowing thr-
ough a slot in the wall has been performed. The objectives were to reproduce
and further investigate the results reported from the experiments of Acarlar &



Instabilities in turbulent boundary layers 231

Smith (1987). The blowing of fluid from the slot creates a low-speed streak
which exhibits a disturbance wave growing downstream. This secondary dis-
turbance was shown to originate from a normal inflectional instability in the
streamwise velocity profile. An anlasysis using the Orr-Sommerfeld equations
gave qualitative agreement in the growth rate and streamwise wavenumber
with the corresponding values extracted from the DNS velocity fields. The
non-linear effects gave rise to higher harmonics at the end of the slot where
the first low-pressure structure was found. The structure consist of a vortex
loop that evolves downstream to form a horseshoe vortex. After the horse-
shoe vortex breaks down the low-speed streak persist together with additional
streaks formed by the horseshoe vortex. Further downstream more complicated
structures appear and the streak spacing is 100 in wall units.

The frequency of the vortex generation was shown to scale with the ratio
between the blowing velocity and freestream velocity. Good agreement with
the experimental data was obtained.

Also a DNS of a zero pressure gradient turbulent boundary layer was per-
formed, and horseshoe vortices were observed using low-pressure identification.
The similarities between structures in the turbulent field and the ones origi-
nating from the low-speed streak in the laminar simulation were presented.

The inflectional instability considered in the present work is of a different
type from those investigated in Waleffe (1997), Kawahara et al. (1998) and
Schoppa & Hussain (1997), who model the turbulent velocity profile as a mean
flow with the streaky structure deforming the profile, rather than the instanta-
neous profile considered here. They showed that it is the sinuous mode which
is unstable, whereas the laminar streak investigated here does not show the
characteristics of such an instability. Furthermore, it has been shown by Bot-
taro & Klingmann (1996) for streak instability of Görtler flow, that the growth
rate of the sinuous mode scales with the spanwise derivative of the mean flow,
just as in the model of Waleffe and in the secondary instability calculations of
Andersson et al. (2000). Thus it is reasonable to assume that the sinuous insta-
bility depends primarily on the appearance of the spanwise inflection. Reddy
et al. (1998) further showed that the sinuous instability is inhibited by the
appearance of normal shear.

We show in this work, as it has been implied in others (e.g. Robinson
1991b), that the appearance of an unstable normal velocity profile (in many
cases associated with a normal inflection point) is a precursor to the appearance
of horseshoe vortices. In terms of a streak instability, Bottaro & Klingmann
(1996) among others, have shown that this is related to the varicose mode. Thus
the sinuous streak instability is correlated with a basic state with a spanwise
inflection and the varicose mode with a basic state with a normal inflection.

It is reasonable to assume that both types of streak instabilities are of
importance in a turbulent boundary layer, the sinuous type for the regenaration
of near-wall turbulence, as shown by Jimenez & Moin (1991) and Hamilton
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et al. (1995), and the varicose type for the production of horseshoe vortices
populating the region away from the wall.
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The performance of a spectral simulation code
for turbulence on parallel computers with

distributed memory

By Krister Alvelius and Martin Skote

Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden

The performance of a pseudo spectral turbulence simulation code on var-
ious supercomputers, with either shared memory or distributed memory, is
presented. The communication with the memory is intense, and careful consid-
eration of the two memory configurations is needed to obtain high performance.
The investigations of the performance show that the scaling with the number
of processors is excellent for both memory systems. Also, vector processors
are compared with super scalar processors, and the performance is generally
higher for the vector processor since the code vectorizes well. However, the
computers with the scalar processors, and distributed memory, have a much
larger number of processors which gives an overall better performance for the
total machine. The numerical code, with e.g. 24 · 106 degrees of freedom, was
run at 3.5 Gflop/s on 64 processors on an IBM SP2 machine.

1. Introduction

Direct numerical simulation (DNS) of turbulent flows is a major field for the
use of super computers world-wide, and has throughout the years been an
important factor in driving the process of developing super computers. This is
an area which efficiently makes use of all available memory of the computer, and
the scaling with the number of processors is excellent. Also the communication
between the processors is relatively intense. The performance of DNS codes is
hence an important measure of a computers ability to handle real problems of
physical interest.

1.1. Scientific background

The nature of turbulence is very complex. A turbulent flow consists of both
large and small scale motions that fluctuate in time and space. The incom-
pressible flow of e.g. air can be described by the Navier-Stokes (NS) equations
together with suitable boundary conditions. They are non-linear equations,
which generally need to be discretized in order to yield a solution. In these
equations the non-linear term generates turbulent motions and the viscous
term dissipates flow fluctuations. The viscous dissipation of turbulence adjusts
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itself to the production, which determines the smallest scales in the flow, η,
usually referred to as the Kolmogorov micro length scale. The viscous term
becomes large in the presence of large velocity gradients associated with small
scale motions. It does, however, only scale linearly with the magnitude of the
velocity field, while the scaling of the non-linear term is quadratic. Therefore,
an increased magnitude in the velocity causes the smallest scales to become
even smaller (through the cascading action of the non-linear terms) to yield
increased velocity gradients and a larger dissipation which balances the pro-
duction by the non-linear terms.

The size of the largest scales, l, is usually determined by the geometry of
the flow domain. The size of the range of scales in the flow is measured by
the Reynolds number (Re ∼ (l/η)4/3) which depends on the type of flow, the
magnitude of the flow velocities, the domain size and the kinematic viscosity.

In a DNS of a turbulent flow all scales (l – η) need to be captured by
the numerical method. Since turbulent flows are always three-dimensional,
even moderate Reynolds numbers give a significant degree of freedom for the
resulting discrete dynamic system that needs to be solved. In addition there is
a span of timescales that needs to be resolved. The time step is determined by
the smallest turbulent timescales and stability requirements of the numerical
method. Typically a large number of discrete time integrations needs to be
performed in order to include one large time scale in a simulation. In order
to obtain statistically converged results it is also necessary to integrate the
solution over many large time scales.

DNS have, until recently with the development of modern computers,
been an impossible task even for small Reynolds numbers. Therefore, re-
searchers have been led to study the averaged equations instead, which give
much smoother solutions and significantly reduces the computational effort.
This approach introduces an unknown quantity, the Reynolds stress tensor,
which needs to be modelled. Development of such models, with different de-
grees of complexity, has been an important task for turbulence researchers.
Calibrations of models are essential and can be performed in e.g. windtunnel
experiments. It shows that the modelled quantities behaves differently in dif-
ferent flow situations. Although it is relatively easy to obtain high Reynolds
numbers in the windtunnel experiments, they sometimes fail to give accurate
descriptions of complex quantities in the flow. Also, they cannot give a total
description of the flow situation since the complete velocity field is not available.

The DNS of turbulent flows gives the time development of the complete ve-
locity field and allows the study of any particular flow phenomenon you choose
in detail. This can be used to increase the understanding of the underlying
mechanism, resulting in better turbulence models. Also a new method, large
eddy simulation (LES), similar to that of DNS, have been developed in recent
years where only the smallest scales are modelled in the flow and the large
scales are resolved. This method has been found to be successful in computing
real engineering flows with complicated geometries, using only simple models
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Figure 1. The flow configurations of plane channel flow and
boundary layer flow.

for the unknown subgrid-scale stresses, since the main effect of the domain
geometry on the flow enters through the large scales which are resolved. The
numerical implementation of this method is similar to that of DNS. In par-
ticular, when developing models for the subgrid-scale quantities, DNS data is
essential since the modelled quantities fluctuate in time and space, and the
whole velocity field has to be available at a single instant.

Both in DNS and in experimental investigations it is important to know
what effects that are important in the flow in order to be able to make correct
conclusions. Therefore the flow should be constructed so that effects that you
are not interested in are negligible or controllable. One such important test
case is the plane channel flow (figure 1) where only effects of plane mean shear
and of the solid walls are present. In DNS it is also important to have a sim-
ple geometry which simplifies the numerical implementation and improves the
accuracy in the numerical discretization. This is true in the plane channel flow
which has no curvature and only needs grid stretching in the non-homogeneous
wall normal direction. In addition to the shear and wall effects in the plane
channel flow, the effect of curvature can be studied by adding system rotation
to the governing equations.

The boundary layer flow (figure 1) on a flat plate is another example of
a simple flow with a solid wall and plane shear. In this case a free boundary
gives a more complicated flow, e.g. the boundary layer grows downstream.
The flow can be studied in various aspects. The fully turbulent flow, as well as
transitional flow, where a breakdown from laminar to turbulent flow occurs, is
of great importance in many industrial applications. There is still no complete
picture of the mechanisms behind this breakdown, and further investigations
are needed. Both the transitional and turbulent flows can be studied with ad-
ditional complications such as external pressure gradients or three-dimensional
mean flow.

Both the turbulent channel flow and the fully turbulent boundary layers
can be studied for gaining data used for calibration and development of tur-
bulence models. But the data are not only used for modeling purposes, the
instantaneous turbulent structures can be thoroughly studied since the whole
flow field is accessible at each time step.
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1.2. The numerical discretization

Ideally, the plane channel is considered to be infinitely long and infinitely wide,
with the flow driven by a mean pressure gradient in the streamwise direction.
In the numerical simulation periodic boundary conditions is imposed in the
streamwise and spanwise directions. In the wall normal direction a non-slip
condition is applied at the solid walls.

For the boundary layer flow the downstream direction must be treated in a
different way. The boundary layer is increasing (getting thicker) downstream,
and that direction can thus not be considered periodic. It is possible to create
a periodic flow if a so called fringe region is added downstream of the physical
domain, figure 2. In the fringe region the flow is forced from the outflow of
the physical domain to the inflow. In this way the physical domain and the
fringe region together satisfy periodic boundary conditions. The fringe region
is implemented by the addition of a volume force which form is designed to
minimize the upstream influence.

Figure 2. Computational box with the fringe region. — the
strength of the volume force in the fringe region. - - the bound-
ary layer thickness.

The periodic boundary conditions make it possible to use Fourier repre-
sentation of the velocity field, which gives an accurate description of the spa-
tial derivatives in the discretization direction. Compared to a finite difference
method, which typically gives only a second-order approximation of the spatial
derivatives, the numerical accuracy is significantly increased. The wall normal
direction is discretized using Chebyshev polynomials. Hence, spectral meth-
ods are used in all spatial directions, which gives an overall highly accurate
discretization of the governing equations.

The time integration is discretized with a second order Crank-Nicolson
scheme for the linear terms and a four stage third-order Runge-Kutta scheme
for the non-linear terms. The Crank-Nicolson method is implicit and hence
absolutely stable, whereas the Runge-Kutta method is explicit, which imposes
a restriction on the time step to yield stable solutions. The time step is deter-
mined by the CFL number and adjusts itself automatically to the actual flow
situation.
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Figure 3. The main structure of the program.

Instead of solving for all three velocity components and the pressure, a
vorticity-velocity formulation is used, in which the fluctuating pressure is elim-
inated. In this formulation only two equations need to be solved instead of the
original four equations (the NS equations and the continuity equation).

The discretization results in a tri-diagonal equation system in spectral
space for each of the two variables, which needs to be solved at each Runge-
Kutta step. The non-linear terms in the equations are calculated in physical
space, using fast Fourier transforms (FFT) in the transformations between
spectral and physical space. The velocity field is represented on a 3/2 times
finer mesh in the streamwise and spanwise directions in physical space com-
pared to spectral space. This results in a 3/2-dealiasing method which is energy
conserving.

The numerical code is written in FORTRAN and consists of two major
parts (figure 3), one linear part (linear) where the actual equations are solved
in spectral space, and one non-linear part (nonlin) where the non-linear terms
in the equations are computed in physical space. The actual flow variables are
stored at an intermediate level with spectral representation in the streamwise
(x) and spanwise (z) directions and physical representation in the wall normal
(y) direction. All spatial derivatives are calculated in the spectral formulation.
The main computational effort in these two parts is in the FFT.

In the linear part one xy-plane is treated separately for each z variable. The
field is transformed in the y direction to spectral space, a solution is obtained
and then transformed to physical space in the y direction. This is performed
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with an loop over all z values where the subroutine linear is called for each z.
The xy-planes are transferred from the main storage with the routine getxy to
the memory where the actual computations are performed. The corresponding
storing of data is performed with putxy.

In the non-linear part the treatment of the data is similar to that in the
linear part. One xz-plane is treated separately for each y variable. The field
is transformed in both the x and z directions to physical space where the
non-linear terms are computed. Then the field is transformed in the x and z
directions to spectral space. This is performed with a loop over all y values
where the subroutine nonlin is called to at each y. The xz-planes are trans-
ferred from the main storage with the routine getxz to the memory where
the actual computations are performed. The corresponding storing of data is
performed with putxz.

1.3. Computer background

The super computers used for large computations can be divided in two major
groups with respect to the memory configuration. The computers can also be
divided in two groups when considering the architecture of the processor. Thus
there are four different combinations that constitute the type of computer.

The two memory configurations are shared and distributed memory. In
the former a common memory is used by all the processors. In the latter case,
every processor has its own memory and data must be sent and received if used
by another processor. The two types of processors are scalar and vector. The
scalar (or super-scalar) processor has registers for data as a scalar quantity
and can perform operations on this data fast. There is a small memory set, the
cache, in the processor to keep easy access to the data being processed. The
data transfer between main memory and the cache is slow, therefore optimized
usage of the cache is important. The vector processor has registers for data as a
vector quantity and perform operations on the scalar elements of the vector, all
at the same time. The processor itself thus operates in parallel. The transfer
of data from the main memory is fast if there is no memory contention.

The distributed memory computers typically have many processors (≈ 200)
with e.g. 256 Mbyte of memory each, resulting in a larger total memory than
a vector computer with typically 4 to 8 Gbyte memory. The forthcoming
computers often have a shared memory for a small number of processors but
with a (from necessity) overall distributed memory.

The code used for the computations has to be adjusted when ported from
one group to another. The four groups are listed in table 1, together with the
computers that have been used in the present study. At the time of the present
investigation the Cray J90, IBM SP2 and Fujitsu VPP300 have 32, 152 and
3 processors respectively and are located at PDC, KTH in Stockholm. The
Cray C90 and T3E have 7 and 232 processors respectively and are located at
NSC in Linköping. The Cray T90 has 14 processors and is located at SDSC in
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San Diego. The SGI Origin 200 has 4 processors and is the property of Joseph
Haritonidis at OSU in Columbus.

shared memory distributed memory
scalar processor SGI Origin 200 Cray T3E, IBM SP2
vector processor Cray J90, C90, T90 Fujitsu VPP300

Table 1. The four categories of super-computers

The optimization and tuning of the code have different features for the
different groups. They can be opposed to each other, e.g. tuning for a vector
processor will make the code unsuitable for a scalar processor and vice versa.

The code used for the numerical simulation of turbulence was earlier op-
timized for vector processors and shared memory computers. In resent years
distributed memory and scalar processors have become a common architecture
for super computers. Therefore a lot of effort has been put into the redesign of
the code to perform well on such computers.

Most of the time in the code is spent in the FFT. The vector and scalar
optimization is therefore concentrated to this part of the code. There are two
different versions of the FFT to be used on the two types of processors.

The parallelization on a shared memory system is fairly straightforward
and is very efficient. The MPI (Message-Passing Interface) has been used to
parallelize the code on the distributed memory systems. A lot of effort has
been put into keeping the memory requirement low as to make it possible to
perform large simulations.

1.4. Examples of simulations

In order to illustrate the complexity of the flow and give examples of the com-
putational effort two examples are given, one for the turbulent boundary layer
flow and one for the rotating channel flow.

1.4.1. Turbulent boundary layer

As an example of a flow field from a simulation of a turbulent boundary layer,
see figure 4 where contour lines of the downstream velocity component are
shown in a plane perpendicular to the wall. The downstream direction is de-
noted x and the wall normal direction y (observe the different scaling in the two
directions in the figure). The simulation starts with a laminar boundary layer
and is then tripped to turbulence by a random volume force near the wall. All
the quantities are non-dimensionalized by the freestream velocity (U) and the
displacement thickness (δ∗) at the starting position of the simulation (x = 0)
where the flow is laminar and Reδ∗ ≡ Uδ∗/ν = 400. The length (including the
fringe), height and width of the computation box were 450 × 24 × 24 in these
units. The number of modes was 480 × 161 × 96.
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Figure 4. Contour lines of the velocity in the downstream
direction (x).

To obtain a flow field as the one in figure 4, the simulation need to run for
2500 time units (δ∗/U), starting from a laminar field. The flow traveled through
the box approximately 5 times during this period of time, and is sufficient for
the turbulence to be adjusted to the imposed boundary conditions such as a
pressure gradient. To obtain sufficiently smooth statistical data, the simulation
runs for another 2000 time units. Thus the simulation was run for a total of
4500 time units. The time step determined by the CFL number is 0.02, and
the CPU-time for one processor on the Cray J90 is 280 seconds, and 66 seconds
on the Cray C90. Thus a simulation of this kind needs 63 · 106 CPU seconds
on the J90 which is equivalent to 24 CPU-months. If the simulation is run
on eight processors on the J90, or two on the C90, the simulation takes three
months on either machine. If the time spent in the queuing system is included,
at least half a year must be expected before the simulation is completed.

In figure 4 the laminar flow is visible at the beginning of the box, then a
rapid transition to turbulence occurs and the turbulence is fully developed at
x = 150. At x = 400 the fringe region starts, the turbulence is suppressed and
the flow is forced back to its initial laminar profile. The velocity at the upper
boundary, the freestream velocity, is not constant due to an adverse pressure
gradient applied through the boundary conditions. The boundary layer is in-
creasing in thickness rapidly in the downstream direction due to the decrease of
the freestream velocity. If a strong enough adverse pressure gradient is applied,
the boundary layer would separate from the wall. This is what happens on the
wing of an aircraft when the stalling angle of attack is approached. Separation
also occurs on the rear window of a car and increases the drag. The evaluation
of the turbulent statistics from this and similar simulations are presented in
Skote et al. (1998).
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Figure 5. Contours of constant streamwise velocity in a ro-
tating channel flow for a plane in the streamwise and spanwise
directions at the distance y = δ/2 from unstable wall, where
2δ is the channel width.

1.4.2. Rotating channel flow

In rotating channel flow, the extra Coriolis term in the governing equations has
a strong effect on the development of the large structures. It has either a stabi-
lizing or a destabilizing effect depending on the sign of the mean velocity gra-
dient. On the unstable side, the Coriolis force makes negative streamwise fluc-
tuating velocities and positive wall-normal fluctuating velocities enforce each
other. This effect, which actually is strongest for relatively low rotation rates,
produces long structures in the flow (figure 5). The periodic boundary condi-
tion requires that the computational domain needs to substantially longer than
the largest flow structure if the results is to be unaffected by the domain size.
If the domain is too short the numerical artifact of the periodicity condition
will, through resonant effects, enforce the long structures and the true behavior
of the flow is not captured. Typically, for this case, the computational domain
needs to be approximately five times as long compared to the non-rotating flow
case, which significantly increases the computational effort.

The present simulation was performed with 384 × 129 × 240 number of
modes, which gives a computational effort of the same order as for the boundary
layer example above. The length of the largest scales (figure 5) actually suggests
that the computational domain should be at least twice as long for this case,
which implies that 768×129×240 grid points have to be used in the simulation.

2. Results

The main aim of optimizing a code is to obtain an overall high performance.
This is a complicated matter and different parts of the code might need different
treatment. This suggests that the different parts should first be optimized
separately. In the present paper the various choices of the compiler options are
omitted, and results are only presented for the optimal choice.
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The investigations presented here is divided in four sections. In section 2.1
the vectorization is discussed. The FFT is investigated in section 2.2 for the two
types of processors through a model problem using the different FFT routines.
Section 2.3 is devoted to the parallelization on the two memory configurations.
Also here a model problem was created to try out the different techniques for
MPI. And finally in section 2.4, the performance of the MPI and the overall
performance of the code is presented for the two distributed memory computers
IBM SP2 and Cray T3E.

For the shared memory computers with vector processors, the vectorization
and parallelization have been tested only for the complete code. The code was
already parallelized and optimized for vector processors (Lundbladh et al. 1992,
1994), and the results are only included for comparison with the main result
concerning the parallelization on distributed memory computers.

Two different sizes of the problem has been tested, table 2. Test case two is
too large to be run on the shared memory computers used in this investigation.

case size number of points
one 128 × 97 × 128 1.6 · 106

two 512 × 193 × 256 25.3 · 106

Table 2. Numerical mesh for the two test cases

The goal when optimizing a numerical code is to minimize the computa-
tional (CPU) time. An usual measure of the performance of a code is the num-
ber of floating point operations that is performed per CPU second (flop/s).
If two codes do a different number of floating point operations for the same
computation it is not really relevant to directly compare the respective perfor-
mance in flop/s but rather in the computational time. The different versions
of the code presented here have a negligible difference in computational work
(flop) for the same tasks. The main differences involve moving data in the
memory and changing the order of computation which give no contribution
to the computational work. Therefore, either the computational speed or the
computational time may be compared whichever is found most suitable.

2.1. Vectorization

Due to the spectral representation in Fourier series the degree of vectorization
is very high. The vectorization is dependent on the size of the problem, a large
problem will in a natural way contain long vectors. For small problems the size
of the vectors can be increased by arranging the arrays in the code in a proper
way. This is done by letting the vectors contain more than one plane. The
arrays are collected from the main memory by the routines getxy and getxz
as shown in figure 3. In figure 6 the vectors are shown in the y- or z-direction.
In the linear part the xy-planes are treated, thus the length of the vectors is
determined by how many z-positions are gathered at the same time by the
routine getxy. In the non-linear part the length is determined by the number
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Figure 6. The short vectors contain one xz− or xy-plane.
The vector length is increased by treating more than one plane
at a time. The long vector is constructed by letting the short
vectors be stored concurrently in the x-direction. The third
direction (z or y) is omitted in the figure.

of y-positions gathered at the same time by getxz. The degree of vectorization
is crucial for some computers to perform well. The FFT is written in such a
way that the vector registers are used to a full extent. The memory used by
the code is increased significantly when using longer vector lengths due to the
increased size of the two-dimensional working area.

We have tested vector processors from Cray and Fujitsu (table 3). For
the specific problem size (case one in table 2) the optimal vector length was
obtained when six planes were used at the same time on J90, eight on C90,
sixteen on T90 and four on VPP300. When running a smaller problem, the
optimal number of planes is higher and when running a larger, it is less. It
should be mentioned that the performance is highly dependent on the problem
size. The size used here gives a very high efficiency on the C90 (over 50 % of
peak performance) while the VPP300 efficiency is only 24 %. However, the code
performance was 800 Mflop/s (36 %) on the VPP300 for a different problem
size. The J90 is not so dependent on the problem size and performs at 100
Mflop/s for different problem sizes if the tuning parameters are set to obtain
the optimal vector length.

J90 C90 T90 VPP300
peak processor
performance 220 952 1700 2200
one plane 93 361 501 303
optimized

vector length 100 522 710 525
Table 3. The speed on different vector machines for one pro-
cessor for case one.
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2.2. The FFT

The FFT package is an extended version of the FFTPACK from netlib. The FFT
is applied in all three physical directions in the transforms between physical
space and spectral space. The transforms are performed on the two-dimensional
matrix, where the main difference between the treatment in the three directions
is with respect to the memory. The x-transform is performed on the first
index, which yields unit stride memory access, while the y- and z-transforms
are performed on the second index. The treatment of the y- and z-transforms
are hence similar and we shall therefore only investigate the behavior of the x-
and z-transforms.

2.2.1. The original version for vector processors

The FFT that is used for the transform in the x- and z-directions consists
of two one-dimensional FFT:s. In the forward transform they are a real to
half-complex in x followed by a half-complex to complex in z. The real data
in physical space is stored in two matrices with odd points in x in the first
matrix and the even points in x in the second, see figure 7. After transforming
in the x-direction, the real and imaginary Fourier components are stored in
the two matrices respectively. Then the z-transform is applied to get the full
two-dimensional transform. The data is stored all the time with the x-direction
column-wise and the z-direction row-wise. The access to data in FORTRAN is
row-wise, thus the elements in the x-direction are positioned one after another.
However, when performing the z-transform the elements are separated by nx/2,
i.e. the vector stride is nx/2. This means that different memory locations are
accessed all the time. For vector processors the access to memory is fast and
the most important issue is that no bank-conflicts occur.

2.2.2. Scalar processor

As described above, the FFT was originally written for a vector processor. This
feature of the FFT is a disadvantage when running on scalar processors. The
changes needed in the code for scalar processing was to a great extent already
accomplished by the original author, Anders Lundbladh. The alternative FFT
was however only fast in the x-direction, where the changes consisted of re-
ducing the amount of data used at the same time. An outer loop in x was
introduced as to process data from one row at a time instead of the whole
plane (or several planes if the vectorization tuning parameters are used.) To
accomplish a faster transform in the z-direction, the z-transform was rewritten
to process data for one line at a time, in much the same way as was already
done in the x-direction. To perform the transform in this manner, the data
need to be transposed before transformed, see figure 8, otherwise the vector
stride will prevent the data from lying concurrently.

In the table 4 the original (modified in the x-direction), modified (in the
z-direction) and library FFT are compared. Both the x- and z-direction are
transformed for a 512 × 256 grid corresponding to case two in table 2. The
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library FFT is faster than the in-house FFT. But the data transfer due to
the library FFT usage of complex variables decreases the performance con-
siderably. Also the modified approach with transposing before the transform
in the z-direction gives a faster FFT but the transposing itself decreases the
performance. The three different transforms performs approximately the same
number of operations (flop), thus the difference in performance (Mflop/s) is
due to better efficiency. The number of flops correspond to the formula in the
book by Canuto et al. (1988), flop≈5Nlog2N for one one-dimensional FFT. The
decrease of the performance when including the transpose and data transfer re-
spectively, is due to the fact that these redistributions of data do not include
any operations (flop). Since the original version do not require any additional
rearranging of the data, it is the fastest method for the FFT. Thus, the only
difference between the FFT for scalar and vector processors is the treatment
in the x-direction.

The routines written by the authors for the transpose are substantially
faster than the library routines on the T3E, due to the E-registers which can
be used explicitly in the code. Also on the SP2 the library transpose is slower
than the ones written in FORTRAN, probably due to the generality of the
library routines.

T3E SP2
peak processor
performance 600 640

original 59 177
modified 64 180
modified

incl. transpose 55 100
library 66 209
library

incl. transfer 54 82

Table 4. The performance of the FFT given in Mflop/s av-
eraged in both the x- and z-directions.

2.3. Parallelization

The computation of each xy-plane (in linear) and xz-plane (in nonlin) is
independent of the other planes. Therefore, parallelization of the code is per-
formed by distributing different planes in the loops to the different processors,
which then runs in parallel. Since the major part of the computation is spent
in the linear and nonlin subroutines, the code should parallelize efficiently.
In the following, nproc denotes the number of processors.
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Figure 7. The structure of the data in physical space. On
this data the transform in the x-direction is performed.
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Figure 8. The structure of the data in half-complex form
after transposing the data. On this data the transform in the
z-direction is performed in the modified method.

2.3.1. The maximum speed up

The maximum possible speed up of the code when using several processors is
determined by the part of the program that do not allow for parallel computing.
Ideally, if the the whole program runs in parallel, the maximum speed up
equals the number of processors. Some parts of a code are always impossible
to divide between the processors. Let a denote the portion of the code that is
parallelizable, and b the portion that only can be run on one processor. The
maximum possible speed up of the code is then

a + b

a/nproc + b
= { a

a + b
= q} =

1
q/nproc + (1 − q)

. (1)

This is usually referred to as Amdahls law. As q approaches unity the maximum
speed up goes to nproc. It is desirable to have the portion b of the code that
only runs on one processor small.

Figure 9 shows that the speed up is far from linear for large values of nproc

if q is not very close to unity. In the limit of infinite number of processors the
computational time is completely determined by the part of the code that do
not run in parallel and the maximum speed up approaches 1/(1 − q).
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Figure 9. The maximum speed up for q = 1, 0.99, 0.95, 0.9.

2.3.2. Shared memory

The parallelization and optimization of the code for shared memory systems
was done in the original version of the code. The two main loops in the code,
over the linear and non-linear parts, were splitted as to account for the par-
allel computing. The parallel processing requires extra two-dimensional local
variables, one for each processor in the computation, in order for the different
processors not to use the same memory position. A compiler directive must be
included in the code because within the loops there are subroutine calls. As can
be seen from figure 10 the scaling is excellent on the Cray C90 and J90. When
q in Amdahls law (1) is calculated from the measured performance, it gets a
value of 0.99. On the Origin 200, with a scalar processor, the measured perfor-
mance was 53 Mflop/s on one processor and 181 on four, which corresponds to
a value of q as low as 0.94.

1 2 4 8
0

300

600

900

1200

1500

nproc

Mflop/s

Figure 10. Mflop/s rates for different number of processors
for case one. — J90; - - C90; · · · maximum speed up with
q = 1 in Amdahls law (1).
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2.3.3. Distributed memory

On distributed memory machines, e.g. IBM SP2 and Cray T3E, the whole
field needs to be divided among the different processors. There are three possi-
ble spatial directions which can be distributed among the different processors.
The x-direction is not suitable to divide since it would give significant com-
munication between the processors in both the linear and nonlinear part of
the code. The number of y-discretization points in Chebyshev polynomials is
often not even divisible with the number of processors. The discretization in
the z-direction by the Fourier series can easily be chosen to obtain a number
of discretization modes which is divisible with the number of processors. Also
the communication with the main storage is more frequent in the linear part.
The whole field is hence divided in the z-direction between the different pro-
cessors (figure 11a), which yields easy access to the complete field in the linear
part since the two dimensional field is available locally on the processor. In
the nonlinear part, however, the local two dimensional storage needs to collect
data from all the other processors. This is performed with the MPI standard.

The message passing

Two different methods of moving the data with MPI between the processors
have been investigated. The first method transposes the whole field at once
before the non-linear calculations, so that it becomes divided in the y-direction
between the different processors. This makes the two dimensional field available
locally at each processor. Before the linear calculation, the data is transposed
back to its original position. The transposing of the data requires additional
memory, since the whole field is stored twice, and additional moving of data
from one field to another. In the second method the main storage is kept at its
original position on the different processors. In the non-linear part each pro-
cessor collects the two dimensional data from the other processors, on which it
performs the computations, and then redistributes it back to the main storage.
In this way no extra memory is needed. Figure 11b shows an example of the
data gathering for one processor. The two methods are described more thor-
oughly in Appendix A

The amount of communication

The main communication between the processors is in the non-linear part,
where five variables are collected from the main memory and three variables
are stored to the main memory. Thus a total of eight variables have to be sent.
Each processor performs calculations on approximately ny/nproc xz-planes.
The amount of data that needs to be collected from the other processors is for
each plane nx(nz − nz/nproc). This gives that for all variables each processor
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Figure 11. a) The distribution of the main storage on four
processors ip = 1, ..., 4. b) The gathering of data in the nonlin-
ear part (nonlin) of the code for processor number two. The
completely shaded area is local on the processor and need not
to be received from the others, and the half-shaded area is sent
to processor number two. The x-direction is omitted for clar-
ity.

needs to collect

Ntot =
ny nx nz

nproc

(
1 − 1

nproc

)
(2)

real numbers from the other processors at each Runge-Kutta iteration. The
amount of data that each processor needs to send is equally large.

The IBM SP2 communicates with a high performance switch which has
a bandwidth of 110MByte/s and a latency of 25 − 30µs. The MPI on the
Cray T3E has a bandwidth of 320MByte/s and a latency of 12.8µs. In order
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to reduce the effect of the latency and use the bandwidth optimally, the data
should be arranged in large groups when sent.

2.4. Performance on the SP2 and T3E

The main computational work in the code is in the FFT which was treated in
the previous chapter. The performance of the two methods of redistributing
data described in section 2.3.3 is investigated by using a model problem of the
same structure as the code. The performance of the code can then be measured,
using the most efficient FFT and message passing method.

The y-direction is not generally even divisible with the number of proces-
sors, i.e. ny/nproc is not an integer. Therefore, in the last y-loop count not all
processors are active and the loop is not completely parallelizable. If nproc is
relatively small compared to ny (as is the case with e.g. the Cray C90 and J90)
the effect from this on the performance is small. When nproc is of the same
order as ny (as may be the case for e.g. the IBM SP2 and the Cray T3E) this
effect may be of importance.

2.4.1. Performance of the MPI

The most important feature of the message passing is that it should be fast,
i.e. the time spent in moving data between processors should be small so that
the speed up of the code is not limited by the message passing. It is also
interesting to study how the efficiency of the data transfer depends on the
number of processors. The speed up is of course dependent on how much work
is performed between the data redistributions. The test problem was set up so
that a clear difference could be seen between the two methods.

In figure 12 the two methods are compared for the two cases, table 4.
They show that for case two method two is faster than method one for both
computers (method one was not possible to run with less than 4 processors due
to the large memory requirement). However, for case one method one is faster
on the T3E while method two still is faster on the SP2. Hence, method one
is better than method two only on the T3E for a small problem (case one) on
many processors. However, the size corresponding to case one would not need
to run on more than 16 processors in a real application, thus method two is
the one to prefer in the code. It is also observed that the SP2 performs better
for the small case while the T3E performs better for the larger case.

In the following only results using method two of the data communication
will be presented since method one was found not to be useful due to the lower
performance, especially on the SP2, and the larger amount of required memory.

If we take into account that the y-loop is not even divisible with the number
of processors, the maximum possible speed up of the test problem code is

ny(
Int

(
ny

nproc

)
+ 1

) . (3)
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Figure 13. Performance on — T3E - - SP2; o Method 2.
Curves with no circles are the optimal speed up. a) Case one.
b) Case two.

In figure 13 the performance of the test problem is shown together with the
optimal speed up from (3). The T3E is slightly closer to the optimal speed
up performance than the SP2, indicating that the message passing performs
better. We also have a closer adherence to the optimal curves for the larger
case (for both T3E and SP2) which is associated with larger data sets which
increases the performance of the message passing.

Bandwidth

It is a well known fact that the bandwidth, or the data transfer rate, decreases
considerably from the maximum values quoted in section 2.3.3 if the amount of
data which is sent decreases below a certain level, e.g. one Mbyte on the T3E.
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Figure 14. Size of data package. a) Case one b) Case two.

The size of the individual data package sent from one processor to another is

Size =
nx nz

nproc
. (4)

This quantity is plotted for different number of processors in figure 14. For
both cases the size is well below one Mbyte for all values of nproc which would
affect the bandwidth. The size decreases with increasing number of processors
and consequently the data transfer rate for each individual processor should
decrease. Although the performance of each processor decreases, the effective
time of the message passing should actually decrease since the amount of data
that is sent becomes smaller.

If it is assumed that the parallelization is optimal, i.e. q = 1 in Amdahls
law (1), the time spent on data transfer, tMPI, is derived as the difference
between total time and the total time for one processor divided by the number
of processors,

tMPI = tnproc
− tnproc=1

nproc
, (5)

where tnproc
is the program CPU time for one processor when a total of nproc

processors is used. As already noted in (3) the speed up is not linear in nproc but
depends on both nproc and ny. Using this approach a more accurate estimate
is obtained,

tMPI = tnproc
−

Int
(

ny
nproc

)
+ 1

ny
tnproc=1. (6)

In figure 15 the performance of the test cases is plotted for the two comput-
ers together with inverse of the time tMPI. Due to memory limitations on the
T3E case two was not possible to run on a single processor and the time tMPI

is not available. From figure 15 it is clear that the time of the message passing
indeed decreases with increasing values of nproc, except for the small case on
the T3E which actually obtains relatively high performance at few processors.
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For the larger case the message passing takes a smaller amount of time com-
pared to the total time and the increase in performance of the message passing
with nproc seems to be stronger.

The amount of data that is being sent by each processor is given by equation
(2), and is shown in figure 16. To get the data transfer rate, the amount of
data is divided by the time spent on the transfer tMPI. As the communication
is very intense between the processors, i.e. each processor needs to both send
and receive data from all other, the maximum possible transfer rate of receiving
data for each processor is only half of the bandwidth.

The rate is plotted in figure 17 for both cases. For case one the T3E
performs better with regards to the bandwidth for a small number of processors.
Also, the rate decreases with increasing number of processors, due to the smaller
package size observed in figure 14, and the difference between the two computers
disappear. In case two the rate is overall higher due to larger data packages
and it also shows a slight increase at the highest values of nproc.
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a) Case one. b) Case two.

The theoretical data transfer rate as a function of message buffer size can
be found in a Cray manual. The low data transfer rate is surprising since the
theoretical values for the T3E are much higher. If case one is considered for two
processors, the theoretical value is 230 Mbyte/s. Since this value is for point-to-
point communication, the value has to be divided by two to be compared with
our case where all the processors are both sending and receiving. The measured
rate for our test case one is 70 Mbyte/s on two processors. If the MPI derived
data type used in the communication is changed to a standard vector type,
and sent to another vector of the same type, the performance increases to 114
Mbyte/s, which is very close to the expected theoretical value. If now the case
one on 64 processors is considered the theoretical value is 25 Mbyte/s, whereas
the measured value is 3 Mbyte/s. If the same number of bytes is sent between
only two processors, the rate increases to 12 Mbyte/s, which again is half of
the theoretical value. In this case there is no difference in the performance if a
standard vector is used instead of a MPI derived data type. The low bandwidth
is thus explained by two different effects. For a small number of processors,
when the data packages still are relatively large, the low bandwidth is due
to the MPI derived data type which slows down the communication. For a
large number of processors, the explanation is the decrease of communication
efficiency (network contention) when many processors are being used.

2.4.2. Performance of the code

The complete code has been run with the optimal FFT and method two for the
message passing for the two cases. Since the non-linear part is not completely
parallelizable the factor q in Amdahls law depends on nproc and is difficult
to give directly. Most time of the code is spent in the linear and non-linear
parts. If it is assumed that they take the same computational time on one
processor and that the remaining computational time is negligible the following
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expression can be derived for the optimal speed up,

2
1

nproc
+ 1

ny

(
Int

(
ny

nproc

)
+ 1

) . (7)

This formula, with nproc = 8 and ny = 97, gives when using Amdahls law (1),
a q of value 0.99, corresponding to the measured values in figure 10. In figure
18 the performance of the code is shown as Mflop/s together with the optimal
speed up given by (7). The speed up is better for case two than case one.
The scaling is better on the T3E for both cases, which was noticed also for the
model problem. We actually obtain an optimal performance for the larger case
on the T3E. However, the overall performance is better on the SP2, which is
approximately twice as fast as the T3E. This was also observed in the model
problem for the FFT (see table 4).

Hence, for both the large and small cases, the scaling is better for the T3E
associated with the higher performance of the message passing, and the overall
performance is better for the SP2, mainly due to the higher performance of the
FFT.

For case one it is possible to compare the performance with the vector
computers (see figure 10). One processor on the C90 corresponds approximately
to four processors on the J90, four processors on the SP2 and eight on the T3E.

3. Conclusions

To be able to implement a code on a parallel computer with distributed memory,
a lot of effort must be put into programming the communication between the
processors efficiently. The most sensible approach seems to be through a model
of the code with the same structure of the variables. By using a test problem,
the different options of communication can be tested and evaluated before
implementing the communications in the code.
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The MPI routines might be working in different ways on different comput-
ers, depending on the implementation. The code might be working perfectly
on one machine, but this does not imply that the code can be expected to run
efficiently, or be working at all, on another. Portability of codes seems to have
been lost.

It is concluded that it is possible to achieve high performance on super
scalar machines, with computational speeds comparable and higher than those
of the traditional vector machines. The code seems to scale efficiently with the
number of processors and therefore a high performance might be obtained by
using many processors in the simulation. The lower scaling on the smaller case
is not critical since it does not need to be run on many processors in a real
computation.

Another important issue is the availability of the computer, i.e. how long
time the user have to spend queuing before a job begins and how many pro-
cessors you may use. In some cases the job may be subjected to timesharing
with other jobs which reduces the performance.
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Appendix A.

The first method

The first method was developed by Högberg (1998) and is based on the
MPI ALLTOALLV command. When the problem size and the number of
processors have been determined, vectors describing where to send data, and
from where to receive data, are set up for each processor individually. When
these vectors are available MPI ALLTOALLV is the only command needed
for all communications. Every processor has two data vectors, one for xz-
planes and one for xy-planes. The size of these vectors depends on the prob-
lem size and the number of processors. Other vectors contain information
about how many planes each processor handles, and information about where
to take data for sending and where to put received data. These vectors are used
with MPI ALLTOALLV to transpose the whole field that has been distributed
among the processors. The main drawback of this method is that data is stored
twice, which will increase the memory requirements compared to the second
method.



Turbulence simulations on parallel computers 261

� �� �

Figure 19. The first left neighbor in the four processor case.

The second method

The sending and receiving data is performed with the commands MPI SEND
and MPI RECV, which are used in the modified getxz and putxz routines.
When parallelized, the original y-loop, which goes from 1 to ny, is changed
to a loop that goes from 1 to Int[(ny − 1)/nproc] + 1. In this modified loop,
the number of y-planes treated at the same time is nproc, except for the last
loop count where the remaining y-planes are treated. At each loop count each
processor sends and receives data to and from all other processors. This is
achieved by an inner loop, from 1 to nproc − 1, in which all processors sends
data to another (all different) processor.

Let ip be the number of a processor. Processors ip and ip − 1 are said to
be neighbors (figure 19). In particular processor 1 is a neighbor to processor
nproc. At each loop count ii, which goes from 1 to nproc − 1, each processor
sends data to its neighbor number ii to the left, i.e. processor ip sends data to
processor ip − ii.

At each MPI SEND command the data that is sent is defined through
a special vector in the MPI standard, describing the number of elements in
the data set, the length of one element and the distance (stride) between two
elements. A corresponding vector is constructed to define where the data is to
be stored with the MPI RECV command. These vectors are determined by the
number of discretization modes in each direction and the number of processors.

On the IBM SP2 the MPI SEND is implemented as a standard send that is
not able to complete until the receive has started. Since all processors start with
sending and none is receiving a deadlock occurs. In this case a non-blocking
standard send, MPI ISEND, together with a test, MPI WAIT, are used. If this
method is used on the Cray T3E instead of the standard send no change in the
performance is detected.
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Högberg, M. 1998 Private communication.



262 K. Alvelius & M. Skote

Lundbladh, A., Henningson, D. S. & Johansson, A. V. 1992 An efficient spectral
integration method for the solution of the Navier-Stokes equations. FFA-TN
1992-28, Aeronautical Research Institute of Sweden, Bromma.

Lundbladh, A., Schmid, P. J., Berlin, S. & Henningson, D. S. 1994 Simula-
tion of bypass transition in spatially evolving flows. Proceedings of the AGARD
Symposium on Application of Direct and Large Eddy Simulation to Transition
and Turbulence, AGARD-CP-551.

Skote, M., Henkes, R. A. W. M. & Henningson, D. S. 1998 Direct numerical
simulation of self-similar turbulent boundary layers in adverse pressure gradients.
Flow, Turbulence and Combustion 60, 47–85.



Paper 9

P9





An efficient spectral method for simulation of
incompressible flow over a flat plate
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An efficient spectral integration technique for the solution of the Navier-Stokes
equations for incompressible flow over a flat plate is described and implemented
in a computer code using the FORTRAN language. The algorithm can either
be used for temporal or spatial simulation. In the latter case, a fringe region
technique is used to allow a streamwise inflow and outflow of the computational
domain. At a constant distance from the flat plate an artificial boundary is
introduced and a free-stream boundary condition applied. The plate parallel
directions are discretized using Fourier series and the normal direction using
Chebyshev series. Time integration is performed using third order Runge-
Kutta method for the advective and forcing terms and Crank-Nicolson for the
viscous terms. The version of the code described in this report can be run
on parallel computers with shared memory. A slightly different version also
exists which utilizes MPI (Message-Passing Interface) for parallelization on
distributed memory computers.

∗Aeronautical Research Institute of Sweden,Box 11021, SE-161 11 Bromma, Sweden
†Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden
‡Department of Mechanical and Aero Space, UCLA, 405 Hilgard Ave, LA, CA 90095, USA
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1. Introduction

Solution of the Navier-Stokes equations for the simulation of transition and
turbulence requires high numerical accuracy for a large span of length scales.
This has prompted a development of accurate spectral methods. Unfortunately
even with these methods computations require an immense amount of computer
time and memory. In the present report we use spectral methods to derive an
accurate algorithm of the flat plate boundary layer flow geometry. The basic
numerical method is similar to the Fourier-Chebyshev method used by Kim
et al. (1987).

The original algorithm (Lundbladh et al. 1992a) solved the incompressible flow
equations in a channel flow geometry. To allow simulations of the flow over a flat
plate a free-stream boundary condition is required, and for spatial simulations
a fringe region technique similar to that of Bertolotti et al. (1992) is described.

For further details about spectral discretizations and additional references see
Canuto et al. (1988).

The original channel code and the implementation of the present numerical
method has been used in a number of investigations.
In channel flow:
Henningson et al. (1990), Lu & Henningson (1990), Lundbladh & Johansson
(1991), Schmid & Henningson (1992), Lundbladh (1993), Henningson et al.
(1993), Lundbladh & Henningson (1993), Schmid & Henningson (1993), Elofs-
son & Lundbladh (1994), Kreiss et al. (1994), Lundbladh et al. (1994a), Schmid
et al. (1994), Henningson (1995), Reddy et al. (1998).
In boundary layer flow:
Lundbladh et al. (1992b), Berlin et al. (1994), Henningson & Lundbladh (1994),
Lundbladh et al. (1994b), Henningson & Lundbladh (1995), Högberg & Hen-
ningson (1998), Schmid et al. (1996), Nordström et al. (1999), Hildings (1997),
Berlin & Henningson (1999), Berlin et al. (1998a), Berlin et al. (1999), Berlin
et al. (1998b), Bech et al. (1998), Skote et al. (1998).
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2. The numerical method

2.1. Derivation of the velocity-vorticity formulation

The starting point is the non-dimensionalized incompressible Navier-Stokes
equations in a rotating reference frame, here written in tensor notation,

∂ui

∂t
= − ∂p

∂xi
+ εijkuj(ωk + 2Ωk) − ∂

∂xi
(
1
2
ujuj) +

1
R
∇2ui + Fi, (1)

∂ui

∂xi
= 0, (2)

with boundary conditions at the flat plate and at the free-stream boundary,
which are discussed in the next subsections.

The first equation represents conservation of momentum and the second equa-
tion incompressibility of the fluid. Here (x1, x2, x3) = (x, y, z) are the stream-
wise, normal and spanwise coordinates, (u1, u2, u3) = (u, v, w) are the respec-
tive velocities, (ω1, ω2, ω3) = (χ, ω, ϑ) are the corresponding vorticities, and
p is the pressure. The streamwise and spanwise directions will alternatively
be termed horizontal directions. Ωk is the angular velocity of the coordinate
frame around axis k. In practise the most often used case is rotation around
the spanwise axis, thus let Ω = Ω3 be the rotation number. Fi is a body force
which is used for numerical purposes that will be further discussed below. It
can also be used to introduce disturbances in the flow. The Reynolds number is
defined as R = U∞δ∗/ν, where U∞ is the undisturbed streamwise free-stream
velocity at x = 0 and t = 0, δ∗ is the displacement thickness of the undisturbed
streamwise velocity at x = 0 and t = 0, and ν is the kinematic viscosity. The
size of the solution domain in physical space is xL, yL and zL in the streamwise,
normal and spanwise directions, respectively.

A Poisson equation for the pressure can be obtained by taking the divergence
of the momentum equation,

∇2p =
∂Hi

∂xi
−∇2(

1
2
ujuj), (3)

where Hi = εijkuj(ωk + 2Ωk) + Fi. Application of the Laplace operator to
the momentum equation for the normal velocity yields an equation for that
component through the use of equations (3) and (2). One finds

∂∇2v

∂t
=

(
∂2

∂x2
+

∂2

∂z2

)
H2 − ∂

∂y
(
∂H1

∂x
+

∂H3

∂z
) +

1
R
∇4v. (4)
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This equation can, for numerical purposes, be written as a system of two second
order equations:

∂φ

∂t
= hv +

1
R
∇2φ,

∇2v = φ, (5)

where

hv =
(

∂2

∂x2
+

∂2

∂z2

)
H2 − ∂

∂y

(
∂H1

∂x
+

∂H3

∂z

)
. (6)

An equation for the normal vorticity can be found by taking the curl of the
momentum equation. The second component of that equation reads,

∂ω

∂t
= hω +

1
R
∇2ω, (7)

where

hω =
∂H1

∂z
− ∂H3

∂x
. (8)

Note that the equations for φ, v and ω have similar form, and can thus be
solved using the same numerical routine. Once the the normal velocity v and
the normal vorticity ω have been calculated the other velocity components can
be found form the incompressibility constraint and the definition of the normal
vorticity.

2.2. Boundary condition

The boundary conditions in the horizontal directions are periodic but we need
to specify boundary conditions at the plate and in the free-stream, to solve
equations (5) and (7). The natural no-slip boundary conditions read

v(y = 0) = 0,
∂v(y = 0)

∂y
= 0, ω(y = 0) = 0. (9)

For disturbance generation and control by blowing and suction through the
plate, an arbitrary time dependent velocity distribution,

v(y = 0) = vBS(x, z, t), (10)

can be used.

The flow is assumed to extend to an infinite distance perpendicularly to the
flat plate. However, the discretization discussed below can only handle a finite
domain. Therefore, the flow domain is truncated and an artificial boundary
condition is applied in the free-stream.

The simplest possible is a Dirichlet condition i.e.,

ui(y = yL) = Ui(y = yL), (11)
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where Ui(x, y) is a base flow that is normally chosen as a Falkner-Skan-Cook
flow. An arbitrary pressure gradient, to for instance create a separation bubble,
can be imposed by choosing Ui accordingly.

The desired flow solution generally contains a disturbance and that will be
forced to zero by the Dirichlet condition. This introduces an error compared
to the exact solution for which the boundary condition is applied at an infi-
nite distance from the wall. The error may result in increased damping for
disturbances in the boundary layer.

Some improvement can be achieved by using a Neumann condition,
∂ui

∂y
|y=yL

=
∂Ui

∂y
|y=yL

. (12)

This condition can be shown to be stable if there is outflow at the boundary
or the inflow is weaker than O(1/R). This restriction is usually fulfilled if the
boundary is placed on a sufficiently large distance from the wall, so that the
disturbance velocity is small.

A generalization of the boundary condition used by Malik et al. (1985) allows
the boundary to be placed closer to the wall. It is an asymptotic condition
that decreases the error further and it reads,[

∂ûi

∂y
+ |k|ûi

]
y=yL

=

[
∂Ûi

∂y
+ |k|Ûi

]
y=yL

, (13)

where ˆ denotes the horizontal Fourier transform with respect to the horizontal
coordinates, k2 = α2 + β2 and α and β are the horizontal wavenumbers (see
equation 29). Thus this condition is most easily applied in Fourier space. The
boundary condition exactly represents a potential flow solution decaying away
from the wall. It is essentially equivalent to requiring that the vorticity is zero
at the boundary. Thus, it can be applied immediately outside the vortical part
of the flow.

2.3. Forcing for temporal simulation

A localized disturbance or wave of relatively short wavelength which travels
downstream in a slowly growing boundary layer is surrounded by a boundary
layer of almost constant thickness which grows slowly in time. This forms the
basis of the temporal simulation technique.

Following the ideas of Spalart & Yang (1987) we assume that the boundary
layer streamwise velocity is U(x, y) and introduce a reference point xr = x0+ct
where c is a reference speed. We now assume that the undisturbed boundary
layer in the vicinity of the disturbance has the velocity distribution U(y, t) =
U(xr, y) , V (y, t) = 0. Since the boundary layer is now parallel (as there is
no dependence on x), it is possible to apply periodic boundary conditions in
the horizontal directions. However, whereas U(x, y) (with the corresponding
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V given by continuity) is a solution to Navier-Stokes or at least the boundary
layer equations, this is not true for {U(y, t), V (y, t)}. Thus to ensure the correct
development of the boundary layer profile over extended periods of time it
is necessary to add a (weak) forcing to balance the streamwise momentum
equation,

F1 =
∂U(y, t)

∂t
− 1

R

∂2U(y, t)
∂y2

= c
∂U(x, y)

∂x
− 1

R

∂2U(x, y)
∂y2

, (14)

where the right hand side should be evaluated at the reference coordinate xr.
The reference speed should be chosen as the group speed of the wave or the
propagation speed of the localized disturbance for best agreement with a spa-
tially developing flow. To fully justify the periodic boundary conditions in the
case of a wave train, the wave itself should be slowly developing.

2.4. Forcing for spatial simulation

The best numerical model of a physical boundary layer, which is usually devel-
oping in the downstream direction rather than in time, is a spatial formulation.
To retain periodic boundary conditions, which is necessary for the Fourier dis-
cretization described below, a fringe region is added downstream of the physical
domain, similar to that described by Bertolotti et al. (1992). In the fringe region
disturbances are damped and the flow returned to the desired inflow condition.
This is accomplished by the addition of a volume force which only increases
the execution time of the algorithm by a few percent.

The form of the forcing is :

Fi = λ(x)(Ui − ui), (15)

where λ(x) is a non-negative fringe function which is significantly non-zero
only within the fringe region. Ui is the same flow field used for the boundary
conditions, which also contains the desired flow solution in the fringe. The
streamwise velocity component is calculated as,

Ux(x, y) = U(x, y) + [U(x + xL, y) − U(x, y)] S
(

x − xmix

∆mix

)
, (16)

where U(x, y) is normally a solution to the boundary layer equations. Here
xmix and ∆mix are chosen so that the prescribed flow, within the fringe re-
gion, smoothly changes from the outflow velocity of the physical domain to the
desired inflow velocity. S is given below. The wall normal component Uy is
then calculated from the equation of continuity, and the spanwise velocity Uz

is set to zero for simulations where the mean flow is two dimensional. For three
dimensional boundary layers Uz is computed from a boundary layer solution in
fashion analogous to that for Ux. This choice of U ensures that for the undis-
turbed laminar boundary layer the decrease in thickness is completely confined
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to the fringe region, thus minimizing the upstream influence. A forced distur-
bance to the laminar flow can be given as inflow condition if that disturbance
is included in Ui.

A convenient form of the fringe function λ is as follows,

λ(x) = λmax[S
(

x − xstart

∆rise

)
− S

(
x − xend

∆fall
+ 1

)
]. (17)

Here λmax is the maximum strength of the damping, xstart to xend the spatial
extent of the region where the damping function is non-zero and ∆rise and
∆fall the rise and fall distance of the damping function. S(x) is a smooth step
function rising from zero for negative x to one for x ≥ 1. We have used the
following form for S, which has the advantage of having continuous derivatives
of all orders.

S(x) =




0 x ≤ 0
1/[1 + exp( 1

x−1 + 1
x )] 0 < x < 1

1 x ≥ 1
. (18)

To achieve maximum damping both the total length of the fringe and λmax

have to be tuned. The actual shape of λ(x) is less important for the damping
but it should have its maximum closer to xend than to xstart. The damping
is also strongly effected by the resolution of the disturbance that should be
damped. An investigation of how the fringe parameters effect the disturbance
in the fringe can be found in Appendix C.

For maximum computational efficiency the simulated flow has to be considered
when the fringe parameters are tuned. Assuming that the achieved damping is
sufficient, a short fringe reduces the box length and therefore the required CPU
time per iteration. However, if the flow gradients introduced in the fringe region
are larger than those in the physical domain that may decrease the time step
and consequently increase the necessary number of iterations. Note that the
boundary layer growth causes outflow through the free-stream boundary. The
streamwise periodicity requires that all that fluid enters in the fringe region.

Analysis of Navier-Stokes equations with a fringe forcing term yields that there
is an additional part of the disturbance associated with the pressure whose
decay is not dependent on λ. For a boundary layer, this solution decays appre-
ciably over a downstream distance equal to the boundary layer thickness, and
thus the fringe region must be some factor (say 10 to 30) times this thickness
to get a large decay factor, see Nordström et al. (1999).

2.5. Temporal discretization

The time advancement is carried out by one of two semi-implicit schemes. We
illustrate them on the equation

∂ψ

∂t
= G + Lψ, (19)
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an/∆tn bn/∆tn cn/∆tn

RK3 8/15 0 0
3-stage 5/12 -17/60 8/15

3/4 -5/12 2/3
RK3 8/17 0 0
4-stage 17/60 -15/68 8/17

5/12 -17/60 8/15
3/4 -5/12 2/3

Table 1. Time stepping coefficients.

which is on the same form as equation (5) and (7). ψ represents φ or ω, G
contains the (non-linear) advective, rotation and forcing terms and depends
on all velocity and vorticity components, L is the (linear) diffusion opera-
tor. L is discretized implicitly using the second order accurate Crank-Nicolson
(CN) scheme and G explicitly by a low storage third order three or four stage
Runge-Kutta (RK3) scheme. These time discretizations may be written in the
following manner : (G and L are assumed to have no explicit dependence on
time)

ψn+1 = ψn + anGn + bnGn−1 + (an + bn)
(

Lψn+1 + Lψn

2

)
, (20)

where the constants an and bn are chosen according to the explicit scheme used.
The two possibilities for the RK3 schemes are shown in the table 1. Note that
the RK3 schemes have three or four stages which imply that a full physical
time step is only achieved every three or four iterations. The time used for the
intermediate stages are given by t = t + cn, where cn is given in table 1.

To obtain some insight into the properties of these discretizations they will be
applied to the two dimensional linearized Burgers’ equation with a system ro-
tation. The eigenvalue analysis yields a necessary condition for stability which
must be augmented by an experimental verification. Putting the equation into
the form of equation (19) yields :

ψ =
[

u
w

]
,

G =
[

u0∂/∂x + w0∂/∂z 2Ω
−2Ω u0∂/∂x + w0∂/∂z

] [
u
w

]
,

L =
1
R

[
∂2/∂x2 + ∂2/∂z2 0

0 ∂2/∂x2 + ∂2/∂z2

]
. (21)

It can be seen as an approximation to equation (1). The dependence of ψ on
both the streamwise and spanwise coordinate directions have been included in
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order to indicate how multiple dimensions enter into the stability considera-
tions.

We will for simplicity use Fourier discretization in the spatial directions. The
Chebyshev method acts locally as a transformed Fourier method and thus the
stability properties derived here can be applied with the local space step. An
exception to this occurs at the endpoints where the transformation is singular.
It can be shown that the Chebyshev method is more stable there. A numerical
study of a 1-dimensional advection equation using the Chebyshev discretization
yields that the upper limit of its spectrum along the imaginary axis is about 16
times lower than the simple application of the results from the Fourier method.
This allows a corresponding increase of the time step when the stability is
limited by the wall normal velocity at the free-stream boundary.

Fourier transforming in x and z yields:

ψ̂t =
[

iαu0 + iβw0 2Ω
−2Ω iαu0 + iβw0

]
ψ̂ − α2 + β2

R
ψ̂, (22)

where α and β are the wavenumbers in the x- and z-directions, respectively.
This equation can be diagonalized to yield the equation,

ût = i(αu0 + βw0 ± 2Ω)û +
α2 + β2

R
û. (23)

We assume that the absolute stability limit will first be reached for the largest
wavenumbers of the discretization αmax and βmax, which corresponds to a
wavelength of 2 ·∆x and 2 ·∆z, respectively. ∆x and ∆z are the discretization
step lengths in physical space. The following parameters are useful for our
analysis,

µ = ∆t[2|Ωk| + (αmax|u0| + βmax|w0|)]

= ∆t

[
2|Ωk| + π

( |u0|
∆x

+
|w0|
∆z

)]
, (24)

λ =
1
R

∆t(α2
max + β2

max)

=
1
R

π2∆t

(
1

∆x2
+

1
∆z2

)
. (25)

The parameter µ is usually called the spectral CFL number, in analogy with
the stability theory for finite difference equations. Henceforth it will be termed
simply the CFL number. Using the RK3-CN time discretization we have the
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 0.0  0.5  1.0  1.5  2.0

µ

λ

Figure 1. Contours of constant amplification factor for the
RK3-CN method. Contour spacing is 0.05 with dashed lines
indicating that the amplification factor is below unity.

following three stages in each time step for the model equation (23),

ûn+1 = ûn + iµa1û
n − λ

2
a1(ûn+1 + ûn),

ûn+2 = ûn+1 + iµ(a2û
n+1 + b2û

n) − λ

2
(a2 + b2)(ûn+2 + ûn+1), (26)

ûn+3 = ûn+2 + iµ(a3û
n+2 + b3û

n+1) − λ

2
(a3 + b3)(ûn+3 + ûn+2).

The absolute stability regions, i.e. the regions where all solutions to the above
difference equations are bounded in the µ – λ plane, can now be found by
calculating the roots of the associated characteristic polynomials. Contours of
constant absolute values of the roots are given in figure 1. Figure 1 shows the
curves for the RK3-CN method. Note that higher values of λ (lower Reynolds
number) stabilizes the method, i.e. increases the CFL number (µ) that is
allowed for an absolutely stable solution. In the limit of infinite Reynolds
number the RK3-CN method approaches the limit

√
3, a result which also can

be arrived at through the standard analysis of the RK3 scheme alone. The
analysis for the four stage method is analogous and the stability limit is

√
8.

If the time advancement scheme (20) is applied to equations (5) and (7) we
find (for the moment disregarding the boundary conditions),

(1 − an + bn

2R
∇2)φn+1 = (1 +

an + bn

2R
∇2)φn + anhn

v + bnhn−1
v ,

∇2vn+1 = φn+1, (27)
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and

(1 − an + bn

2R
∇2)ωn+1 = (1 +

an + bn

2R
∇2)ωn + anhn

ω + bnhn−1
ω . (28)

2.6. Horizontal discretization – Fourier expansions

The discretization in the horizontal directions uses a Fourier series expansions
which assumes that the solution is periodic.

The streamwise and spanwise dependence of each variable can then be written

u(x, z) =

Nx
2 −1∑

l=−( Nx
2 −1)

Nz
2 −1∑

m=−( Nz
2 −1)

û(α, β) exp[i(αlx + βmz)], (29)

where αl = 2πl/xL and βm = 2πm/zL, and Nx and Nz are the number of
Fourier modes included in the respective directions. Note that the indices
on the discrete wavenumbers α and β are sometimes left out for notational
convenience and that k2 = α2 + β2.

2.6.1. Normal velocity and normal vorticity equations

Expanding the dependent variables of equation (27) in Fourier series gives(
1 − an + bn

2R
(D2 − k2)

)
φ̂n+1 =

(
1 +

an + bn

2R
(D2 − k2)

)
φ̂n

+ anĥn
v + bnĥn−1

v ,

(D2 − k2)v̂n+1 = φ̂n+1, (30)

where D signifies a derivative in the normal direction. Note that the above
equations are two linear constant coefficient second order ordinary differential
equations in y. A similar equation can also be derived from equation (28).
These three equations can be written as follows,

(D2 − λ2)φ̂n+1 = f̂n
v , (31)

(D2 − k2)v̂n+1 = φ̂n+1, (32)

(D2 − λ2)ω̂n+1 = f̂n
ω , (33)

where

λ2 = k2 + 2R/(an + bn), (34)

f̂n
v = p̂n

v − 2Ran

an + bn
ĥn

v , (35)

f̂n
ω = p̂n

ω − 2Ran

an + bn
ĥn

ω, (36)
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and

p̂n
v = −

[
D2 − λ2 +

4R

an + bn

]
φ̂n − 2Rbn

an + bn
ĥn−1

v

= −f̂n−1
v −

[
2R

an−1 + bn−1
+

2R

an + bn

]
φ̂n − 2Rbn

an + bn
ĥn−1

v , (37)

p̂n
ω = −

[
D2 − λ2 +

4R

an + bn

]
ω̂n − 2Rbn

an + bn
ĥn−1

ω

= −f̂n−1
ω −

[
2R

an−1 + bn−1
+

2R

an + bn

]
ω̂n − 2Rbn

an + bn
ĥn−1

ω . (38)

We will denote the quantities p̂n
ω and p̂n

v the partial right hand sides of the
equations.

2.6.2. Horizontal velocities and wavenumber zero

Having obtained v̂ and ω̂ we can find û and ŵ using equation (2) and the def-
inition of the normal vorticity component, both transformed to Fourier space.
We find

û =
i

k2
(αDv̂ − βω̂), (39)

ŵ =
i

k2
(αω̂ + βDv̂). (40)

Similarly, we can find the streamwise and spanwise component of vorticity in
terms of ω̂ and φ̂,

χ̂ =
i

k2
(αDω̂ + βφ̂), (41)

ϑ̂ =
−i

k2
(αφ̂ + βDω̂). (42)

These relations give the streamwise and spanwise components of velocity and
vorticity for all wavenumber combinations, except when both α and β are equal
to zero. In that case we have to use some other method to find û0, ŵ0, χ̂0 and
ϑ̂0 (the zero subscript indicates that k = 0). The appropriate equations are
found by taking the horizontal average of the first and the third component of
equation (1). Due to the periodic BC all horizontal space derivatives cancel
out, i.e.,

∂u0

∂t
= H1 +

1
R

∂2u0

∂y2
, (43)

∂w0

∂t
= H3 +

1
R

∂2w0

∂y2
. (44)



280 A. Lundbladh et al.

After a time discretization we find,

(D2 − λ2)ûn+1
0 = f̂n

01, (45)

(D2 − λ2)ŵn+1
0 = f̂n

03, (46)

where

f̂n
0i = p̂n

0i −
2Ran

an + bn
Ĥn

0i, (47)

and

p̂n
0i = −

(
D2 − λ2 +

4R

an + bn

)
ûn

0i −
2Rbn

an + bn
Ĥn−1

0i

= −f̂n−1
0i (ψ0) −

(
2R

an−1 + bn−1
+

2R

an + bn

)
ûn

0i −
2Rbn

an + bn
Ĥn−1

0i . (48)

Here the 0 index in Ĥ0i refers to the zero wavenumber in both horizontal
directions. Note that the above system contains the same type of equations as
the system (32), and can thus be solved using the same numerical algorithm.
Once û0 and ŵ0 are calculated, the streamwise and spanwise components of
vorticity for k = 0 can be found as follows,

χ̂0 = Dŵ0, ϑ̂0 = −Dû0. (49)

2.6.3. Solution procedure with boundary conditions

A problem with the above equations is that the boundary conditions do not
apply to the quantities for which we have differential equations. To remedy
this, each of the equations can be solved for a particular solution with homo-
geneous boundary conditions. Then a number of homogeneous solutions with
non-homogeneous boundary conditions are found for the same equations. Fi-
nally the boundary conditions are fulfilled by a suitable linear combination of
particular and homogeneous solutions. Explicitly we proceed as follows:
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For all k =
√

α2 + β2 �= 0 and each of the two symmetries (symmetric and
antisymmetric with respect to reflections around y = yL/2) we solve :

(D2 − λ2)φ̂n+1
p = f̂n+1

v φ̂n+1
p (yL) = 0 (50)

(D2 − k2)v̂n+1
p = φ̂n+1

p v̂n+1
p (yL) =

{
v̂BS

2 symmetric
− v̂BS

2 antisymmetric
(51)

(D2 − λ2)φ̂n+1
h = 0 φ̂n+1

h (yL) = 1 (52)

(D2 − k2)v̂n+1
ha = φ̂n+1

h v̂n+1
ha (yL) = 0 (53)

(D2 − k2)v̂n+1
hb = 0 v̂n+1

hb (yL) = 1 (54)

(D2 − λ2)ω̂n+1
p = f̂n+1

ω ω̂n+1
p (yL) = 0 (55)

(D2 − λ2)ω̂n+1
h = 0 ω̂n+1

h (yL) = 1, (56)

where the subscripts p, h, ha and hb indicate the particular and the homoge-
neous parts. v̂BS is only non-zero for cases with blowing and suction through
the plate. Note that only one boundary condition is needed for each second
order equation since the assumption of symmetry (or antisymmetry) takes care
of the other. v̂n+1

p (yL) = 0 when the symmetric and antisymmetric solutions
are added and all the other solutions are zero at y = 0. Equations (52) and
(56) have zero right hand sides and the same boundary conditions. The so-
lution coefficients are therefore identical and so are also their symmetric and
antisymmetric coefficients. Thus, four calls of the the equation solver can be
reduced to one.

To fulfill the the remaining boundary conditions we first construct v̂p1, v̂h1 and
v̂h2,

v̂n+1
p1 = v̂n+1

p + Cp1v̂
n+1
ha v̂n+1

p1 (yL) = 0 v̂n+1
p1 (0) = vBS/2 (57)

v̂n+1
h1 = v̂n+1

ha /
∂v̂ha

∂y
(y = yL) v̂n+1

h1 (yL) = 0 v̂n+1
h1 (0) = 0 (58)

v̂n+1
h2 = v̂n+1

hb + Ch2v̂
n+1
ha v̂n+1

h2 (yL) = 1 v̂n+1
h2 (0) = 0, (59)

where Cp1 and Ch2 are chosen to fulfills the boundary condition ∂v/∂y = 0 at
the lower wall for each of the two symmetries of v̂p1 and v̂h2. As the symmetric
and antisymmetric parts of ∂v̂h1/∂y cancel at the lower wall their sum vh1

fulfills ∂vh1/∂y = 0.

Now the solutions (vp1, ωp), (vh1, ω = 0), (vh2, ω = 0) and (v = 0, ωh) fulfill all
the physical boundary conditions at the lower wall. The total normal velocity
and vorticity is then given by

v̂n+1 = v̂n+1
p1 + Cv1v̂

n+1
h1 + Cv2v̂

n+1
h2 , (60)

ω̂n+1 = ω̂n+1
p + Cωω̂n+1

h , (61)
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where Cv1,Cv2 and Cω are chosen such that the boundary conditions at the up-
per boundary are fulfilled. The u and w velocities are found from the definition
of the normal vorticity and the incompressibility constraint.

In general we have to find u and w first to evaluate the boundary conditions.
Thus with the C’s unknown we find :

ûn+1 = ûn+1
p1 + Cv1û

n+1
h1 + Cv2û

n+1
h2 + Cωûn+1

h , (62)

ŵn+1 = ŵn+1
p1 + Cv1ŵ

n+1
h1 + Cv2ŵ

n+1
h2 + Cωŵn+1

h , (63)

where (up1, wp1), (uh1, wh1), (uh2, wh2) and (uh, wh) are found from (vp1, ωp),
(vh1, ω = 0), (vh2, ω = 0) and (v = 0, ωh) using equation (39) and (40).

Assuming the boundary conditions are linear we can write them as :

Li(û, v̂, ŵ) = D̂i; i = 1, 2, 3. (64)

Here Li is the linear operator for the ith boundary condition. This can include
derivatives in the wall normal direction. The operator may also depend on the
wave number (for example when the boundary condition contains horizontal
derivatives). Note that the expression for evaluation Li may include ω̂ as
this is equivalent to horizontal derivatives. D̂i is the data for the boundary
condition, the most common form of which is is either zero (homogeneous
boundary conditions) or the operator Li applied to a base flow.

Finally inserting the expressions (60), (62) and (63) into equation (64) and
moving all terms containing the particular solution to the right hand side, we
get a three by three linear system of equations which is easily solved to find
the C’s.

For k = 0 we solve

(D2 − λ2)ûn+1
p0 = f̂n

01 ûn+1
p0 (0) = ulow; ûn+1

p0 (yL) = uupp (65)

(D2 − λ2)ŵn+1
p0 = f̂n

03 ŵn+1
p0 (0) = wlow; ŵn+1

p0 (yL) = wupp (66)

(D2 − λ2)ûn+1
h0 = 0 ûn+1

h0 (0) = 0; ûn+1
h0 (yL) = 2 (67)

(D2 − λ2)ŵn+1
h0 = 0 ŵn+1

h0 (0) = 0; ŵn+1
h0 (yL) = 2, (68)

where ulow, uupp, wlow and wupp denote the lower and upper wall velocities.
Computations in a moving reference frame can increase the time step. If the
boundary condition at the upper wall is in the form of Dirichlet type (specified
velocity) then

û0 = ûp0, (69)

ŵ0 = ŵp0. (70)
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For other types of upper wall boundary conditions we find the complete solution
from :

û0 = ûp0 + Cuûh0, (71)

ŵ0 = ŵp0 + Cwŵh0, (72)

where Cu and Cw are chosen so that û0 and ŵ0 fulfill the boundary conditions.

The above equations are all in Fourier space, where the non-linear terms hv, hω,
H1 and H3 become convolution sums. These sums can be efficiently calculated
by transforming the velocities and vorticities using FFTs to physical space,
where they are evaluated using pointwise products.

2.7. Normal discretization – Chebyshev expansion

The typical equation derived above is a second order constant coefficient ODE
of the form

(D2 − κ)ψ̂ = f̂ ψ̂(0) = γ−1, ψ̂(yL) = γ1. (73)

First map the interval [0, yl] to [−1, 1] by setting y′ = 2y/yL − 1. Then

(D
′2 − ν)ψ̂ = f̂ ψ̂(−1) = γ−1, ψ̂(1) = γ1, (74)

where ν = κy2
L/4. In the following we have for simplicity dropped the prime.

This equation can be solved accurately if the dependent variable ψ̂, its second
derivatives, the right hand side f̂ and the boundary conditions are expanded
in Chebyshev series, i.e.,

ψ̂(y) =
Ny∑
j=0

ψ̃jTj(y), (75)

D2ψ̂(y) =
Ny∑
j=0

ψ̃
(2)
j Tj(y), (76)

f̂(y) =
Ny∑
j=0

f̃jTj(y), (77)

ψ̂(1) =
Ny∑
j=0

ψ̃j = γ1, (78)

ψ̂(−1) =
Ny∑
j=0

ψ̃j(−1)j = γ−1, (79)

where Tj are the Chebyshev polynomial of order j and Ny the highest order of
polynomial included in the expansion. If the Chebyshev expansions are used
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in equation (74), together with the orthogonality properties of the Chebyshev
polynomials, we find the following relation between the coefficients

ψ̃
(2)
j − νψ̃j = f̃j j = 0, ...Ny. (80)

By writing the Chebyshev functions as cosines and using well known trigono-
metric identities, one finds relations between the Chebyshev coefficients of ψ̂
and those of its derivative that can be used for differentiation and integration
(see Canuto et al. (1988))

ψ̃
(p)
j =

Ny∑
m=j+1

m+j odd

mψ̃(p−1)
m j = 1, ...Ny, (81)

ψ̃
(p−1)
j =

1
2j

(cj−1ψ̃
(p)
j−1 − ψ̃

(p)
j+1) j = 1, ...Ny, (82)

where the superscript p indicates the order of the derivative and cj = 2 for
j = 0 and cj = 1 for j > 0. In the first differentiation relation one observes
that an error in the highest order coefficients of ψ̃(p−1) influences all coefficients
of its derivative ψ̃(p). This problem is what is supposed to be avoided by
the Chebyshev integration method discussed below. In the second relation we
assume that ψ̃

(p)
j = 0 for j > Ny and note that ψ̃

(p−1)
0 is an integration constant

needed when the function ψ̂(p−1) is found by integrating ψ̂(p). Note also that
the integration procedure introduces a truncation error, since an integration
of a Chebyshev polynomial would result in a polynomial of one degree higher.
The coefficient ψ̃

(p−1)
Ny+1 which would have multiplied TNy+1 is in the present

truncation set to zero.

If the relations (82) are used together with relation (80) a system of equations
can be derived for either coefficients ψ̃j or ψ̃

(2)
j . The second approach, called

the Chebyshev integration method (CIM), was proposed by Greengard (1991)
to avoid the ill conditioned process of numerical differentiation in Chebyshev
space. It was implemented in the original channel code by Lundbladh et al.
(1992a) and is also included in the present implementation. However, we have
found that using this method, subtle numerical instabilities occur in some cases
and we therefore recommend to solve for the coefficients of the function itself,
ψ̃j . Such a Chebyshev tau method (CTM), almost identical to that used by
Kim, Moin & Moser, is also implemented and is so far found to be stable. We
first present the CTM, then the CIM and finally we discuss the instabilities
observed in computations with the CIM. Note that the instabilities have oc-
curred only a few times and that the results otherwise are the same for the two
methods.
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2.7.1. Chebyshev tau method-CTM

If the recursion relation (82) is used to express equations (80) in the coefficients
ψ̃j , one arrives at the system of equations (83 below). A more detailed deriva-
tion can be found in Canuto et al. (1988), but observe the sign errors therein.
We have

− cj−2ν

4j(j − 1)
ψ̃j−2 +

(
1 +

νβj

2(j2 − 1)

)
ψ̃j − ν

4j(j + 1)
ψ̃j+2

=
cj−2

4j(j − 1)
f̃j−2 − βj

2(j2 − 1)
f̃j +

βj+2

4j(j + 1)
f̃j+2, j = 2, . . . , Ny (83)

where

βj =
{

1 0 ≤ j ≤ Ny − 2
0 j > Ny − 2 . (84)

Note that the even and odd coefficients are uncoupled. Since a Chebyshev
polynomial with an odd index is an odd function, and vice versa, the decoupling
of the systems of equations is just a result of the odd and even decoupling of
equation (74) itself. The same can be achieved for the boundary conditions
(78) and (79) if they are added and subtracted,

Ny∑
j=0

j even

ψ̃j =
γ + γ−

2
,

Ny∑
j=1

j odd

ψ̃j =
γ − γ−

2
. (85)

These boundary conditions together with the equations (83) constitute a linear
system of Ny + 1 equations that can be solved for the coefficients ψ̃j (j =
0, . . . , Ny). The structure of the equations involving the even coefficients forms
a tridiagonal system and so does the equation for the odd coefficients. The
boundary conditions fill the top row of both systems and make the systems
only quasi-tridiagonal, but it only takes 16Ny operations to solve both systems.

The system (83) has in fact been truncated to only contains Ny − 1 equations
and two equations have been replaced by boundary conditions. That truncation
introduces what is usually called the tau error. In solution algorithms that
solve for the three velocity components of the Navier-Stokes equations and the
pressure, the coupling between the equations for the velocities and that for the
pressure requires corrections of the tau error (Kleiser & Schumann 1980). We
have chosen to eliminate the pressure in the Navier-Stokes equations and solve
for the normal velocity and the normal vorticity. As those equations do not
couple in the same way, we do not have to correct the tau error.

2.7.2. Chebyshev integration method-CIM

Instead of solving for the coefficients ψ̃j , the CIM solves for the coefficients of
the Chebyshev series for the second derivative, ψ̃

(2)
j . The major advantage is
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supposed to come in the calculation of derivatives of the solution ψ̂. Derivatives
are needed in the calculation of the remaining velocities and vorticities using
equations (39)-(42). In the CIM the second derivative is already calculated and
the first derivative and the function itself can be found by the numerically well
conditioned process of integration.

If the relations (82) are used to write (80) in terms of ψ̃
(2)
j the result is the

following system of equations,

j = 0 : ψ̃
(2)
0 − νψ̃0 = f̃0

j = 1 : ψ̃
(2)
1 − ν(ψ̃(1)

0 − 1
8 ψ̃

(2)
1 + 1

8 ψ̃
(2)
3 = f̃1

2 ≤ j ≤ Ny − 2 : ψ̃
(2)
j − ν 1

4j

[
cj−2ψ̃

(2)
j−2

j−1 − ψ̃
(2)
j

(
1

j−1 + 1
j+1

)
+

ψ̃
(2)
j+2

j+1

]
= f̃j (86)

j = Ny − 1 : ψ̃
(2)
Ny−1 − ν 1

4(Ny−1)

[
ψ̃

(2)
Ny−3

Ny−2 − ψ̃
(2)
Ny−1

(
1

Ny−2 + 1
Ny

)]
= f̃Ny−1

j = Ny : ψ̃
(2)
Ny

− ν 1
4Ny(Ny−1) (ψ̃

(2)
Ny−2 − ψ̃

(2)
Ny

) = f̃Ny
.

The equations for odd and even coefficients decouple and so do the boundary
conditions on the form (85). However, we now need to rewrite them with the
aid of (80) to contain the coefficients of ψ̃(2) that we are now solving for. We
find that the first sum in (85) takes the form,

ψ̃0 + ψ̃
(1)
0 + 1

4 ψ̃
(2)
0 − 1

12 ψ̃
(2)
1 − 7

48 ψ̃
(2)
2 +

∑Ny−2
j=3

3ψ̃
(2)
j

(j−2)(j−1)(j+1)(j+2)

− (Ny−6)ψ̃
(2)
Ny−1

4(Ny−3)(Ny−2)Ny
− ψ̃

(2)
Ny

2(Ny−2)(Ny−1)Ny
= γ1. (87)

Thus, the solution of equation (74) is found by solving the system of equations
for the second derivative of ψ̃ (87) together with the boundary conditions (87)
and the corresponding one at y = −1. We now have two more equations than
for the tau method and the solution to the full system is a set of Ny + 1
coefficients of the second derivative and the two integration constants ψ̃

(1)
0

and ψ̃
(2)
0 representing the zeroth order Chebyshev coefficient of Dψ̂ and ψ̂

itself, respectively. The function ψ̂ is then found by two integrations, which in
Chebyshev space can easily be constructed using the relations (82). The same
quasi-tridiagonal form of the equation systems for the odd and even coefficients
appears as for the CTM and the same solution routine can be used.

2.7.3. Integration correction

When the solution for ψ̂(2) is found by the CIM and integrated to obtain ψ̂(1)

and ψ̂ the same truncation is used for both the derivatives and ψ̂ itself. They
are all represented with Ny + 1 non-zero Chebyshev coefficients. This means
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that the truncations are not compatible, since the derivative of a function
represented as a finite Chebyshev series should have one coefficient less than
the function itself. For example, if the coefficients ψ̃j are used to construct
those for the derivative, using the recurrence relation (81), the result will not
be the same as the coefficients ψ̃

(1)
j . There will be a slight difference in half of

the coefficients for the derivative, the size depending on the magnitude of the
coefficient ψ̃Ny

. The expression for the difference can be derived as follows. We
write ψ̂ explicitly using the coefficients ψ̃

(1)
j and the relation (82),

ψ̂ = ψ̃0T0 +
Ny−1∑
j=1

1
2j

(cj−1ψ̃
(1)
j−1 − ψ̃

(1)
j+1)Tj +

1
2Ny

ψ̃
(1)
Ny−1TNy

. (88)

Now (81) is applied to the Chebyshev coefficients in (88) to calculate the deriv-
ative Dψ̂. Let ψ̃D

j be its new coefficients. We find that these new coefficients

will not equal ψ̃
(1)
j and the following relation is found between them,

ψ̃D
j = 2

cj

∑Ny
q=j+1

q+j odd

(cq−1ψ̃
(1)
q−1 − ψ̃

(1)
q+1)+

1
cj

ψ̃
(1)
Ny−1

= ψ̃
(1)
j q + Ny odd, (89)

ψ̃D
j = 2

cj

∑Ny
q=j+1

q+j odd

(cq−1ψ̃
(1)
q−1 − ψ̃

(1)
q+1)

= ψ̃
(1)
j − 1

cj
ψ̃

(1)
Ny

q + Ny even. (90)

Thus, we have a method of correcting the coefficients ψ̃
(1)
j so that they represent

Dψ̂ with the same truncation as ψ̃j represent ψ̂. A similar correction can be
derived for the coefficients ψ̃

(2)
j of the second derivative. After some algebra

we find,

ψ̃D2

j = ψ̃
(2)
j − 1

cj

(
1 +

(Ny − 1)2 − j2

4Ny

)
ψ̃

(2)
Ny−1 j + Ny odd, (91)

ψ̃D2

j = ψ̃
(2)
j − 1

cj
ψ̃

(2)
Ny

j + Ny even, (92)

where ψ̃D2

j are the corrected Chebyshev coefficients for D2ψ̂.

When the horizontal components of velocity and vorticity are found using the
relations (39) to (42), we need φ̂, Dv̂ and Dω̂. The above corrections are there-
fore needed in order for the velocity and vorticity fields to exactly satisfy the
incompressibility constraint (2). Note that an error in the highest Chebyshev
coefficients will by the above correction scheme affect all other coefficients of
the first and second derivative. Exactly what was supposed to be avoided by
the integration method.
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The CTM and CIM methods are equally efficient and give the same results
with the exception of a few very rare cases. We have found that numerical
instabilities may occur when the wall normal resolution is very low and the
velocity and vorticity fields are not divergence free. We have also found that it
in those cases is enough to make the vorticity divergence free to stabilize the
calculations. With integration correction or the CTM method, both velocity
and vorticity are completely divergence free. However, for one channel flow
case so far, and more frequently in the boundary layer, a numerical instability
occurs with the integration correction but not without.

Fortunately the instability causes the calculation to blow up in a few time steps
and before that the results are the same as for a stable version of the code.
With sufficient wall normal resolution (which is required anyhow) and without
the integration correction the boundary layer code has been found completely
reliable. The CTM method is, however, to prefer.

2.8. Pressure

By expressing the Navier-Stokes equations in the form of equations (4) and
(7), the pressure need not to be taken into account. However, it might be
of interest to solve for this quantity as well as the velocity components. The
pressure can, for example, be used for detecting regions of rapid motion in a
turbulent boundary layer.

The Poisson equation for the pressure derived above, equation (3), is written
as

∇2(p + E) =
∂Hi

∂xi
, (93)

where E = 1
2uiui and Hi = hi + Fi = εijkuj(ωk + 2Ωk) + Fi. Note that the

term Fi does not contain the disturbances in the fringe region for the spatial
simulations and is zero for the temporal boundary layer. This equation has a
similar form as the equations for φ, v and ω and can thus be solved using the
same numerical routine.

The boundary conditions at the wall (y = 0) and at the upper boundary (y =
yL) are derived from the normal component of the Navier-Stokes equations.
The boundary condition with non-zero wall velocities becomes

∂

∂y
(p + E)

∣∣∣∣
y=0

=
[

1
R
∇2v + h2 − ∂v

∂t

] ∣∣∣∣
y=0

. (94)

The term ∂v
∂t is included for the case of flow control like blowing/suction from

the wall. For a wall with zero velocities the boundary condition becomes

∂

∂y
(p + E)

∣∣∣∣
y=0

=
1
R

∂2v

∂y2

∣∣∣∣
y=0

. (95)
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At y = yL the boundary condition becomes
∂

∂y
(p + E)

∣∣∣∣
y=yL

=
[

1
R
∇2v + h2 + λ(x)(Uy − v) − ∂v

∂t

] ∣∣∣∣
y=yL

, (96)

where λ(x) is the fringe function described in section 2.4.

For wavenumber zero the boundary condition (96) is automatically fulfilled if
boundary condition (94) is fulfilled. It is required by the compatibility condition∫ yL

0

dH2

dy
dy =

∂

∂y
(p + E)|y=yL

− ∂

∂y
(p + E)|y=0, (97)

which comes from the integration of equation (93). A second boundary condi-
tion for p itself is needed at y = 0 and this is chosen to be p = 0. The mean
pressure at the wall cannot be determined and p = 0 at the wall is a reference
pressure. It is not possible to choose p = 0 at y = yL because the location of
the free-stream is arbitrary chosen for numerical purposes.

It might seem to be a better approach to rewrite equation (3) as

∇2p = − ∂ui

∂xj

∂uj

∂xi
+

∂

∂xi
(2εijkujΩk) +

∂Fi

∂xi
, (98)

and solve for the pressure directly. The solution to equation (98) turns out
to be sensitive to the values of the velocities at the upper boundary. When
using different boundary conditions for the velocities, the solutions are slightly
different, hence the pressure will be different. The sensitivity comes from the
fact that derivation in the normal direction in Chebyshev space is dependent
on the coefficients in all the collocation points. These coefficients change when
transforming back and forth to physical space. Thus the derivations must be,
for consistency, performed at the same time, with no transformations between
them. These problems are avoided by solving for the pressure plus energy as
in equation (93).

The pressure can be calculated from a specific velocity field with the post
processing program pre. The pressure needs thus not be calculated in the
simulation itself. If turbulent statistics involving pressure are being calculated
during a simulation, the pressure is calculated in those time steps where the
sampling occurs.

3. Implementation

In implementing the algorithm presented above a significant effort has been
put into portability, flexibility and computational efficiency. The language is
standard FORTRAN 77 with the extension of the INCLUDE statements, eight
character names and lower case characters. Especially the demands on the data
structure have forced an encapsulation of the access to the main storage which
requires some attention. Also the vectorization and the need to process suitably
large chunks of data at a time adds complexity in exchange for execution speed.
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3.1. Program structure of bla

The program bla has been divided into subroutines each with one specific task.
The main program steps the time and calculates the adaptive time step. The
subroutines nonlinbl and linearbl carry out the main part of the algorithm
aided by smaller subroutines for integration, equation solving etc. The FFTs
are taken from VECFFT which was developed specifically for the simulation
codes but is an independent package of vectorizable Fourier and Chebyshev
transforms.

3.1.1. Coarse program structure, step 1 - 4

Since some computers cannot hold all of the three dimensional data in the
main memory simultaneously, and in any case the number of three dimensional
arrays should be minimized to save space, the three dimensional computation
is carried out by slicing the data into two dimensional planes.

In the main time stepping loop the data needs to be stepped through twice.
First slicing in x-z-planes to calculate the FFTs and the pointwise product
for non-linear terms, step 2, and second in x-y-planes to calculate the normal
Chebyshev transforms and solve the equation systems for the new velocities and
vorticities, step 3. Step 1 reads input files, initializes the FFTs and calculates
the partial right hand sides needed to start the time stepping loop and computes
the base flow. Step 4 stores the final velocity field.

3.1.2. Step 1, initialization

Subroutine ppar prints the contents of the parameter file to standard output
as a check of which size of problem the image is compiled for.

Subroutine rparambl reads the file bla.i which contains control information
for the program, especially the input and output filenames and the final time
to which the simulation is to be done, cf. section 5.2.

Subroutine rdiscbl reads the resolution, the computational box size and a few
parameters defining the flow from the file namnin. The velocities are then
read from the file and put into the main storage positions 1-3. If the resolution
of the image and the file do not correspond, this is printed on standard output
and the program stops execution. The check can be disabled by the varsiz flag
in the bla.i file in which case the field is extended by zero-padding or truncated
to fit the image resolution.

Subroutine rescale rescales all data read from bla.i from boundary layer scal-
ing to the channel flow scaling used internally, see Appendix B.

Subroutine fskch computes the base flow boundary layer profile.
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Subroutine preprbl calculates wavenumbers and collocation points, and ini-
tializes the FFTs.

Subroutine fshift computes a Galilei transformation which can be used to
increase the maximum stable time step.

Subroutine rwavebl reads the profile of forcing waves to be introduced in the
fringe region.

Subroutine getdt calculates the initial time step to set get a CFL number
equal to the cflmax value. The subroutine is only used if the time stepping is
adaptive.

Subroutine prhs calculates the initial partial right hand sides p̂φ p̂ω, p̂01, p̂03

and places the first two in positions 6 and 7 of the main storage. The streamwise
and spanwise vorticities are also calculated and put into positions 4 and 5 of
the storage.

Subroutine bflow generates a base flow used for spatial simulations.

Subroutine cbflow reads or writes the base flow boundary layer profile in ba-
sic.i for spatial simulations.

Subroutine blfou computes the streamwise Fourier transform of the base flow.

Some initial parameter values for the time stepping mechanism are prepared
in the main program and output files are opened.

3.1.3. Step 2, computations in physical space

The subroutine wplbl writes data to 2-d plane files.

The subroutine blshift shifts the base flow and boundary conditions to be
aligned with the computational domain when a Galilean transform is used, i.e.
if the lower wall is “moving”.

The subroutine gtrip generates a random force flow trip.

The subroutine boxxys computes the spanwise and time averaged statistics
for one xz-box.

The subroutine nonlinbl calculates Hi as pointwise products in physical space
and stores them in position 1 to 3 of the main storage. It also computes the
volume forcing and adds it to Hi. As the main storage is in Fourier-physical
space, cf. section 3.2.2 below, the velocities and vorticities must be transformed
back to physical space before the product can be formed. Likewise the products
Hi must be transformed to Fourier space before storing them. The velocity
rms amplitudes are computed in Fourier-physical space. The maximum CFL
number and the extrema of the velocities are calculated from the velocities in
physical space.



292 A. Lundbladh et al.

The xy-statistics, CFL number, and rms-amplitude and extremum statistics
are written to the respective files.

3.1.4. Step 3, computations in Fourier-Chebyshev space

The time step is recalculated to regulate the CFL number close to cflmax if
adaptive time stepping is enabled. The time stepping parameters are calculated
for the next time step.

Subroutine linearbl transforms the non-linear products into Chebyshev space
and constructs the complete right hand sides for the evolution equations. The
Chebyshev-tau or Chebyshev-integration method is used to solve for the evo-
lution variables from a set of tridiagonal equations. The chosen boundary
conditions are applied. All velocities and vorticities are constructed and par-
tial right hand sides are computed for the next time step. Finally the velocities
and vorticities are transformed back to physical space in the y-direction. The
velocities are stored into positions 1 to 3, the streamwise and spanwise vorticity
into 4 and 5 and the partial right hand sides into 6 and 7 of the main storage.

For selected times the 3-dimensional velocity data is written to file.

Time is incremented and execution is continued with the next time step from
step 2 if the the final time tmax is not reached.

If pressure is set to one in the file par.f, the following two subroutines are
entered if statistics are sampled in this step. In nonlinp the terms H1,1 +H3,3

and H2 are calculated and stored in position 4 and 5. The energy E is calculated
and stored in position 8. In linearp the linear and non-linear parts of the
boundary conditions and the sum H1,1 + H2,2 + H3,3 are calculated. The
equation for the pressure is solved and the streamwise and spanwise vorticity
need to be recalculated. Pressure is stored in position 8.

3.1.5. Step 4, output

The subroutine wdiscbl handles the output of a velocity field to an external
file. The final values of xy-statistics are written to file by wxys. The pressure is
written to an external file by wdiscp if pressure is set to one. The amplitude
files are written by wamp, and planes are written by wplbl. All opened files
are closed.

3.2. Data structure

As the size of a problem is explicitly compiled into the program, the memory
allocation is for the most part static. Some effort was put into minimizing
not only the three dimensional storage but also the two dimensional arrays
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since this is the only part residing in main memory when the three dimensional
storage is located on an external device.

3.2.1. Complex numbers and FFTs

Most of the algorithm above works with quantities in Fourier space. These are
in general complex which requires storage of both real and imaginary parts.
Though FORTRAN has the capability of automatically handling complex num-
bers most compilers produce inefficient code for this, especially for mixed real
and complex expressions. Moreover FORTRAN stores complex numbers with
alternating real and imaginary parts, which causes a severe performance loss
for vector fetches on certain computers as the stride will be even. To circum-
vent this, it was decided to store all complex quantities in double arrays, one
for real and one for imaginary parts. As the algorithm neither includes gen-
eral complex-complex multiplications nor divisions this did not add very much
code.

The FFTs in VECFFT are built for separate storage of the real and imaginary
parts, but can optionally be used with standard FORTRAN storage.

3.2.2. Main storage, boxes, drawers, and planes

As mentioned above, to save on space the algorithm traverses the three dimen-
sional volume twice to complete a time step. The three dimensional storage is
in some cases too large to fit in the main memory in which case it may be put
on an external device such as an SSD or a disk. In order to efficiently access
this external device the records need to be long, preferably much longer than
the typical vector length needed to get good CPU performance. If the three
dimensional storage is divided into x-z- and x-y-planes the largest common
element between these is a single vector in the x-direction, a pencil containing
nx words. In order to increase this number, planes are combined into a box
consisting of an integer number of adjacent planes e.g., an x-y-box holds mbz
x-y-planes and an x-z-box holds mby x-z-planes. The intersection between an
x-y- and an x-z-box then holds mby*mbz pencils, which is called a drawer. Most
subroutines are made to handle a box rather than a plane at a time, with the
additional advantage that the vector length increases by a factor of mbz or mby.

The variables in the main storage are in Fourier-physical format, i.e., the axes
are α, physical y and β, except for the partial right hand sides p̂v and p̂ω, which
are stored in Fourier-Chebyshev space.

The structure of the file used for the three dimensional storage is as follows: File
format : unformatted, direct access, scratch, record length nx*mby*mbz*npreal
bytes, name ur. npreal is the number of bytes used to store a real number
(usually 4 or 8 bytes). Storage sequence: the drawers are stored in increasing
y, z and i order, with y varying the fastest and i slowest. Within each drawer
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the coefficients are stored in increasing x, y, z order with x varying the fastest
and z slowest. All the real data is stored in the first half of the drawer and
imaginary data in the second. The number of records is nby*nbz*7.

The main storage is accessed box-wise by the routines getxy, putxy, getxz
and putxz. The routines select between core storage and file storage depending
on the value of the integer nfc (1/0); for the latter case the routines getdr,
putdr move one drawer from or to the file.

3.2.3. Naming conventions

The variable names in the algorithm description above have been followed as
closely as possible. One important exception is that Ny in the algorithm cor-
responds to ny-1. Greek letters have been replaced by abbreviations. In the
case a variable is complex it has been replaced by two with the last letters ‘r’
and ‘i’, for the real and imaginary parts. An example of this is pomyr which is
the real part of the array p̂n

ω. Note that the superscripts ‘n’ etc. and the hat
symbol are generally left out, when needed for distinction they are replaced by
suffices , e.g. an+1 becomes anp1. The component indices ‘1,2,3’ in, e.g., H1

are usually found as the last index of the array. Instead numbers in the array
names are used to distinguish between the same variable when represented by
two different arrays in step 2 and step 3. Normal derivatives are denoted by
prefixes d and d2. Sometimes a ‘b’ is used for ‘box’, cf. above, e.g., bbeta is
the wavenumber beta vector expanded to correspond to other box sized arrays.

All variables are declared a specific type and the program has been compiled
with an implicit none statement, which was changed to implicit logical
(a-z) as the former is non-standard. Thus the type rules are not into effect
and have not been adhered to; note especially that x, y, z are integer indices
in do loops.

4. Operation

The program bla reads a velocity field from an external device, steps the field
to a selected final time while producing some log information on the standard
output device and writes the final velocities back to a file. During the simulation
it may also output a file of the velocity and vorticity rms amplitudes, a file of
the amplitude of specific wavenumbers, a file of extremum amplitudes, a file
of statistics averaged over the spanwise direction, files with velocities in two
dimensional planes at regular intervals in time and files containing complete 3-d
velocity fields at selected times. The simulation can be run with the pressure
solver to get the pressure at the same time steps as the velocities.

The program bls may be used to produce the initial velocity field.
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The program rit performs post processing of 3-d velocity fields into Tektronix,
Postscript or ppm (portable pixel map) compatible graphics. Linear combina-
tions (for example difference) of one or more 3-d velocity fields can be computed
with cmp, which also can calculate rms and maxnorm amplitudes of the result.
This is useful for, for example, convergence checks.

The program pre calculates the pressure for a 3-d velocity field and produces
a 3-d pressure field which is post processed with ritpre.

Postprocessing of two dimensional planes is done by the program rps in a way
similar to rit. Plots of amplitude files are generated by the programs pamp1
and pamp2, which handle one and multiple amplitude files respectively. Wave
amplitude files are plotted by the program pampw and pampw2 and ex-
tremum amplitude files by pext1.

To reduce the storage requirements of 3-d velocity files, they can be compressed
by dfc and similarly for two dimensional plane files by dpc. Note that regular
compression programs such as gzip or compress give a negligible reduction in
size of these binary data files. An additional advantage with using the com-
pression routines is that they produce a binary data format which is portable
between machines with different file formats and floating point representations.

These programs along with the Fourier transform library VECFFT, the com-
pression library dclib and the plot library plot1 forms a completely self con-
tained and portable system written in FORTRAN 77.

4.1. Compiling

Most of the programs need to be recompiled for each size of problem to be
run. Under UNIX this is most easily handled with a makefile. As stated above
the compiler must handle INCLUDE statements and lower case characters.
For compilation most of the programs require Fourier transforms from the
package VECFFT. These are also written in standard FORTRAN 77 and can
be compiled along with the code. The number of grid points and some other
parameters must be set prior to compilation in the file par.f. The same par.f
file should be used for the compilation of all programs to work on a specific
simulation. Which routines that need to be recompiled after changing the
parameter file is determined by the makefiles.

The number of spectral modes in each direction is set by the parameters nx, ny,
nz. The following restrictions apply : nx and ny-1 must be even and factorable
by 2, 3 and 5, nz must be factorable by 2, 3, 5 and at least 2. Note that ny
is the number of Chebyshev polynomials and thus is equal to Ny + 1 used in
section 2 above.

Dealiazing, i.e. padding to remove aliazing errors, can be switched on (=1) or
off (=0) independently for each direction by the flags nfxd, nfyd and nfzd. If
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dealiazing in the respective direction is used nx, ny-1 must be divisible by 4,
and nz must be divisible by 2. Z-symmetry can be used to reduce computation
time and storage by setting nfzsym=1. If this is done nz must be divisible
by 4, and if used simultaneously with dealiazing in the z-direction nz must be
divisible by 8.

There is an option to run 2 1/2 dimensional simulations, i.e., simulations of
flow in a two dimensional geometry with all three velocity components non-
zero, which is sometimes called the infinite swept flow. (Two dimensional flow
is a special case of this.) In this case set nz=1 nfzsym=0 and nfzd=0. (In this
case the limitations on nz given above do not apply.)

Normally (nfc=1) all the storage resides in primary memory but it is possible
to put the main three dimensional arrays in the external file ur by setting
nfc=0. To achieve maximum performance, especially for external main storage,
the parameters mby and mbz can be changed from the default value =1, see
section 4.4 below. Note that nz must be divisible by mbz. The program can be
coarse grain parallelized, in which case the parameter nproc should be changed
from the default value one to the number of available processors. This is also
discussed in section 4.4. To allow for simultaneous calculation of velocities and
pressure, the parameter pressure should be set to 1. All other parameters in
the par.f file are computed and should not be changed manually. Note that
most subroutines except those in the libraries dclib, VECFFT and plot1
must be recompiled after changing par.f.

The codes are written in single precision, i.e. with REAL and COMPLEX
declaration. However, in most cases there is a need to run the code in double
precision, i.e., with at least 10-12 digit precision. For this purpose the supplied
makefile convert the programs to double precision. Note that for the programs
to work with the libraries and together with binary files all routines must be
compiled with the same precision. The makefile automatically compile the
libraries with the same precision as the program. For the double precision,
you can also use the compiler option by specifying the default size of variables
as DOUBLE PRECISION like “-r8”. This option varies from one machine to
another. In case of work stations, the compiler option for the double precision
is used. See the Makefile for more informations.

However, to change precision (i.e., compiling the programs as double precision
where they have previously been compiled as single or vice versa) it is necessary
to delete all object files before recompiling. This is not handled automatically
by the makefiles.

The same makefile named “Makefile” can be used in most machines including
Crays, IBM, SGI, SUN, DEC and HP. You must have “cpp” in path and may
need to change preprocessor option because it varies from machine to machine.
The C language preprocessor, cpp performs the preprocessing directives in some
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programs like ctim.f. It is useful to handle system dependent functions in one
file.

4.2. Generation of initial velocity fields with bls

An initial velocity field consists of a header and an array with the three com-
ponents of velocity in Fourier space fulfilling the equation of continuity. The
format of the file is described in section 5.3. The routine bls may be used to
generate an initial velocity field, consisting of a basic laminar flow, a localized
disturbance, waves and a random noise. The different disturbances can be
switched off to allow zero to three disturbances to be inserted.

The initial velocity field file has the same format as files generated by subse-
quent execution of the bla program so that it is possible to feed the initial
velocity field to the postprocessing directly for examination.

To compute a velocity field a velocity profile file must first be generated. The
subroutine fskch finds velocity profiles from the Blasius/Falkner-Skan/Falkner-
Skan-Cooke family. These are similarity boundary layer profiles derived from
the laminar boundary layer flow equations for flow over a flat plate, wedge
and infinite swept wedge. bls is generating a temporal/spatial or parallel/non-
parallel velocity field depending on flow type parameter fltype.

bls is intended for batch execution and has no interactive input. The input
comes from the file bls.i. The format of this file is given in section 5.1. All
input is non-dimensionalized with the displacement thickness and free-stream
velocity at the inflow boundary (x = 0) at t = 0.

4.3. Generation of non-similarity base flows

In case the streamwise free-stream velocity is not a power of the downstream
distance, the boundary layer equations do not have a self similar solution.
To generate a base flow for this situation we can first use bls to generate a
similarity flow field (without disturbances) which is a good approximation to
the sought flow around the inflow boundary. I.e., a flow such that boundary
layer thickness and acceleration are correct around the inflow boundary. Then
this flow field can be advanced in time with bla to find a steady state using
a streamwise free-stream velocity given in tabular form as a function of the
downstream distance (see section 5.2 and 5.10). The generated steady flow
field can be input to bls and disturbances superimposed. The same flow field
can be used to specify the baseflow to bla for subsequent simulations.

4.4. Execution of bla

The program is intended to be used in batch mode and so has no interactive
input. The main configuration is done at compile time through changes to the
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file par.f (see section 4.1) and at runtime by bla.i (see section 5.2). An initial
velocity field, which can be produced by the program bls, see above, is needed
to start execution.

4.4.1. Storage requirements

The core size depends on the compiled size of the code, the resolution of the
simulation, and whether dealiazing in the y-direction is used, the tuning pa-
rameters mby, mbz and nproc and if the three dimensional storage is in the
core.

The two dimensional storage for step 2 is 7*nx*nz*mby*nproc words; multiply
by a factor 1.5 each for dealiazing in the x and z-directions, by 0.5 for z-
symmetry and by 8/7 if the pressure solver is activated. For step 3 storage is
19.5*nx*ny*mbz*nproc words; multiply by 1.5 for dealiazing in the y-direction
and 8/7 for pressure solver. The storage for step 2 and step 3 overlaps so that
the total two-dimensional storage is equal to the maximum of the requirement
for step 2 and step 3.

The three dimensional storage is 7*nx*ny*nz words, multiply by a factor of
1.5 for dealiazing in the y-direction, by 0.5 for z-symmetry. This storage can
be kept out of the core by setting nfc=0.

4.4.2. Tuning

The code itself has been written for maximum speed on a vectorizing computer
using a highly optimizing compiler. To achieve highest possible performance
the main storage should preferably be kept in the core. If this is is not possible
the performance in terms of wall time will degrade due to waiting for I/O, but
the CPU time will only increase in the order of 10%.

For tuning of the program to a given installation two parameters mby and mbz
can be set in par.f. This has the greatest impact on performance if the storage
of the main data is out of core. For large in-core simulations mby=mbz=1 will
generally give good performance. Note that nz must be divisible by mbz.

If the three dimensional storage is in the core the value of mby and mbz affects
only the vector lengths. The basic vector length is nxp/2*(mby-1)+nx/2 in
most of step 2 (where nxp is equal to nx without x-dealiazing and nx*3/2 with
x-dealiazing, and nz*mby in the x-transform, multiply the latter by 1.5 for z-
dealiazing and multiply by 0.5 and add 1 for z-symmetry. The vector length
in step 3 is nx/2*mbz. If these values are lower than what is needed to get a
good performance, mby and mbz can be increased.

If the three dimensional storage is out of core it is important to keep the record
length, nx*mby*mbz*npreal bytes (where npreal is the number of bytes used
to store a real number, in communication with the main storage file as large as
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possible. Since increasing mby and mbz increases the amount of internal storage,
this is preferably done by balancing the amount of storage needed for step 2
and step 3, cf. above. A suggestion is to put mby=mbz=2 and see if this gives
an acceptable performance in terms of wall time/CPU time. If not, they can
be increased to see if this improves the situation. Note finally that nothing can
be done to the finite bandwidth of the transfer between disk and processor,
the program will do about 4 flops for every byte transferred between disk and
processor (8 when using 4-byte reals), so it is quite likely that the program will
spend a large portion of the time waiting for the disk.

The program is prepared to be coarse-grain parallelized. Step 2 and step 3 can
each be divided on as many processors as there are boxes to process; typically
this is no limitation. There are directives for several compilers inserted before
the loops 2 and 3, these may have to be replaced for compilers not previously
used. To achieve parallelization nproc in par.f should be set to the number of
processors to be used. Then all subroutines have to be compiled as recursive,
i.e. with dynamic local storage. In addition a parallelizing option has to be
added to the compile statement for the main program. The code has been
run in parallel mode on the Alliant FX-80 and FX-2800, the SGI Powerstation,
Challenge and Power Challenge, the CRAY-2, J90 and C90. The typical speed-
up is 3.5-3.8 for four processors.

A slightly different version of the code has been implemented on various com-
puters with distributed memory, such as IBM SP2 and CRAY T3E. The com-
munications between the processors are handled with the Message-Passing In-
terface (MPI). The efficiency has been tested and is reported in Alvelius &
Skote (2000).

4.5. Post processing

4.5.1. Post processing velocity files with pre and ritpre

The program pre generates a pressure field from a velocity field. The pressure
can be examined with the program ritpre in the same way a velocity field is
post processed with rit.

4.5.2. Post processing velocity files with rit

The program rit generates various graphs from a velocity field file. The graphs
can be generated in either Tektronix 4014 format or Postscript. There is also
a possibility to produce black and white portable pixel maps (ppm). When
executed, rit prompts for an input file name. The file is read and the program
offers a choice of various types of graphs. It is mainly intended for interactive
execution and should be self explanatory.
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It is possible to use rit in a batch environment by compiling it into a input
program. This is run interactively to produce a file ritin, which is subsequently
read by the batch code to produce the desired plots. Note that if plots in batch
mode are produced ‘to the screen’ the resulting Tektronix graphic characters
will be written to the log file. To compile a batch program, set imode to 2 in
the rit.f file and compile a second time with imode=3 to get an input program.
To get an interactive program imode should be left at 1.

4.5.3. Post processing velocity files with cmp

The program cmp is used for subtracting and adding different velocity fields.
This is useful when comparing velocity fields.

4.5.4. Post processing plane files with rps

Planes saved during a simulation can be examined with the program rps.

4.5.5. Post processing velocity files with fou

When a number of velocity fields has been saved during a simulation, the
program fou can be used to make Fourier transforms in both time and space.

4.5.6. Postprocessing amplitude files with pamp1, pamp2, pampw,
pampw, pampw2 and pext1

The programs pamp1 and pamp2 can be used to produce plots of the time
history of various amplitudes from the amplitude files by written bla. pamp1
works on one file and pamp2 can plot one quantity from multiple files. pext1
makes plots of time histories of extremum values (i.e. min and max values) of
velocities and vorticities and the location of extrema. pampw and pampw2
similarly plot amplitudes of wave components (streamwise-spanwise Fourier
mode) from one or multiple wave-amplitude files. The programs are intended
to be self explanatory and prompt for input file names. Since the amplitude
files are formatted and normally relatively small, no batch versions of these
programs are available. The files contain no headers so that files from sequential
runs of one flow case can be concatenated and then plotted to show the complete
evolution of the amplitudes.

4.5.7. Postprocessing xy-statistics files with pxyst

To get good statistics of space developing flows with one homogeneous direction
(spanwise), the data needs to be averaged in time. The plotting of time and
spanwise averaged data saved to file is performed by pxyst. Note that these
files have headers, and thus cannot be concatenated together. The statistics in
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different files can be added together by the program addxyst. The format of
the statistics files is given in section 5.9 below.

pxyst generates plots both of the raw statistical data and of a number of
derived quantities. It is also possible to generate various special plots of the
mean flow, such as boundary layer thicknesses and skin friction.

There is an initial option to filter data, which applies to the raw data, before
computing other quantities. There is also an option to filter data prior to
producing plots, the filter is then applied to the derived quantity. The results
of the two filtering processes may differ. In both cases the filter is applied in
the streamwise direction.

5. File formats

These are the input/output files used by the programs. For the format of the
external main storage file see section 3.2.2 above.

5.1. bls.i file

bls.i is formatted and sequential. Comments can be put after data on lines not
containing character input. All input is non-dimensionalized with the displace-
ment thickness at x = 0, t = 0 and the free-stream velocity at x = 0, t = 0.
For more explanations see section 4.2. Contents line by line :

1. namnin Optional input velocity field file name; character*32.

As an option the base flow can instead be given in the form of an input velocity
field file.

2. namnut Output velocity file name; character*32.

3. re The Reynolds number (based on the units above); real.

4. xlb The length of the computational box; real.

5. h2 The height of the computational box; real.

6. zlb The width of the computational box; real.

The dimension of the simulation box in all three dimensions must be given.
The streamwise extent of the box must for spatially developing flows include
the length of the fringe region, which is typically set to 30-100 displacement
thicknesses. The vertical extent of the box must include the whole boundary
layer. Depending on the choice of free-stream boundary condition, the box may
include only the boundary layer or a few times more. The sufficiency of the
box height may be investigated through numerical experiments.
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7. fltype Type of flow (-2 temporal Falkner-Skan-Cooke, -1 temporal Falkner-
Skan, 3 temporal Blasius BL, 6 spatial Blasius BL, 7 spatial Falkner-Skan, 8
spatial Falkner-Skan-Cooke, 9 spatial parallel Blasius/Falkner-Skan/Falkner-
Skan-Cooke; integer.

8. If fltype = -1 or ≥ 7: rlam The acceleration exponent of the velocity in
the free-stream; real.

9. If fltype = -2 or ≥ 8: spanv The spanwise free-stream velocity; real.

10. If fltype ≥ 6: bstart The x-value of the start of the blending of the base
flow; real.

11. If fltype ≥ 6: bslope The length of base flow blending region; real.

The base flow can either be parallel or space developing. The parallel base
flow is for the present version only of Blasius type and is selected by setting
fltype=3. The space developing base flow can be either Blasius (fltype=6),
Falkner-Skan (fltype=7), or Falkner-Skan-Cooke (fltype=8). For the two
latter the acceleration exponent rlam for the streamwise free-stream velocity
must be given (i.e. m in U = Cxm). For Falkner-Skan-Cooke (swept wedge)
flow the spanwise velocity in the free-stream must be specified. Note that the
spanwise direction is parallel to the leading edge of the wedge for this case, and
that the spanwise free-stream velocity is constant. For spatially developing
flows the base flow from the upstream and the downstream end are blended in
the fringe region. The start and blending length must be specified. Typically
the start is given as a negative number i.e., the distance upstream of the inflow
boundary where the blend starts is given. (see section 2.4)

12. ushift The Galilei shift velocity, =0 for no shift; real.

13. locdi Flag to generate a localized disturbance; logical.

13.a If locdi is true: ditype The type of disturbance , only useful values 1 to
3; integer.

13.b If locdi is true: amp The amplitude of a localized disturbance; real.

13.c If locdi is true: theta The rotation angle of the localized disturbance in
radians; real.

13.d If locdi is true: xscale The streamwise scale of the disturbance; real.

13.e If locdi is true: xloc0 Origin of the disturbance in x-direction; real.

13.f If locdi is true: yscale The wall normal scale of the disturbance; real.

13.g If locdi is true: zscale The spanwise scale of the disturbance; real.

13.h If locdi is true: ipoly The wall normal distribution of the disturbance,
only useful values 1 to 4; integer.
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The ditype determines the type of disturbance. See bls.i for more information.
The example below is for ditype set to 1.

The localized disturbance is governed by the amplitude, the rotation angle,
the length and spanwise scale. The rotation angle is the angle by which the
spanwise symmetric disturbance is rotated about the y-axis. The x-scale and
the z-scale of the disturbance are given to be applied to the disturbance before
rotation. The form of the disturbance is in a coordinate system aligned with
disturbance:

u′ = 0

v = −∂ψ

∂z

w′ = −∂ψ

∂y

ψ = amp
x′

xscale

z′

zscale
p(

y

yscale
)e−( x′

xscale
)2−( z′

zscale
)2

(99)

where p(s) is determined by ipoly, see bls.i. The relation between the distur-
bance aligned velocities and coordinates (with ′) and the computational box
aligned ones is :

x = x′ cos(theta) + z′ sin(theta) (100)

z = −x′ sin(theta) + z′ cos(theta) (101)

u = w′ sin(theta) (102)

w = w′ cos(theta) (103)

14. waves Flag to generate a pair of oblique waves; logical.

14.a If waves is true: energy Energy density of the waves; real.

14.b If waves is true: ystart The lowest y-value of non-zero wave amplitude;
real.

14.c If waves is true: yend The largest y-value of non-zero wave amplitude;
real.

14.d If waves is true: yrise The switch distance from zero to max wave am-
plitude; real.
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14.e If waves is true: yfall The highest y-value of non-zero wave amplitude;
real.

14.f If waves is true: walfa Streamwise wave number of the waves; real.

14.g If waves is true: wbeta Spanwise wave number of the waves; real.

15. os eigen modes flag, .true. for use of tabulated eigen modes; logical.

16. noise noise flag, .true. for noise; logical.

16.a If noise is true: ed The mean energy density of the noise; real.

16.b If noise is true: nxn The maximum streamwise wavenumber of the noise,
should be ≤ nx/2; integer.

16.c If noise is true: nyn The number of vertical Stokes modes in the noise,
should be even, < ny*2/3; integer.

16.d If noise is true: nzn The maximum spanwise wavenumber of the noise,
should be odd, < nz; integer.

16.e If noise is true: seed A random number seed in the range -700000 to -1;
integer.

The noise is in the form of Stokes modes, i.e., eigenmodes of the flow operator
without the convective term. These fulfill the equation of continuity and the
boundary condition of vanishing velocity at the lower and upper boundaries.
Although the actual boundary condition may allow a non-zero amplitude at
the free-stream boundary the restriction of zero amplitude for the noise doesn’t
have a large impact in practise.

The noise can be switched on by a flag in the input file. If noise is used the
mean energy density must be given along with the number of wave numbers
to be randomized for each direction. In the wall normal direction the number
of Stokes modes to be randomized is given. The same noise will be generated
for the same setting of this seed, if the physical size of the simulation box is
unchanged. In particular the resolution can be changed without affecting the
noise, as long as the number of grid points is sufficient to resolve the noise
modes. This is useful for convergence studies.

5.2. bla.i file

bla.i is formatted and sequential. Comments can be put after data on lines not
containing character input. For more explanations see section 4.4. Contents
line by line :

1. namnin Input velocity file name; character*32.

2. namnut Output velocity file name; character*32.
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3. If pressure in par.f is 1: namnutp Output pressure file name; character*32.

4. tmax The final time to which to simulate; real.

5. maxit The maximum number of iterations to simulate; integer.

6. cpumax The maximum CPU time in seconds; real.

The input and output file names and the final time tmax determine the scope
of the simulation, in addition setting the maximum number of iterations puts a
limit on the number of iterations to be taken through the main time step loop.
The latter parameter is useful with variable time stepping in a batch environ-
ment to ensure that the execution terminates before running out of execution
time. If the maximum number of iterations is used before the final time is
reached the execution will terminate normally by saving the present velocity
field to the output velocity file. Note that for RK3 a time step consists of three
or four iterations. The execution will only stop after completing an integer
number of physical time steps. If adaptive time stepping is used the program
will adjust the final four time steps so that it reaches exactly the final time.
You can also control maximum execution time in CRAY systems by giving the
maximum CPU time for batch job so that it terminates by cpumax. You just
give a very big number if you do not need to control maximum execution time.

7. dt The time step length; real.

dt is the length of the time step, if it is set ≤ 0 the adaptive time stepping
is used. The time step is regulated to keep the CFL number close to cflmax,
which is set to 0.9

√
3 for the three stage Runge-Kutta and 0.9

√
8 for the four

stage Runge-Kutta. When using a fringe region the time step is also limited
by the numerical stability for the damping term, this is 1.75/fmax for the three
stage RK and 1.96/fmax for the four stage RK (fmax is the max strength of
the fringe region, see below). If dt is set < 0 then −dt is used as an additional
limit on the variable time step.

8. nst The number of stages in the time discretization; integer (3 three stage
Runge-Kutta, 4 four stage Runge-Kutta).

nst selects between the different formulas for the explicit time discretization.
The 4 stage Runge-Kutta method is about 20% more efficient than the 3 stage
version.

9. xl The new box length. If lower than the old length, the old value will be
used; real.

10. varsiz Flag to allow read of a file of different size than the code is compiled
for; logical.

If varsiz is set true the program may start from an input field of a differ-
ent resolution than the program is compiled for. The spectral coefficients are
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ibc BC at free-stream boundary
0 u = v = w = 0
1 Du = Dv = Dw = 0
2 D2u = D2v = D2w = 0
3 D3u = D3v = D3w = 0

10 Du + ku = Dv + kv = Dw + kw = 0
11 D2u + kDu = D2v + kDv = D2w + kDw = 0
12 D3u + kD2u = D3v + kDv = D3w + kD2w = 0
20 Dv + kv = D2v + kDv = ω = 0

100 u = U, v = V,w = W
101 Du = DU,Dv = DV,Dw = DW
110 Du + ku = DU + kU,Dv + kv = DV + kV,Dw + kw = DW + kW
120 Dv + kv = DV + kV,D2v + kDv = D2V + kDV, ω = 0
130 u = U,Du = DU,w = W
140 u = U, v = dDV,w = W
150 u = U,Du − vx = 0,Dw = 0

Table 2. Free-stream boundary conditions. u, v, w are the
solution velocities. U, V,W are the base flow velocities. D
is the velocity derivative normal to the boundary, k is the
modulus of the horizontal wavenumber (k2 = α2 + β2).

padded with zeroes or truncated to achieve a spectrally accurate interpolation.
However, the resolution cannot be reduced in the normal direction as the trun-
cated field in general will not fulfill the equation of continuity and the boundary
conditions.

11. rot The rotation rate, 0. for no rotation ; real.

rot is the angular velocity of the coordinate frame around the z-axis. For
non-rotating flows it should be set to zero.

12. ibc The boundary condition number; integer.

ibc is the number of the free-stream boundary condition. The implemented
boundary conditions are given in table 2. See also section 2.2 above. A number
of these boundary conditions makes the numerical scheme unstable. Among
the stable boundary conditions , the most used are number 101 and 110.

13. cim Flag to use chebyshev integration method. If false the tau method is
used; logical.

14. If cim is true: icorr Flag to use integration correction; logical.

icorr is a flag to use integration correction. The combination of using inte-
gration correction and boundary conditions other than of Dirichlet type may
lead to numerical instability. The flag is normally set false.



An efficient spectral method for simulation 307

15. gall Flag to compute and use a Galilei transformation to increase max
stable time step; logical.

16. spat Flag to perform spatial simulation; logical.

spat turns on spatial simulations, if it is set false the program performs a
temporal simulation. For spatial simulations a number of parameters specifying
the fringe region must be given, see section 2.4 above.

17. If spat is true: tabfre Flag to use a tabulated free-stream velocity; logical.

To use a tabulated free-stream velocity the flag tabfre is set true. The format
of the free-stream velocity file is given in section 5.10 below.

18. If spat and tabfre are true: namfre Name of file containing free-stream
velocity table; character*32.

19. If spat is true: rbfl Flag to use a 3-d flow field as a base flow; logical.

To use a 3-d flow file to define the base flow the flag rbfl is set true. The
format of the 3-d flow file is given in section 5.3 below.

20. If spat and rbfl are true: nambfl Name of file containing a 3-d base flow;
character*32.

21. If spat is true : fmax Maximum strength of the fringe region; real.

22. If spat is true : fstart x-position of the start of the fringe region; real.

23. If spat is false : fend x-position of the end of the fringe region; real.

24. If spat is true : frise The distance from the start of the fringe region to
the first point of maximum damping; real.

25. If spat is true : ffall The distance from the last point of maximum
damping to the end of the fringe region; real.

26. If spat is true : ampob The amplitude of oblique waves forced in the fringe;
real.

A pair of oblique waves can be generated in the fringe region by setting ampfw
non-zero. The format of the waveform file wave.d is given in section 5.11.

27. If spat is true : amp2d The amplitude of two dimensional T-S wave forced
in the fringe; real.

28. If spat is false : cdev The reference speed for the parallel boundary layer
growth; real.

For temporal simulations cdev must be set to the reference speed of the bound-
ary layer growth, see section 2.3 above.

29. loctyp to generate a localized volume force disturbance; integer.
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loctyp can take values from 1 to 5. Various disturbances can be created. See
locf for more information. The different values of loctyp each require a distinct
number of parameters in the file bla.i, see rparambl for more information. As
an example, a localized volume force disturbance to generate wave packets is
created by setting loctyp to 1. The following parameters (28.a-i) are required
if loctyp is 1. Different parameters are needed when loctyp is 2, 3, 4 or 5.
This is explained in rparambl and locf.

29.a If loctyp is 1 : ampx Max amplitude of the localized volume force distur-
bance in x-direction; real.

29.b If loctyp is 1 : ampy Max amplitude of the localized volume force distur-
bance in y-direction; real.

29.c If loctyp is 1 : ampz Max amplitude of the localized volume force distur-
bance in z-direction; real.

29.d If loctyp is 1 : xscale Length scale of the localized volume force distur-
bance in x-direction; real.

29.e If loctyp is 1 : xloc0 Origin of the localized volume force disturbance in
x-direction; real.

29.f If loctyp is 1 : yscale Length scale of the localized volume force distur-
bance in y-direction; real.

29.g If loctyp is 1 : zscale Length scale of the localized volume force distur-
bance in z-direction; real.

29.h If loctyp is 1 and zscale < 0 : lskew The obliqueness of waves of the
localized volume force disturbance; real.

29.i If loctyp is 1 : tscale Time scale of the localized volume force disturbance;
real.

If loctyp is 1, the form of the localized disturbance is:


 F1

F2

F3


 =


 ampx

ampy

ampz


e−(y/yscale)2g(x, z)f(t), (104)

where

zscale > 0 g(x, z) = e−[(x−xloc0)/xscale]2−(z/zscale)2 (105)

zscale < 0 g(x, z) = cos(2π(z − xlskew)/zscale)e−[(x − xloc0)/xscale]2,
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and

tscale > 0 f(t) = e−(t/tscale)2

tscale < 0 f(t) = S(−t/tscale))

tscale = 0 f(t) = 1, (106)

and

S(x) =




0 x ≤ 0
1/[1 + exp( 1

x−1 + 1
x )] 0 < x < 1

1 x ≥ 1
. (107)

30. tripf Flag to generate a random “sandpaper” volume force trip strip;
logical.

30.a If tripf is true : tamps Max stationary amplitude of the trip; real.

30.b If tripf is true : tampt Max time varying amplitude of the trip; real.

30.c If tripf is true : txsc x length scale of the trip; real.

30.d If tripf is true : tx0 x origin of the trip; real.

30.e If tripf is true : tysc y length scale of the trip; real.

30.f If tripf is true : nzt Number of z Fourier modes in the trip; integer.

30.g If tripf is true : tdt Time interval between change of the time dependent
part of the trip; real.

30.h If tripf is true : seed Negative number in the range -700000 to -1 to
initialize the random number generator for the trip ; integer.

tripf is a flag to enable forcing of a volume force trip strip at the wall running
in the spanwise direction. The trip can be used to generate turbulence or at
lower amplitude levels to test the stability of a boundary layer or flow struc-
ture. The trip has a steady amplitude tamps, and a time dependent amplitude
tampt which allow both steady and time varying trips to be generated. The
volume force has one continuous time derivative and is independent of the time
discretization. The random numbers are generated such that if the random
number seed and other trip parameters are unchanged, the same trip forces
are generated. This is true even if the simulation is split into two or more runs.
For every run beyond the first the random number generator is run forward to
the correct state. The form of the volume force, which is directed normal to
the wall, is as follows :

F2 = exp[((x − tx0)/txsc)2 − (y/tysc)2]f(z, t), (108)

where

f(z, t) = tampsg(z) + tampt[(1 − b(t))hi(z) + b(t)hi+1(z)], (109)
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and

i = int(t/tdt),

b(t) = 3p2 − 2p3,

p = t/tdt − i. (110)

g(z) and hi(z) are Fourier series of unity amplitude with nzt random coeffi-
cients.

31. wbci Boundary conditions at wall; integer.

wbci can be set to 0, 1, 2 or 3. If wbci is not equal to zero, additional parameters
must be provided. See rparambl and cwallbc. The example below is for wbci
set to 1.

31.a If cwallbc is 1 : amp Max amplitude of the localized blowing/suction;
real.

31.b If cwallbc is 1 : damp Damp amplitude. No effect if less than one; real.

31.c If cwallbc is 1 : xstart Start position of disturbance; real.

31.d If cwallbc is 1 : xend End position of disturbance; real.

31.e If cwallbc is 1 : xrise Rise length of disturbance; real.

31.f If cwallbc is 1 : xfall Fall length of disturbance; real.

31.g If cwallbc is 1 : zbet Spanwise variation; real.

31.h If cwallbc is 1 : tomeg Time variation; real.

The blowing and suction at the wall is implemented in cwallbc. The form of
the boundary condition below is for wbci set to 1.

v|y=0 = amp · f(x) · cos(zbet · z) · sin(tomeg · t), (111)

where

f(x) = S

(
x − xstart

xrise

)
− S

(
x − xend

xfall + 1

)
, (112)

and S(x) is given by equation (107).

32. icfl Number of time iterations between calculation of the CFL number;
integer.

icfl is the calculation interval for the CFL number. If the CFL number is
computed each iteration this adds a few percent to the execution time, but
since it is used to regulate the time step it should not be computed too sparsely,
preferably every complete time step, i.e. icfl = nst.
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33. iamp Number of time iterations between calculation of rms amplitudes;
integer.

33.a If iamp > 0 : namamp Output file for rms amplitudes; character*32.

iamp is the interval for evaluation of the amplitude. As for the CFL number
continuous calculation of the amplitude costs a number of percent in execution
speed. If iamp=0 no amplitudes will be calculated and no amplitude file will be
written. To get the correct time accuracy iamp should be an integer multiple
of nst.

34. longli Flag to generate amplitude for each horizontal plane (y-value).
Applies both to rms amplitudes (items 46-47) and wave component amplitudes
(items 58-60).

longli is set true the program will produce y-dependent statistics and write
these to the amplitude files, both for the global statistics and statistics by
wavenumber. The statistics files can become quite long if the flag is set true.

35. iext Number of time iterations between calculation of extremum ampli-
tudes; integer.

iext is the interval for evaluation of the extremum values and their coordinates.
This evaluation is somewhat more time consuming than that for the amplitudes.
If iext=0 no extremum amplitudes will be calculated. To get the correct time
accuracy iext should be an integer multiple of nst.

35.a If iext > 0 : namext Output file for extremum amplitudes; character*32.

36. ixys Number of time iterations between calculation of xy-statistics; integer.

ixys is the interval for evaluation of xy-statistics, used by pxyst. The statistics
generated and the output file format are described in section 5.9. The file is
written to every ixyss iterations, overwriting older data. To get the correct
time accuracy ixys should be an integer multiple of nst.

36.a If ixys > 0 : namxys Output file for xy-statistics; character*32.

36.b If ixys > 0 : ixyss Number of time iterations between saving of xy-
statistics data to file; integer.

36.c If ixys > 0 : txys Time to start accumulation of xy-statistics; real.

37. msave The number of complete intermediate velocity fields to be saved. If
non-zero, items a and b are repeated for each file; integer.

37.a If msave> 0 : tsave The time for which to save an intermediate field; real.

37.b If msave> 0 :nmsave The name of the intermediate velocity file; charac-
ter*32.
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msave is the number of intermediate velocity fields to be saved, maximum 20.
If higher than zero the times and names of the files to be saved must be given.
If the time stepping is adaptive the program automatically adjusts the time
step to reach exactly the desired times. For fixed time step the save is done at
the nearest time.

38. mwave The number of wavenumbers to save amplitudes for. If non-zero,
item b is repeated for each wavenumber; integer.

38.a If mwave> 0: The name of the wave amplitude file; character*32.

38.b If mwave> 0: kx,kz The streamwise wavenumber as multiples of the fun-
damental 2π/xL, the spanwise wavenumber as multiple of the fundamental
2π/zL; both integers.

mwave sets the number of specific wavenumbers to calculate amplitudes for.
For each wave, the x and z wavenumbers must be specified as integers to be
multiplied by 2π/xL and 2π/zL respectively. The wavenumbers are counted in
the physical way for positive and negative kz and kx zero and up, not in the
way of the internal storage. The wave amplitudes are calculated for each of the
six velocities and vorticities at intervals set by the iamp value.

39. npl The number of planes to be continuously saved during the simulation.
If non-zero, items b through e are repeated for each plane; integer.

39.a If npl > 0: ipl The saving interval for planes in number of iteration;
integer.

39.b If npl > 0: tpl(i,1) The type of plane to be saved. 1 for xy,2 for xz;
integer.

39.c If npl > 0: tpl(i,2) The variable to be saved, i.e. 1 for u, 2 for v, 3 for
w; integer.

39.d If npl > 0: cpl The coordinate for which to save the plane; real.

39.e If npl > 0: nampl The name of the file in which to save the planes;
character*32.

npl is the number of 2d planes to be saved every ipl iterations during the
simulation. To get the correct time accuracy ipl should be an integer multiple
of nst. It is these files which are used by rps for plotting, the format is
described in section 5.8 below.

5.3. Velocity file

Format of a 3-d uncompressed velocity file. The format is used for any 3-d
input or output from bls and bla. The file is unformatted, sequential.
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Record 1: Reynolds number; real, .false. (this is to be backward compatible
with channel flow files); logical, xL; real, zL; real, the time for this field; real,
the length by which the box has been shifted to the right since time zero; real.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: Flow type fltype; integer, displacement thickness expressed in half
box heights dstar; real.

Record 4: If fltype ≥ 4 : start of blending region bstart, end of blending
region bslope, if fltype ≥ 7: acceleration exponent of streamwise free-stream
velocity rlam, spanwise free-stream velocity spanv. For other values of fltype
this record is omitted.

Record 5: The u, v, w-velocities in Fourier x, z and physical y space. One record
contains nx/2 complex coefficients in normal Fortran format. The records are
stored in y, z, i order with y varying the fastest and i the slowest. The number
of points in the y-direction is nyp and the number in the z-direction nzc. Total
number of records nyp*nzc*3.

5.4. Pressure file

Format of a 3-d uncompressed pressure file. The format is the same as for the
velocity file, except the last record which contains only the pressure.

5.5. Amplitude file

Formatted, sequential. The rms-levels are an average over the physical box.
For each time three records are saved:

1. Time; real, urms; real, vrms; real, wrms; real.

2. χrms; real, ωrms; real, ϑrms; real,ω2/k2; real.

3. DUuv; real, energy for wavenumber zero; real, h+, i.e. the box half-height
in wall units; real.

if longli is .true. then for each time the above is followed by statistics by
y-plane in descending y-coordinate order as follows :

4. mean squared streamwise velocity without Blasius base flow; real, mean
squared normal velocity ; real, mean squared spanwise velocity ; real, mean
squared streamwise vorticity ; real, mean squared normal vorticity ; real, mean
squared spanwise vorticity without Blasius base flow ; real, mean squared vor-
ticity squared over wavenumber square average, no (0,0); real, Reynolds stress
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average; real, mean streamwise disturbance velocity squared; real, mean span-
wise disturbance velocity squared; real.

5.6. Wave amplitude file

Formatted, sequential. The data in this file is in internal scaling. For each time
are saved:

1. Time; real, number of waves saved; integer, number of points in the y-
direction; integer, Reynolds number; real, fundamental wavenumber in the x-
direction; real, fundamental wavenumber in the z-direction; real, flag longli.

2. The wavenumber α as multiples of the fundamental 2π/xL; integer, the
wavenumber β as multiple of the fundamental 2π/zL; integer, urms; real, vrms;
real, wrms; real, ωrms; real.

Item 2 is repeated for each wave.

if longli is .true. then for each time the above is followed by statistics by
y-plane in descending y-coordinate order as follows :

3. if the wavenumber is zero : û for each y-plane (with the imaginary part
zero), otherwise v̂ for each y-plane; complex.

4. if the wavenumber is zero : ŵ for each y-plane (with the imaginary part
zero), otherwise ω̂ for each y-plane; complex.

Item 3 and 4 are repeated for each wave.

5.7. Extremum file

Formatted, sequential. For each time are saved:

1. Time; real.

2. Min u − Ulaminar; real, x-coordinate for this minimum; real.

3. y-coordinate; real, z-coordinate; real.

4. and 5. same for min v

6. and 7. same for min w

8. and 9. same for min χ

10. and 11. same for min ω

12. and 13. same for min ϑ

14. and 15. same for min ϑ − ϑlaminar

16. through 29. same as 2. through 15. but for maximum
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5.8. Plane velocity file

Unformatted, sequential.

Record 1: Reynolds number; real, .false. (this is to be backward compatible
with channel flow files); logical, xL; real, zL; real, the time for this field; real,
the length by which the boxed has been shifted to the right since time zero;
real.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: The type of plane, 1 for xy,2 for xz; integer, the variable number,
i.e., 1 for u, 2 for v, 3 for w; integer, the coordinate of the plane; real, flow type
fltype; integer, displacement thickness expressed in half box heights; real.

Record 4: Time; real, the length by which the boxed has been shifted to the
right since time zero; real.

Record 5: The velocity array in physical space; x-y-planes are nx×nyp with
x varying the fastest; x-z-planes are nx×nz for the non-symmetric case and
nx×(nz/2+1) for the symmetric case with x varying the fastest.

Record 4-5 are repeated for each time when the plane is saved.

5.9. xy-statistics file

Unformatted, sequential.

Record 1: Reynolds number; real, .false. (this is to be backward compatible
with channel flow files); logical, xL; real, zL; real, the time for this field; real,
the length by which the boxed has been shifted to the right since time zero;
real.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: Flow type fltype; integer, displacement thickness expressed in half
box heights; real.

Record 4: If fltype ≥ 4 : start of blending region bstart; real , end of blending
region bslope; real , if fltype ≥ 7 acceleration exponent of streamwise free-
stream velocity rlam; real, spanwise free-stream velocity spanv; real. For other
values of fltype this record is omitted.
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Record 5. Sum of the length of the time steps at which statistics have been
sampled sumw; real, number of statistics calculated nxys; integer.

Record 6-5+nxys. Each record contains a nx × nyp plane of statistics with
the x-index varying the fastest. The statistics are averaged over time and the
z-direction.

Record 6-11 u, v, w,u2, v2, w2.

Record 12-17 ω1, ω2, ω3,ω2
1 , ω2

2 , ω2
3

Record 18-20 uv, uw, vw

Record 21-23 u(x)u(x+1), v(x)v(x+1), w(x)w(x+1) (i.e. one point separation
auto correlations, x counted cyclically).

Record 24-26 u(y)u(y + 1), v(y)v(y + 1), w(y)w(y + 1)

Record 27-29 u(z)u(z + 1), v(z)v(z + 1), w(z)w(z + 1) (z counted cyclically)

Record 30 Rε11 = u2
x + u2

y + u2
z, εij is the dissipation tensor

Record 31 Rε22 = v2
x + v2

y + v2
z

Record 32 Rε33 = w2
x + w2

y + w2
z

Record 33 Rε12 = uxvx + uyvy + uzvz

Record 34 Rε13 = uxwx + uywy + uzwz

Record 35 Rε23 = vxwx + vywy + vzwz

Record 36-47 p, p2, pu, pv, pw, pux, pvy, pwz, puy, pvx, upx,wpz

5.10. Free-stream velocity table file

formatted, sequential

Record 1: n number of table entries

Record 2 - n+1: xtab streamwise coordinate; real, utab free-stream velocity;
real.

5.11. wave.d forced wave file

formatted, sequential

Record 1: rew Reynolds number of wave (not used by bla); real.

Record 2: alfaw the streamwise, betaw the spanwise wavenumber of the wave;
both real.
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Record 3: eig the eigenvalue of the wave, the real part of which is used as the
angular frequency of the wave; complex.

Record 4-n+3: n chebyshev coefficients of the mode shape of the normal ve-
locity, of which the first nyp are used. If there are not enough coefficients they
are padded by zeroes; complex.

5.12. basic.i Base flow profile file

basic.i is unformatted and sequential. basic.i is an output file from cbflow.
basic.i saves the basic flow profile only for non-parallel spatial simulations if
the file does not exist, or reads the basic flow profile for the same simulation
parameters.

Record 1: Reynolds number; real, xL; real, the length by which the boxed has
been shifted to the right since time zero; real, displacement thickness expressed
in half box heights dstar; real, start of blending region bstart, end of blending
region bslope, acceleration exponent of streamwise free-stream velocity rlam,
spanwise free-stream velocity spanv, the number of points in the physical x-
direction; integer, the number of points in the physical y-direction; integer.

Record 2: The basic u, v, w-velocities in the physical x, y space.
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Appendix A. Release notes

This manual refers to the following programs and packages :

bla v3.3

bls v1.8

rit v1.9

pre v1.0

ritpre v1.0

rps v1.13

cmp v1.9

fou v1.4

pxyst v1.5

pamp1 v1.1

pamp2 v1.3

pampw v1.1

pext1 v1.1

dfc v1.1

dpc v1.1

plot1 v1.7

VECFFT v1.1

dclib v1.4

fsdf v1.2

This is software which is distributed free on a limited basis; it comes with
no guarantees whatsoever. Problems can be reported to henning@mech.kth.se
or hnd@ffa.se, but no action is promised. If results obtained by using these
programs are published the authors would like an acknowledgment.

Distribution of the code is done by email using a uuencodeed, compressed
tar file. A complete directory structure including all of the material above
can be obtained by executing the following commands on the saved mail file,
preferably called prog
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uudecode prog
uncompress prog.tar.Z
tar -xf prog.tar

Makefiles appropriate for compiling the codes are also included for those using
the UNIX operating system.

A version of bla (blap v1.0) exists that runs on computers with distributed
memory. This version is slightly different from the one described in this report,
and its efficiency has been thoroughly tested by Alvelius & Skote (2000).

Appendix B. Scaling of variables

We have chosen a scaling for all parameters based on the displacement bound-
ary layer thickness and free-stream velocity at t = 0, x = 0 for the reference or
base flow. However, internally in the simulation code bla the implementation
uses a scaling based on the half box height. (The external and internal velocity
scale is the same.) This means that all external data must be rescaled when
read into the program, and the reverse scaling applied on output. If we let
dstar be the displacement thickness expressed in half box heights, then the
following scaling relationships hold:

time(internal)=time(external)*dstar

length(internal)=length(external)*dstar

velocity(internal)=velocity(external)

vorticity(internal)=vorticity(external)/dstar

force(internal)=force(external)/dstar

All formatted input and output files except the wave amplitude file use external
scaling, whereas the unformatted files and the wave amplitude file use internal
scaling.
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Appendix C. Investigation of the fringe method

In some flow cases with large growth rates, e.g. flows with adverse pressure
gradients and separation bubbles, a badly chosen fringe might not offer suffi-
cient damping. The present study aims to give guidelines to choose an optimum
fringe. Three types of flow have been studied, channel flow, boundary-layer flow
with zero pressure gradient and boundary-layer flow with an adverse pressure
gradient.

Although this report does not contain a description of the channel flow code,
we include this flow case in the fringe investigation. This is done since it makes
it possible to exemplify the properties of the fringe only related to the damping
of disturbances, excluding the large forcing needed to return the mean or basic
flow to its required inflow state.

The main parameters deciding the damping properties of the fringe are

• Length of Fringe (L)

• Strength of Fringe (λ)

• Shape of Fringe

• Resolution

• Influence of Blending (For Boundary-Layer)

Variations in all of these parameters have been made, with the main focus on
the length and strength of the fringe. The shape of the fringe, i.e. how λ is
varied in the fringe region, is of some importance. To simplify the investigation
and reduce the number of variables it was decided to use a fringe where the
strength is gradually increased until a maximum is reached and then imme-
diately decreased to zero. This way only two variables describe the shape of
the fringe, see figure 2. Generally the rise has been three fourths of the total
length and the decrease of fringe strength one fourth of the length. The max-
imum strength is what will be denoted with λ hereafter. The gradual change
of strength of the fringe is done with a smooth step function that has continu-
ous derivatives of all orders, equation (114). Throughout this investigation the
damping has been measured as the difference in amplitude of the disturbance
when going into the fringe compared with the value going out of the fringe. All
calculations were continued until the disturbance had been convected through
the computational domain more than once, thus ensuring that a steady state
was reached.

C.1. Channel flow

In the channel flow calculations, a fixed physical box of length 80 h/2 was used
and thus the length of the computational box was varied when the length of
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︸ ︷︷ ︸
Figure 2. Schematic picture of the fringe used in the investi-
gations. For this fringe the sum of the rise and fall is the same
as the total length.
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Figure 3. Damping as function of λ for channel flow.

the fringe changed. The Reynolds number based on the channel half height and
centerline velocity was 3000 for all computations. To obtain the results shown
in figures 3 and 4 a periodic volume force located at x = 30 with ω = 0.3 has
been used to introduce a disturbance that then evolved downstream. Figure
3 shows the damping as function of λ for a fixed length of the fringe. Note
that the damping increases very rapidly with λ until it reaches a certain level
from where further increase in damping is very modest. It is obvious that
the strength integrated over the length of the fringe plays a major role of the
damping. In figure 4 this is shown in a different way. Contours of the damping
are plotted as function of the length and strength of the fringe region. For a
given integral of the fringe region it is however advantageous to have a longer
fringe with a lower λ.
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Figure 4. Contours of damping as function of the length of
the fringe and λ. Each contour represents a magnitude of
amplitude, from 2 to 9. Picture for channel flow.

In figure 5 the damping is shown as function of α = 2π/σ, where σ is the
wavelength, for three different frequencies. In all the cases the same fringe pa-
rameters have been used. The curves are obviously very close. This implies that
without sufficient resolution the fringe cannot damp disturbances efficiently re-
gardless of how well the fringe parameters are chosen. There is however an
upper limit of the fringe damping regardless of the resolution. It is desirable
to be close or at least know where this limit is. Based on this investigation
one should strive for αdx to be approximately 0.5, i.e. σ/dx = 2π/0.5 ≈ 12.5.
This is a very high value for optimum performance of the fringe, it is however
not likely that the highest frequencies are particularly amplified in other parts
of the computational box and thus need the best damping. It is also possible
that other parts of the flow require better resolution than the fringe, in which
case the above requirement would not determine the necessary resolution.

C.2. Boundary-Layer Flow

In boundary-layer geometry the forcing is gradually varied from the correspond-
ing outflow boundary-layer to the desired inflow. This variation in the forcing
function is accomplished by the blending. The blending is achieved by varying
the streamwise component of the velocity toward which the solution is forced
according to

u∗
1(x, y) = U(x, y) +

[
U(x + xperiod, y) − U(x, y)

]
S

(
x − xstart

xrise

)
, (113)
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Figure 5. Damping as function of resolution for three differ-
ent angular frequencies, ω = 1 solid line, ω = 1.65 dotted line
and ω = 3 dashed line, where α = 2π/σ. Result for channel
flow.

where U(x, y) typically is a solution to the boundary-layer equations, xperiod

the streamwise length of the simulation box and

S(x) =




0 x ≤ 0
1/[1 + exp( 1

x−1 + 1
x )] 0 < x < 1

1 x ≥ 1
. (114)

The wall normal component of the velocity toward which the solution is forced
is calculated from continuity.

Tests showed that the blending is of little importance for the damping. The
blending should therefore be determined for maximum computational efficiency.
If the flow is laminar or almost laminar the longest possible blending should
be used, as the greatest gradients of the flow are likely to appear due to the
blending, and thus regulate the finest resolution. If on the other hand the flow
is turbulent, the largest gradients are usually in other parts of the domain and
the resolution requirements due to the flow in the fringe are of less importance,
allowing both shorter fringe and blending. It is worth noting that the profiles
which the flow is forced towards are generally not solutions of the Navier-Stokes
equations, rather these are usually similarity solutions of the boundary-layer
equations.

For the calculations of the zero pressure-gradient boundary-layer flow a physical
box of length 400 δ∗0 (δ∗0 = δ∗ at inflow) and height 10 δ∗0 was used. The
Reynolds number was 1000 and the disturbance was introduced at x = 200 δ∗0
with ω = 0.1
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Figure 6. Damping as function of λ for three different bound-
ary conditions. Solid line for bc prescribing the normal deriva-
tives, dashed line for bc prescribing the streamwise velocity
and dash-dotted line for the asymptotic condition. Length of
fringe 400, with 75 % used for rise and 25 % for fall of the
fringe function. Note that the damping is less than for channel
flow.

For boundary-layer flow, there are differences in the fringe damping depending
on the boundary condition used. Three different boundary conditions have been
used in this investigation, the condition prescribing the normal derivatives, 101
in table 2, the asymptotic condition, 110 in table 2, and finally the boundary
condition prescribing the streamwise velocity, 150 in table 2. In figure 6 the
damping is plotted as function of λ for the different boundary conditions. The
damping using the asymptotic boundary condition is somewhat less than the
other two, and all three are smaller than in the channel flow calculations.

In figure 7 contours of damping are shown as function of strength and length
of the fringe. The basic characteristics are the same as in the channel case.
Figure 8 shows the effect of the shape of the fringe. The differences between the
different cases are not large. This implies that there is only a small dependence
on where the maximum strength of the fringe is reached, although the case
with a very early maximum strength is the worst and should be avoided.
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Figure 7. Damping as function of length of fringe and λ.
Solid lines denote magnitudes of damping, from 2 to 5. The
boundary condition prescribing the streamwise velocity has
been used.
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Figure 8. Damping as function of shape of fringe. Solid line
corresponds to 25 % rise and 75 % fall. Dashed 50/50, dotted
75/25 and dash-dotted 100 % rise and zero distance for fall.
The integral was held constant for the different lengths. The
boundary condition prescribing the streamwise free-stream ve-
locity, 150 in table 2, has been used.
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Figure 9. Damping as function of λ for boundary-layer flow
with an adverse pressure gradient. Length of fringe was 200 δ∗0 .
The boundary condition prescribing the streamwise velocity
has been used.

C.3. Boundary-Layer with Pressure Gradient

C.3.1. Qualities of the fringe

For these calculations Reδ∗
0

= 1000 and Hartree-Parameter β = −0.18 were
chosen. Length of the physical part of the box was set to 200 δ∗0 and the height
to 12. The blending started at the end of the physical box and used a rise
distance of 100. A volume force with ω = 0.13 was applied at x = 100 δ∗0 .

The main characteristics from the investigation with boundary layer flow are
unchanged. However, there is now a much stronger natural amplification of
disturbances. The same behavior of the damping as a function of λ as was
observed for the investigation without pressure gradient is observed in figure 9.
The total damping in the fringe is somewhat better than in the case without
pressure gradient. In figure 10 contours of the damping are shown as func-
tion of the strength and length of the fringe. Quite surprisingly the damping
deteriorates in some cases when the strength increases. The best damping is
obtained with rather low values of λ.

C.3.2. Spatial evolution of a disturbance

The purpose of the remaining figures is mainly to show the evolution of a dis-
turbance when it is convected through the computational box. Two different
cases are studied, one without any forced disturbance and one with an intro-
duced Tollmien-Schlichting wave. In figure 11 the frequency spectra at several
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Figure 10. Contours of damping. Solid lines denote magni-
tudes of amplitude. The boundary condition prescribing the
streamwise velocity has been used.

downstream positions are shown for the undisturbed case. Each curve shows
the general disturbance level at the corresponding streamwise position. It is
apparent that frequencies with ω = 0.1 to 0.2 are the most amplified. The
smallest disturbances are found at x = 350 and are mainly due to trunca-
tion errors. As the strength of the fringe decreases they start to grow. They
reach their maximum intensity at x = 200, where they enter the fringe and
are quickly damped. In figure 12 this evolution as well as that for the forced
disturbance are shown, but only for the frequency that the TS-wave is forced
with. Note that after the forcing the growth of the forced disturbance is greater
than that of the unforced. It is also possible to see the upstream influence of
the forcing. Of great importance is that the curve of the forced disturbance
is above the curve of the undisturbed one. Figure 13 shows the evolution of
the forced disturbance in the same manner as figure 12, i.e. the evolution for
different frequencies at several streamwise positions. The greatest difference
with the unforced case is the well defined peak at the frequency of the forcing.
It is also possible to see that other frequencies than the forced one are the ones
which grow at the end of the fringe.



330 A. Lundbladh et al.

 1.0E-01

 1.0E-25

 1.0E-20

 1.0E-15

 1.0E-10

v-vmean x-pos

0

50

100

150
200

250

300
350

ω

Figure 11. Frequency spectrum for different x-positions. For
each line the x-position is given to the right. The fringe starts
at x = 200 and total the length of the computational box is
400. No forcing is applied to create a disturbance, instead
truncation errors grow in the physical part of the box.
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Figure 12. Energy of the forced wave as function of x. The
solid line denotes a case where a volume force was introduced
at x = 100. The dashed line represents the case of no forcing.
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Figure 13. Frequency spectrum for different x-positions. For
each line the x-position is given to the right. The fringe starts
at x = 200 and total length of the computational box is 400.
A volume force is applied at x = 100 with the frequency ω =
0.13.
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Appendix D. Examples, user created files

D.1. Example par.f, bls.i, bla.i file for a simple simulation

Below is an example of the adjustable part of a par.f include file. It is set up for
a 32 × 33 × 32 spectral mode simulation without spanwise symmetry, dealiazing in
the x and z-direction, and in-core storage. The parameters mby and mbz are set for
minimum storage.

c par.f contains size of problem

.

.

.

c adjustable parameters

c number of spectral modes

parameter (nx=32,ny=33,nz=32)

c dealiazing flags

parameter (nfxd=1,nfyd=0,nfzd=1)

c symmetry flag

parameter (nfzsym=0)

c core storage flag

parameter (nfc=1)

c boxsize

parameter(mby=1,mbz=1)

c number of processors

parameter(nproc=1)

c bla with pressure solver (1)

c bls,rit,pre,cmp and bla without pressure (0)

parameter(pressure=0)

c statistics

parameter (nxys=42)

c computed parameters

.

.

.

Below is an example of a simple bls.i file to generate a localized disturbance in a file
named bl0.u. Note that comments are allowed on lines with non-character data.

bl0.u

950. re

100. xl

10. yl

50. zl

3 fltype

0. no Galilei shift velocity

.true. generation of localized disturbance

1 type of disturbance

0.0002 amplitude
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0. rotation angle

2. scale in x-direction

0. origin in x-direction

2. scale in y-direction

2. scale in z-direction

1 type of distribution in the wall normal direction

.false. no waves

.false. no noise

Below is an example of a simple bla.i file to run initial data in file bl0.u to time 10
and output the result to file bl10.u. An amplitude list is written to bl10amp.d

bl0.u

bl10.u

10. time for simulation

100 max iterations

7200. max CPU time to stop(give a big value if not needed)

0.0 time step, =0 for automatic variation

4 number of time integration stages (1/3/4)

100. keep old box length

.false. no variable size

.0 rotation rate; no rotation

110 boundary condition at the free-stream

.false. no chebyshev integration method; tau method

.false. no Galilei transformation

.false. no spatial simulation; temporal simulation

0.5 the boundary layer development speed

0 no localized volume force

.false. no trip force

0 the boundary condition at the wall; no blowing/suction

4 cfl calc interval

4 amp calc interval

bl10amp.d

.false. no y-dependent statistics

0 extremum calc interval; no extremum calc

0 xy-statistics calculation interval; no xy-stat calc

0 number of saved 3-d fields

0 number of saved wavenumbers

0 number of save planes

D.2. Example par.f, bla.i file for a simulation of a turbulent boundary layer
under an adverse pressure gradient.

When running this example the turbulent statistics are stored in the file endxys.u.
The simulation has to be run for a long time for the statistics to be sufficiently smooth.
On a super computer the job can be restarted again after accomplishing a run. The
different files for the statistics are then added together by the addxys program. The
statistics are evaluated with the program pxyst. The velocity field bl3400.u and
free-stream table freestream.d015 are required when running this example.
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c par.f contains size of problem

.

.

.

c adjustable parameters

c number of spectral modes

parameter (nx=480,ny=161,nz=96)

c dealiazing flags

parameter (nfxd=1,nfyd=0,nfzd=1)

c symmetry flag

parameter (nfzsym=0)

c core storage flag

parameter (nfc=1)

c boxsize

parameter(mby=2,mbz=2)

c number of processors

parameter(nproc=6)

c bla with pressure solver (1)

c bls,rit,pre,cmp and bla without pressure (0)

parameter(pressure=1)

c statistics

parameter (nxys=42)

c computed parameters

.

.

.

Below is the bla.i file.

bl3400.u

bl3416.u

p3416.u

3416. total simulation time

4000000 number of iterations

3600000. cpu time

0.0 time step

4 1/3/4 number of stages

450. keep old box length

.false. variable size

.0 rotation rate

101 boundary condition number

.false. no cim; use tau method

.false. no Galilean transform

.true. spatial simulation

.true. read tabulated free-stream

freestream.d015

.false. read in base flow; no base flow

1.25 strength of fringe region

-50. start of fringe region
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.0 end of fringe region

40. rise distance of fringe

10. fall distance of fringe

0.0 no oblique waves forced in the fringe

0.0 no two dimensional T-S wave

0 no localized volume force

.true. trip forcing

0.0 steady forcing amplitude

0.2 time dependent forcing amplitude

4.0 x-length scale of trip

10. x-origin of trip

1.0 y-length scale of trip

10 number of z-modes in trip

4.0 time-scale of trip

-1 random number seed for trip

0 the boundary condition at the wall; no blowing/suction

4 cfl calc interval

0 amp calc interval; no amplitude calculation

.false. no y-dependent statistics

0 extremum calc interval; no extremum calculation

20 xy statistics calculation interval

endxys.u

50000 iterations between saves; do not save until finished

0. time to start accumulation of statistics

3 number of saved 3-d fields

3404.

bl3404.u

3408.

bl3408.u

3412.

bl3412.u

0 number of saved wavenumbers

0 number of save planes
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