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Abstract

Direct numerical simulations of the Navier-Stokes equations have been carried out with
the objective of studying turbulent boundary layers with adverse pressure gradients. In the
literature two approaches to the analysis of the equation of motion are found. In this work
we conclude that a nonlinear theory is required for relating the freestream variation to other
meanflow parameters. Comparison of turbulent statistics from the zero pressure gradient case
and the two adverse pressure gradient cases show the development of a second peak in the
turbulent energy in agreement with experiment. The turbulent mean flows have also been
investigated using a differential Reynolds-stress model. The model predictions are compared
with the direct simulations and low Reynolds number effects are investigated.

1 Introduction

The analysis of adverse pressure gradient (APG) turbulent boundary layers has been going on for a
long time, but only in recent years have direct numerical simulations (DNS) of these flows become
possible, albeit for low Reynolds numbers.

The conditions needed for self-similarity as well as for the onset of separation have been the
subject of several investigations. Clauser!?! performed experiments where he adjusted the pressure
gradient such that a self-similar turbulent boundary layer was obtained. A constant nondimensional
pressure gradient was shown to be the condition for self-similarity. Mellor & Gibbson!10! showed that
self-similarity is obtained if U ~ z™. Bradshaw!ll measured three self-similar turbulent boundar
layers with m = 0,—0.15,—0.255 and concluded that the last one was near separation. Head[”!
used an integral method to calculate the turbulent boundary layer for m = —0.15, -0.255, -0.35
and concluded that the solution is unique in the first case but not in the second one while the third
one has no solution. Skare and Krogstad[13] did experiments on turbulent boundary layers near
separation. Their results showed that the shape factor approaches 2 when m = —0.22.

DNS of a zero pressure gradient turbulent boundary layer was done by Spalart[14]. Spalart &
Leonard10! did also DNS of self-similar APG turbulent boundary layer using a similarity coordinate
system. In these simulations the shape factor approaches 2.3 and m = —0.22 near separation.
Spalart & Watmuffll 7! compared experiments and DNS of an APG turbulent boundary layer in a
varying pressure gradient and they found good agreement. Coleman & Spalart3IL9] performed DNS
of a separation bubble with heat transfer included. Na & Moin{t! have recently performed DNS of
a separation bubble.

The consensus from these investigations seems to be that a power law freestream velocity is a
requirement for self-similarity and that separation occurs for about —0.25 < m < -0.20 with a
shape factor of about 2.

2 Direct Numerical Simulations

DNS of the Navier-Stokes equations have been carried out with the objective of studying APG
turbulent boundary layer flows. The code used for the DNS is developed at KTH and FRABIOL,

*Also at Aeronautical Research Institute of Sweden (FFA), Box 11021, S-161 11 Bromma, Sweden
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The program uses spectral methods with Fourier discretization in the horizontal directions and
Chebyshev discretization in the normal direction. Since the boundary layer is developing in the
downstream direction, it is necessary to use non-periodic boundary conditions in the streamwise
direction. This is possible while retaining the Fourier discretization if a fringe region is added
downstream of the physical domain. In the fringe region the flow is forced from the outflow of the
physical domain to the inflow. In this way the physical domain and the fringe region together satisfy
periodic boundary conditions. The fringe region is implemented by the addition of a volume force
which form is designed to minimize the upstream influence. Time integration is performed using a
third order Runge-Kutta method for the advective and forcing terms and Crank-Nicolson for the
viscous terms.

The simulations start with a laminar boundary layer at the inflow which is tripped by a random
volume force near the wall. All the quantities are non-dimensionalized by the freestream velocity
(U) and the displacement thickness (§*) at the starting position of the simulation (z = 0) where the
flow is laminar. At that position Rs» = 400. The length (including the fringe), height and width
of the computation box were 450 x 24 x 24 in these units. The number of modes was 480 x 161
X 96, which gives a resolution in plus units of AX* = 16 and AZ* = 4.3. The useful region was
confined to 2 = 150 — 350 which corresponds to Rege : 550 — 1200 or Reg : 330 — 700.

The simulations were run for a total of 4500 time units (0*/U}), and the sampling for the turbulent
statistics was performed during the 2000 last time units.

It was verified that the accuracy of the DNS and its statistics was sufficient by repeating the
computation on a coarser resolution (320 x 101 x 64 modes) and with a shorter averaging time
(1000 time units).

3 Results from Analysis

The equation describing the outer part of an incompressible turbulent boundary layer is given by

32 B g a—ywi’)y (1)

where u is the mean streamwise velocity, v the mean wall normal velocity, % the pressure gradient
and (uv) the Reynolds stress.

To find a self-similar solution we want the equation to be independent of z, i.e. we want to find
solutions in the form

(w—U)/ur = F(y), —(uv)/u,* = R(n) (2)
where
n=y/A),  A=Us/u. (3)

Introducing F(n) and R(n) into the equation (1) gives an equation which can be written

dF d
~268 — (1428 = 40, (4)

when 7 — 0. The classical treatment of the equations which involves outer and inner equations
and a matching of the solutions, leads to the logarithmic friction law, implying that T — 0in the
limit of very high Reynolds number. This is utilized in the derivation of equation (4), shown in
Tennekes & Lumley{lg], Mellor & Gibbson(!" and Henkes!®,
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From equation (4) one obtains a condition for self similarity as a parameter # that should be
constant

= )

3 =constant can be seen as a balance of the forces acting on the boundary layer; skin friction and
pressure gradient, as argued by Clauser!?,
Using the argument ¥+ — 0 in the analysis of the integrated momentum equation,
U.,d 23
—)2_e-L =144, 6
(uT) dz H 5 (6)
Tennekes & Lumley[19] perform a linearization. The linearized version of equation (6) is

U d
agg(Aur) =1+26 (7)

The linearization is equivalent to the assumption that the shape factor, H = % is equal to one.
By keeping the ratio $* = constant in equation (7) Tennekes & Lumley obtain a relation between
m and 3 which reads

(8)

with
Un~az™ (9)
In the following, the linearization will be replaced by a less restrictive approximation to derive
a relation between m, 3 and H. The full integrated momentum equation (6) can be written

e = A (10)
Uus* ~ H(1 9 B~ 1l — 22t
(1+8)+28+( )B(1 = ¥577)
with the aid of the relation 1
1 -5
where -
G:f F2dn. (12)
]

GG must be constant if the boundary layer is to be self similar, i.e. I' does not change its shape.
From equation (11) the limit H — 1 as % — 0 is consistent with the linearization described above.
Since the logarithmic function grows very slowly when the argument is large, a better assumption
than ¥ — 0 for moderately high Reynolds numbers is that 7 ~ constant. If % is kept constant,
which means that i

u’T

=1 13

u U’ (13)
equation (10) can be integrated. Together with the definition of 3, equation (5), which can be
written

6 d
UU

B=-0Ug (14)

equation (10) gives _
U~z™, 8 ~ . (15)
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with
me B s}

H(1+ )+ 23
Equation (8) is recovered from equation (16) by letting H = 1.

In experiments (Skare and Krogsta,d[13]) with high pressure gradients where flows near separation
has been investigated, one has observed that H — 2. If § — oo equation (16) reduces tom = —ﬁ
If now H — 2, m becomes —0.25 which is close to the values reported from the experiments and DNS
of turbulent boundary layers near separation, (see e.g. Stratford[ 18 and Spalart & Leona,rd[l(a})
Comparison with the linear theory, which gives a value of m = —3 L when 8 — oo, shows that the
linearization, which might be correct for very high Reynolds number is an insufficient theory for
low and moderate Reynolds number flows.

Equation (10) can be integrated when assuming a constant right hand side. This done by Mellor

& Gibbson10] and gives

U~ " (17)
with U
~ T urUp

= d 18

’ v/é ol ! ( )

where the subscript 0 represents initial values at £ = 0 and where m in their case is equal to the
right hand side of equation (10). With 3 =constant the variable # in equation (17) becomes
and the results in equations (15) and (16) are recovered. In experiments and DNS, (see references
in the Introduction), H and ¥ are far from their asymptotic values of 1 and 0 respectively. This
is due to the slow increase of In(Re) with Re. H and % are on the other hand fairly constant for
the same reason. It seems as the linearized theory is not applicable to real flows (finite Re) and
that equation (17) does not give more information than the nonlinear theory with a constant ¥+ as
an approximation. The agreement between equation (16) and data from measurements and DNS is
shown in the table below.

Case ” J¢, | H m m = _'PT('I_-I%FTE m = —%
APG1 0.24 | 1.60 | -0.077 -0.097 -0.14
APG2 0.67 | 1.63 | -0.15 -0.16 -0.22
Bradshaw 1 || 0.9 | 1.4 | -0.15 -0.20 -0.24
Bradshaw 2 || 5.4 | 1.54 | -0.255 -0.26 -0.31
Skare & 20 | 2.0 | -0.22 -0.24 -0.33

Krogstad

Spalart & 1.8 | 1.65 | -0.21 -0.22 -0.28
Leonard 8.0 [ 192 -0.23 -0.24 -0.32
oo | 2.3 | -0.22 -0.23 -0.33

Table 1: Comparison of m from the nonlinear/linear theory.

4 Results from DNS

Results from two direct numerical simulations of APG turbulent boundary layers as well as one zero
pressure gradient case (ZPG) are presented. The pressure gradient in the first APG case (APG1)
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is close to that for which the corresponding laminar boundary layer separate and in the second
(APG?2) the same pressure gradient as in Bradshaw’s first experimental APG caselll. The pressure
gradient is applied through the freestream velocity, U, which is described by a power law, U ~ z™.
For APG1 m = —0.077 and for APG2 m = —0.15 which corresponds to # ~ 0.24 and 3 = 0.67
respectively. The results from the ZPG are taken from a simulation by Henningson & Lundbladh[7].
This simulation is not as highly resolved as the other two and the computational box height is not
large enough, see the ZPG-profile in Figure 2b. The results are included only as a comparison to
the two APG simulations.

The f-parameter is shown for the two APG cases in Figure la, and H as a function of Reg
for all three cases in 1b. The (-parameter is close to constant and the shape factor varies slower
for higher pressure gradients. In Figure 2a the skin friction, C, is shown. C is lower for higher
pressure gradients and would become zero at separation. In Figure 2b Reynolds normal stress at
the same position for the three cases are shown. The tendency towards a second peak in the ..,
profile for higher pressure gradients agrees with the experimental results from Nagano, Tagawa &
Tsuji[12].

As the -parameter is constant we might expect a self-similar boundary layer. From the velocity
profiles at positions downstream (Figure 3a) it is difficult to draw any conclusions about self similarity
since the Reynolds number variation is small. The profiles for the Reynolds stress (Figure 3b) show
clearly that self similarity is not obtained since the maximum grows downstream. This is due to
low Reynolds number, as we will see in the next section, where also further analysis of higher order
statistics and comparison with model predictions are made.
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Figure 1: a) 3 for the two APG cases. b) H — ZPG; --- APG1; - - APG2

5 Comparison between calculations with turbulence models and
DNS

Calculations with the Differential Reynolds Stress Model (DRSM) of Jakili¢, Hadzi¢ and Hanjali¢4l
were performed at low Reynolds numbers to compare with data from our DNS. Profiles for the
velocity and turbulence obtained from the DNS at @ = 150 were used as initial data. Comparison
was made at z = 335 for APG2, where Reg = 690. The DRSM calculations show that transients are
dominating in the beginning of the calculations but at the point of comparison with the DNS-data
the solution is not sensitive to small changes in initial data. Thus the comparison is meaningful
since the difference between the model predictions at low and high Reynolds number are due to the
dependence on the Reynolds number and not to the influence of the initial conditions.
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Figure 2: a) Cy¢. b) ., at 3006* — ZPG; -+ APGI1; - - APG2
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Figure 3: a)Velocity profiles for APG1. b) (uv)* profiles for APGlat 150 — 3505 downstream.

Figures 4a,b show close agreement for the velocity profile in inner and outer scalings at Rey = 690
and = 0.67, as computed with the DNS and DRSM. The figure also shows the large- Re similarity
state for the DRSM. Only a small logarithmic part in the inner layer is found at Reg = 690, due to
the low Reynolds number. The streamwise Reynolds normal stress is compared in Figures 5a,b. The
results are shown in both inner and outer layer scalings, and the similarity solution for the DRSM
is included as well. Differences between the solution at Reg = 690 and the similarity solution are
significant. The results with the DRSM closely agree with the DNS at Reg = 690, showing that the
DRSM reproduces the physics of APG boundary layers at relatively low Reynolds numbers. The
peak in the Reynolds normal stress in the DNS and DRSM at Reg = 690 is part of the inner layer,
but there already is a tendency to develop a second peak in the outer layer, which indeed has been
established in the similarity solution with the DRSM.

6 Conclusions

DNS of the Navier-Stokes equations has been carried out with the objective of studying APG
turbulent boundary layers. The pressure gradient parameter is found to be constant when the
freestream velocity varies according to a power law. An analysis of the equations describing the
meanflow based on the approximation of a constant ratio of the freestream velocity to the friction
velocity is presented. The analysis leads to a relation between the power law and both the pressure
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Figure 4: Velocity profiles for APG2 in a)
Asymptotic

05,

Figure 5: a) u} . for APG2 in a) inner scaling b) outer scaling — DNS; - - DRSM; - - - Asymptotic

rms

gradient parameter and the shape factor. This relation gives better agreement than the linearized
analysis based on a ratio of the freestream velocity to the friction velocity of zero. The linearization
is equivalent to the assumption that the shape factor is equal to one.

Comparison of turbulent statistics from the ZPG and the two APG cases show the development
of a second peak in the turbulent energy in agreement with experiment.

A differential Reynolds-stress model was used to predict the mean flow. Comparison with the
direct simulations showed that low Reynolds number effects are well captured.

The work presented in Section 5 was carried out together with Dr. Ruud Henkes whom we wish to
thank.
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