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Abstract

An e�cient spectral integration technique for the solution of the Navier�
Stokes equations for incompressible �ow over a �at plate is described and im�
plemented in a computer code using the FORTRAN language� The algorithm
can either be used for temporal or spatial simulation� In the latter case� a
fringe region technique is used to allow a streamwise in�ow and out�ow of the
computational domain� At a constant distance from the �at plate an arti�cial
boundary is introduced and a free�stream boundary condition applied� The
plate parallel directions are discretized using Fourier series and the normal di�
rection using Chebyshev series� Time integration is performed using third order
Runge�Kutta method for the advective and forcing terms and Crank�Nicholson
for the viscous terms� The version of the code described in this report can
be run on parallel computers with shared memory� A slightly di�erent version
also exists which utilizes MPI 	Message�Passing Interface
 for parallelization on
distributed memory computers�
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� Introduction

Solution of the Navier�Stokes equations for the simulation of transition and turbu�
lence requires high numerical accuracy for a large span of length scales� This has
prompted a development of accurate spectral methods� Unfortunately even with
these methods computations require an immense amount of computer time and
memory� In the present report we use spectral methods to derive an accurate algo�
rithm of the �at plate boundary layer �ow geometry� The basic numerical method
is similar to the Fourier�Chebyshev method used by Kim� Moin � Moser �������

The original algorithm �Lundbladh� Henningson � Johanson ����� solved the incom�
pressible �ow equations in a channel �ow geometry� To allow simulations of the
�ow over a �at plate a free�stream boundary condition is required� and for spatial
simulations a fringe region technique similar to that of Bertolotti� Herbert � Spalart
����� is described�

For further details about spectral discretizations and additional references see Canuto�
Hussaini� Quarteroni � Zang ������

The original channel code and the implementation of the present numerical method
has been used in a number of investigations�
In channel 
ow�

Henningson� Johansson � Lundbladh ������� Lu � Henningson ������� Lundbladh
� Johansson ���
��� Schmid � Henningson ������� Lundbladh ������� Henningson�
Lundbladh � Johansson ������� Lundbladh � Henningson ������� Schmid � Hen�
ningson ������� Elofsson � Lundbladh ������� Kreiss� Lundbladh � Henningson �������
Lundbladh� Henningson � Reddy ���	��� Schmid� Lundbladh � Henningson �������
Henningson ������� Reddy� Schmid� Baggett � Henningson �������
In boundary layer 
ow�

Lundbladh� Johansson � Henningson ������� Berlin� Lundbladh � Henningson ��	���
Henningson � Lundbladh ������� Lundbladh� Schmid� Berlin � Henningson �������
Lundbladh � Henningson ������� H�ogberg � Henningson ���
��� Schmid� Reddy �
Henningson ���	��� Nordstr�om� Nordin � Henningson ������� Hildings ���	��� Berlin
� Henningson ������ Berlin� Hani� � Henningson ������ Berlin� Wiegel � Henning�
son ��
��� Berlin� Kim � Henningson ������ Bech� Henningson � Henkes ������ Skote�
Henkes � Henningson ���
���
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� The numerical method

��� Derivation of the velocity�vorticity formulation

The starting point is the non�dimensionalized incompressible Navier�Stokes equa�
tions in a rotating reference frame� here written in tensor notation�

�ui
�t

� � �p

�xi
� �ijkuj��k � ��k�� �

�xi
�
�

�
ujuj� �

�

R
r�ui � Fi� ���

�ui
�xi

� �� ���

with boundary conditions at the �at plate and at the free�stream boundary� which
are discussed in the next subsections�

The �rst equation represents conservation of momentum and the second equation
incompressibility of the �uid� Here �x�� x�� x�� � �x� y� z� are the streamwise� nor�
mal and spanwise coordinates� �u�� u�� u�� � �u� v� w� are the respective velocities�
���� ��� ��� � ��� �� �� are the corresponding vorticities� and p is the pressure� The
streamwise and spanwise directions will alternatively be termed horizontal direc�
tions� �k is the angular velocity of the coordinate frame around axis k� In practise
the most often used case is rotation around the spanwise axis� thus let � � �� be
the rotation number� Fi is a body force which is used for numerical purposes that
will be further discussed below� It can also be used to introduce disturbances in the
�ow� The Reynolds number is de�ned as R � U��

�	
� where U� is the undisturbed
streamwise free�stream velocity at x � � and t � �� �� is the displacement thickness
of the undisturbed streamwise velocity at x � � and t � �� and 
 is the kinematic
viscosity� The size of the solution domain in physical space is xL� yL and zL in the
streamwise� normal and spanwise directions� respectively�

A Poisson equation for the pressure can be obtained by taking the divergence of the
momentum equation�

r�p �
�Hi

�xi
�r��

�

�
ujuj�� ���

where Hi � �ijkuj��k � ��k� � Fi� Application of the Laplace operator to the
momentum equation for the normal velocity yields an equation for that component
through the use of equations ��� and ���� One �nds

�r�v

�t
�

�
��

�x�
�

��

�z�

�
H� � �

�y
�
�H�

�x
�
�H�

�z
� �

�

R
r�v� ���

��



This equation can� for numerical purposes� be written as a system of two second
order equations�

��

�t
� hv �

�

R
r���

r�v � �� ���

where

hv �

�
��

�x�
�

��

�z�

�
H� � �

�y

�
�H�

�x
�
�H�

�z

�
� �	�

An equation for the normal vorticity can be found by taking the curl of the momen�
tum equation� The second component of that equation reads

��

�t
� h� �

�

R
r��� �
�

where

h� �
�H�

�z
� �H�

�x
� ���

Note that the equations for �� v and � have similar form� and can thus be solved
using the same numerical routine� Once the the normal velocity v and the normal
vorticity � have been calculated the other velocity components can be found form
the incompressibility constraint and the de�nition of the normal vorticity�

��� Boundary condition

The boundary conditions in the horizontal directions are periodic but we need to
specify boundary conditions at the plate and in the free�stream� to solve equations
��� and �
�� The natural no�slip boundary conditions read

v�y � �� � ��
�v�y � ��

�y
� �� ��y � �� � �� ���

For disturbance generation and control by blowing and suction through the plate�
an arbitrary time dependent velocity distribution�

v�y � �� � vBS�x� z� t�� ����

can be used�
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The �ow is assumed to extend to an in�nite distance perpendicularly to the �at
plate� However� the discretization discussed below can only handle a �nite domain�
Therefore� the �ow domain is truncated and an arti�cial boundary condition is
applied in the free�stream�

The simplest possible is a Dirichlet condition i�e��

ui�y � yL� � Ui�y � yL�� ����

where Ui�x� y� is a base �ow that is normally chosen as a Falkner�Skan�Cook �ow�
An arbitrary pressure gradient� to for instance create a separation bubble� can be
imposed by choosing Ui accordingly�
The desired �ow solution generally contains a disturbance and that will be forced
to zero by the Dirichlet condition� This introduces an error compared to the exact
solution for which the boundary condition is applied at an in�nite distance from the
wall� The error may result in increased damping for disturbances in the boundary
layer�

Some improvement can be achieved by using a Neumann condition�

�ui
�y

jy�yL �
�Ui
�y

jy�yL � ����

This condition can be shown to be stable if there is out�ow at the boundary or the
in�ow is weaker than O��	R�� This restriction is usually ful�lled if the boundary is
placed on a su�ciently large distance from the wall� so that the disturbance velocity
is small�

A generalization of the boundary condition used by Malik� Zang � Hussaini ������
allows the boundary to be placed closer to the wall� It is an asymptotic condition
that decreases the error further and it reads

�
��ui
�y

� jkj�ui
�
y�yL

�

�
� �Ui
�y

� jkj �Ui
�
y�yL

� ����

where � denotes the horizontal Fourier transform with respect to the horizontal
coordinates� k� � 
���� and 
 and � are the horizontal wavenumbers �see equation
���� Thus this condition is most easily applied in Fourier space� The boundary
condition exactly represents a potential �ow solution decaying away from the wall�
It is essentially equivalent to requiring that the vorticity is zero at the boundary�
Thus� it can be applied immediately outside the vortical part of the �ow�
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��� Forcing for temporal simulation

A localized disturbance or wave of relatively short wavelength which travels down�
stream in a slowly growing boundary layer is surrounded by a boundary layer of
almost constant thickness which grows slowly in time� This forms the basis of the
temporal simulation technique�

Following the ideas of Spalart � Yang ������ we assume that the boundary layer
streamwise velocity is U�x� y� and introduce a reference point xr � x��ct where c is a
reference speed� We now assume that the undisturbed boundary layer in the vicinity
of the disturbance has the velocity distributionU�y� t� � U�xr� y� � V �y� t� � �� Since
the boundary layer is now parallel �as there is no dependence on x�� it is possible to
apply periodic boundary conditions in the horizontal directions� However� whereas
U�x� y� �with the corresponding V given by continuity� is a solution to Navier�Stokes
or at least the boundary layer equations� this is not true for fU�y� t�� V �y� t�g� Thus
to ensure the correct development of the boundary layer pro�le over extended periods
of time it is necessary to add a �weak� forcing to balance the streamwise momentum
equation�

F� �
�U�y� t�

�t
� �

R

��U�y� t�

�y�
� c

�U�x� y�

�x
� �

R

��U�x� y�

�y�
� ����

where the right hand side should be evaluated at the reference coordinate xr� The
reference speed should be chosen as the group speed of the wave or the propagation
speed of the localized disturbance for best agreement with a spatially developing
�ow� To fully justify the periodic boundary conditions in the case of a wave train�
the wave itself should be slowly developing�

��� Forcing for spatial simulation

The best numerical model of a physical boundary layer� which is usually developing
in the downstream direction rather than in time� is a spatial formulation� To retain
periodic boundary conditions� which is necessary for the Fourier discretization de�
scribed below� a fringe region is added downstream of the physical domain� similar
to that described by Bertolotti� Herbert � Spalart ������ In the fringe region distur�
bances are damped and the �ow returned to the desired in�ow condition� This is
accomplished by the addition of a volume force which only increases the execution
time of the algorithm by a few percent�

The form of the forcing is �

Fi � ��x��Ui � ui�� ����

where ��x� is a non�negative fringe function which is signi�cantly non�zero only

��



within the fringe region� Ui is the same �ow �eld used for the boundary conditions�
which also contains the desired �ow solution in the fringe� The streamwise velocity
component is calculated as�

Ux�x� y� � U�x� y� � �U�x� xL� y�� U�x� y��S

�
x� xmix

�mix

�
� ��	�

where U�x� y� is normally a solution to the boundary layer equations� Here xmix

and �mix are chosen so that the prescribed �ow� within the fringe region� smoothly
changes from the out�ow velocity of the physical domain to the desired in�ow ve�
locity� S is given below� The wall normal component Uy is then calculated from the
equation of continuity� and the spanwise velocity Uz is set to zero for simulations
where the mean �ow is two dimensional� For three dimensional boundary layers Uz
is computed from a boundary layer solution in fashion analogous to that for Ux� This
choice of U ensures that for the undisturbed laminar boundary layer the decrease in
thickness is completely con�ned to the fringe region� thus minimizing the upstream
in�uence� A forced disturbance to the laminar �ow can be given as in�ow condition
if that disturbance is included in Ui�
A convenient form of the fringe function � is as follows

��x� � �max�S

�
x� xstart
�rise

�
� S

�
x� xend
�fall

� �

�
�� ��
�

Here �max is the maximum strength of the damping� xstart to xend the spatial extent
of the region where the damping function is non�zero and �rise and �fall the rise
and fall distance of the damping function� S�x� is a smooth step function rising
from zero for negative x to one for x � �� We have used the following form for S�
which has the advantage of having continuous derivatives of all orders�

S�x� �

	
�

�

� x � �
�	�� � exp� �

x�� � �
x�� � � x � �

� x � �

� ����

To achieve maximum damping both the total length of the fringe and �max have to
be tuned� The actual shape of ��x� is less important for the damping but it should
have its maximum closer to xend than to xstart� The damping is also strongly e�ected
by the resolution of the disturbance that should be damped� An investigation of how
the fringe parameters e�ect the disturbance in the fringe can be found in appendix
C�
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For maximum computational e�ciency the simulated �ow has to be considered when
the fringe parameters are tuned� Assuming that the achieved damping is su�cient�
a short fringe reduces the box length and therefore the required CPU time per iter�
ation� However� if the �ow gradients introduced in the fringe region are larger than
those in the physical domain that may decrease the time step and consequently
increase the necessary number of iterations� Note that the boundary layer growth
causes out�ow through the free�stream boundary� The streamwise periodicity re�
quires that all that �uid enters in the fringe region�

Analysis of Navier�Stokes equations with a fringe forcing term yields that there is
an additional part of the disturbance associated with the pressure whose decay is
not dependent on �� For a boundary layer� this solution decays appreciably over
a downstream distance equal to the boundary layer thickness� and thus the fringe
region must be some factor �say �� to ��� times this thickness to get a large decay
factor� see Nordstr�om� Nordin � Henningson �����

��� Temporal discretization

The time advancement is carried out by one of four semi�implicit schemes� We
illustrate them on the equation

��

�t
� G� L�� ����

which is on the same form as equation ��� and �
�� � represents � or �� G contains
the �non�linear� advective� rotation and forcing terms and depends on all velocity and
vorticity components� L is the �linear� di�usion operator� L is discretized implicitly
using the second order accurate Crank�Nicholson �CN� scheme and G explicitly by a
low storage third order three or four stage Runge�Kutta �RK�� scheme� These time
discretizations may be written in the following manner � �G and L are assumed to
have no explicit dependence on time�

�n�� � �n � anG
n � bnG

n�� � �an � bn�

�
L�n�� � L�n

�

�
� ����

where the constants an and bn are chosen according to the explicit scheme used�
The two possibilities for the RK� schemes are shown in the table �� Note that the
RK� schemes have three or four stages which imply that a full physical time step
is only achieved every three or four iterations� The time used for the intermediate
stages are given by t � t� cn� where cn is given in table ��

To obtain some insight into the properties of these discretizations they will be ap�
plied to the two dimensional linearized Burgers� equation with a system rotation�
The eigenvalue analysis yields a necessary condition for stability which must be

��



an	�t
n bn	�t

n cn	�t
n

RK� � �� � �

��stage � �� ��
 	� � ��

� � �� �� � �

RK� � �
 � �

��stage �
 	� ��� 	� � �


� �� ��
 	� � ��

� � �� �� � �

Table �� Time stepping coe�cients�

augmented by an experimental veri�cation� Putting the equation into the form of
equation ���� yields �

� �

�
u
w

�
�

G �

�
u��	�x� w��	�z ��

��� u��	�x� w��	�z

� �
u
w

�
�

L �
�

R

�
��	�x� � ��	�z� �

� ��	�x� � ��	�z�

�
� ����

It can be seen as an approximation to equation ���� The dependence of � on both
the streamwise and spanwise coordinate directions have been included in order to
indicate how multiple dimensions enter into the stability considerations�

We will for simplicity use Fourier discretization in the spatial directions� The Cheby�
shev method acts locally as a transformed Fourier method and thus the stability
properties derived here can be applied with the local space step� An exception
to this occurs at the endpoints where the transformation is singular� It can be
shown that the Chebyshev method is more stable there� A numerical study of a
��dimensional advection equation using the Chebyshev discretization yields that the
upper limit of its spectrum along the imaginary axis is about �	 times lower than
the simple application of the results from the Fourier method� This allows a corre�
sponding increase of the time step when the stability is limited by the wall normal
velocity at the free�stream boundary�

Fourier transforming in x and z yields�

��t �

�
i
u� � i�w� ��

��� i
u� � i�w�

�
�� � 
� � ��

R
��� ����

�	



where 
 and � are the wavenumbers in the x� and z�directions� respectively� This
equation can be diagonalized to yield the equation�

�ut � i�
u� � �w� � ����u�

� � ��

R
�u� ����

We assume that the absolute stability limit will �rst be reached for the largest
wavenumbers of the discretization 
max and �max� which corresponds to a wave�
length of � � �x and � � �z� respectively� �x and �z are the discretization step
lengths in physical space� The following parameters are useful for our analysis�

� � �t��j�kj� �
maxju�j� �maxjw�j��

� �t

�
�j�kj� �

� ju�j
�x

�
jw�j
�z

��
� ����

� �
�

R
�t�
�

max � ��max�

�
�

R
���t

�
�

�x�
�

�

�z�

�
� ����

The parameter � is usually called the spectral CFL number� in analogy with the
stability theory for �nite di�erence equations� Henceforth it will be termed simply
the CFL number� Using the RK��CN time discretization we have the following three
stages in each time step for the model equation �����

�un�� � �un � i�a��u
n � �

�
a���u

n�� � �un��

�un�� � �un�� � i��a��u
n�� � b��u

n�� �

�
�a� � b����u

n�� � �un���� ��	�

�un�� � �un�� � i��a��u
n�� � b��u

n���� �

�
�a� � b����u

n�� � �un����

The absolute stability regions� i�e� the regions where all solutions to the above di�er�
ence equations are bounded in the � 
 � plane� can now be found by calculating the
roots of the associated characteristic polynomials� Contours of constant absolute
values of the roots are given in �gure �� Figure � shows the curves for the RK��
CN method� Note that higher values of � �lower Reynolds number� stabilizes the
method� i�e� increases the CFL number ��� that is allowed for an absolutely stable
solution� In the limit of in�nite Reynolds number the RK��CN method approaches
the limit

p
�� a result which also can be arrived at through the standard analysis of

the RK� scheme alone� The analysis for the four stage method is analogous and the
stability limit is

p
��

�




 0.0  0.5  1.0  1.5  2.0

Figure �� Contours of constant ampli�cation factor for the RK��CN method� Con�
tour spacing is ���� with dashed lines indicating that the ampli�cation factor is
below unity�

If the time advancement scheme ���� is applied to equations ��� and �
� we �nd �for
the moment disregarding the boundary conditions��

��� an � bn
�R

r���n�� � �� �
an � bn
�R

r���n � anh
n
v � bnh

n��
v �

r�vn�� � �n��� ��
�

and

��� an � bn
�R

r���n�� � �� �
an � bn
�R

r���n � anh
n
� � bnh

n��
� � ����

��� Horizontal discretization 	 Fourier expansions

The discretization in the horizontal directions uses a Fourier series expansions which
assumes that the solution is periodic�

The streamwise and spanwise dependence of each variable can then be written

u�x� z� �

Nx
�
��X

l���Nx
�
��	

Nz
�
��X

m���Nz
�
��	

�u�
� �� exp�i�
lx� �mz��� ����

where 
l � ��l	xL and �m � ��m	zL� and Nx and Nz are the number of Fourier
modes included in the respective directions� Note that the indices on the discrete
wavenumbers 
 and � are sometimes left out for notational convenience and that
k� � 
� � ���

��



�	�	� Normal velocity and normal vorticity equations

Expanding the dependent variables of equation ��
� in Fourier series gives

�
�� an � bn

�R
�D� � k��

�
��n�� �

�
� �

an � bn
�R

�D� � k��

�
��n � an�h

n
v � bn�h

n��
v �

�D� � k���vn�� � ��n��� ����

where D signi�es a derivative in the normal direction� Note that the above equations
are two linear constant coe�cient second order ordinary di�erential equations in y�
A similar equation can also be derived from equation ����� These three equations
can be written as follows

�D� � �����n�� � �fnv � ����

�D� � k���vn�� � ��n��� ����

�D� � �����n�� � �fn� � ����

where

�� � k� � �R	�an � bn�� ����

�fnv � �pnv �
�Ran
an � bn

�hnv � ����

�fn� � �pn� �
�Ran
an � bn

�hn�� ��	�

and

�pnv � �
�
D� � �� �

�R

an � bn

�
��n � �Rbn

an � bn
�hn��
v

� � �fn��
v �

�
�R

an�� � bn��
�

�R

an � bn

�
��n � �Rbn

an � bn
�hn��
v � ��
�

�pn� � �
�
D� � �� �

�R

an � bn

�
��n � �Rbn

an � bn
�hn��
�

� � �fn��
� �

�
�R

an�� � bn��
�

�R

an � bn

�
��n � �Rbn

an � bn
�hn��
� � ����

We will denote the quantities �pn� and �pnv the partial right hand sides of the equations�

��



�	�	� Horizontal velocities and wavenumber zero

Having obtained �v and �� we can �nd �u and �w using equation ��� and the de�nition
of the normal vorticity component� both transformed to Fourier space� We �nd

�u �
i

k�
�
D�v � ����� ����

�w �
i

k�
�
�� � �D�v�� ����

Similarly� we can �nd the streamwise and spanwise component of vorticity in terms
of �� and ���

�� �
i

k�
�
D�� � � ���� ����

�� �
�i
k�

�
��� �D���� ����

These relations give the streamwise and spanwise components of velocity and vortic�
ity for all wavenumber combinations� except when both 
 and � are equal to zero�
In that case we have to use some other method to �nd �u�� �w�� ��� and ��� �the zero
subscript indicates that k � ��� The appropriate equations are found by taking the
horizontal average of the �rst and the third component of equation ���� Due to the
periodic BC all horizontal space derivatives cancel out� i�e��

�u�
�t

� H� �
�

R

��u�
�y�

� ����

�w�

�t
� H� �

�

R

��w�

�y�
� ����

After a time discretization we �nd�

�D� � ����un��
� � �fn��� ����

�D� � ��� �wn��
� � �fn��� ��	�

where

�fn�i � �pn�i �
�Ran
an � bn

�Hn
�i� ��
�

��



and

�pn�i � �
�
D� � �� �

�R

an � bn

�
�un�i �

�Rbn
an � bn

�Hn��
�i

� � �fn��
�i �����

�
�R

an�� � bn��
�

�R

an � bn

�
�un�i �

�Rbn
an � bn

�Hn��
�i � ����

Here the � index in �H�i refers to the zero wavenumber in both horizontal directions�
Note that the above system contains the same type of equations as the system �����
and can thus be solved using the same numerical algorithm� Once �u� and �w� are
calculated� the streamwise and spanwise components of vorticity for k � � can be
found as follows

��� � D �w�� ��� � �D�u�� ����

�	�	� Solution procedure with boundary conditions

A problem with the above equations is that the boundary conditions do not apply to
the quantities for which we have di�erential equations� To remedy this� each of the
equations can be solved for a particular solution with homogeneous boundary con�
ditions� Then a number of homogeneous solutions with non�homogeneous boundary
conditions are found for the same equations� Finally the boundary conditions are
ful�lled by a suitable linear combination of particular and homogeneous solutions�
Explicitly we proceed as follows�

For all k �
p

� � �� �� � and each of the two symmetries �symmetric and antisym�

metric with respect to re�ections around y � yL	�� we solve �

�D� � �����n��
p � �fn��

v
��n��
p �yL� � � ����

�D� � k���vn��
p � ��n��

p �vn��
p �yL� �




vBS
� symmetric

� 
vBS
� antisymmetric

����

�D� � �����n��
h � � ��n��

h �yL� � � ����

�D� � k���vn��
ha � ��n��

h �vn��
ha �yL� � � ����

�D� � k���vn��
hb � � �vn��

hb �yL� � � ����

�D� � �����n��
p � �fn��

� ��n��
p �yL� � � ����

�D� � �����n��
h � � ��n��

h �yL� � �� ��	�

��



where the subscripts p� h� ha and hb indicate the particular and the homogeneous
parts� �vBS is only non�zero for cases with blowing and suction through the plate�
Note that only one boundary condition is needed for each second order equation since
the assumption of symmetry �or antisymmetry� takes care of the other� �vn��

p �yL� �
� when the symmetric and antisymmetric solutions are added and all the other
solutions are zero at y � �� Equations ���� and ��	� have zero right hand sides and
the same boundary conditions� The solution coe�cients are therefore identical and
so are also their symmetric and antisymmetric coe�cients� Thus� four calls of the
the equation solver can be reduced to one�

To ful�ll the the remaining boundary conditions we �rst construct �vp�� �vh� and �vh��

�vn��
p� � �vn��

p � Cp��v
n��
ha �vn��

p� �yL� � � �vn��
p� ��� � vBS	� ��
�

�vn��
h� � �vn��

ha 	
��vha
�y

�y � yL� �vn��
h� �yL� � � �vn��

h� ��� � � ����

�vn��
h� � �vn��

hb �Ch��v
n��
ha �vn��

h� �yL� � � �vn��
h� ��� � �� ����

where Cp� and Ch� are chosen to ful�lls the boundary condition �v	�y � � at
the lower wall for each of the two symmetries of �vp� and �vh�� As the symmetric
and antisymmetric parts of ��vh�	�y cancel at the lower wall their sum vh� ful�lls
�vh�	�y � ��

Now the solutions �vp�� �p�� �vh�� � � ��� �vh�� � � �� and �v � �� �h� ful�ll all
the physical boundary conditions at the lower wall� The total normal velocity and
vorticity is then given by

�vn�� � �vn��
p� � Cv��v

n��
h� � Cv��v

n��
h� � �	��

��n�� � ��n��
p � C� ��

n��
h � �	��

where Cv��Cv� and C� are chosen such that the boundary conditions at the upper
boundary are ful�lled� The u and w velocities are found from the de�nition of the
normal vorticity and the incompressibility constraint�

In general we have to �nd u and w �rst to evaluate the boundary conditions� Thus
with the C�s unknown we �nd �

�un�� � �un��
p� � Cv��u

n��
h� � Cv��u

n��
h� � C��u

n��
h � �	��

�wn�� � �wn��
p� � Cv� �w

n��
h� �Cv� �w

n��
h� �C� �wn��

h � �	��

��



where �up�� wp��� �uh�� wh��� �uh�� wh�� and �uh� wh� are found from �vp�� �p��
�vh�� � � ��� �vh�� � � �� and �v � �� �h� using equation ���� and �����

Assuming the boundary conditions are linear we can write them as �

Li��u� �v� �w� � �Di! i � �� �� �� �	��

Here Li is the linear operator for the ith boundary condition� This can include
derivatives in the wall normal direction� The operator may also depend on the wave
number �for example when the boundary condition contains horizontal derivatives��
Note that the expression for evaluation Li may include �� as this is equivalent to
horizontal derivatives� �Di is the data for the boundary condition� the most common
form of which is is either zero �homogeneous boundary conditions� or the operator
Li applied to a base �ow�

Finally inserting the expressions �	��� �	�� and �	�� into equation �	�� and moving
all terms containing the particular solution to the right hand side� we get a three by
three linear system of equations which is easily solved to �nd the C�s�

For k � � we solve

�D� � ����un��
p� � �fn�� �un��

p� ��� � ulow! �un��
p� �yL� � uupp �	��

�D� � ��� �wn��
p� � �fn�� �wn��

p� ��� � wlow! �wn��
p� �yL� � wupp �		�

�D� � ����un��
h� � � �un��

h� ��� � �! �un��
h� �yL� � � �	
�

�D� � ��� �wn��
h� � � �wn��

h� ��� � �! �wn��
h� �yL� � �� �	��

where ulow� uupp� wlow and wupp denote the lower and upper wall velocities� Com�
putations in a moving reference frame can increase the time step� If the boundary
condition at the upper wall is in the form of Dirichlet type �speci�ed velocity� then

�u� � �up� �	��

�w� � �wp�� �
��

For other types of upper wall boundary conditions we �nd the complete solution
from �

�u� � �up� � Cu�uh� �
��

�w� � �wp� � Cw �wh�� �
��

��



where Cu and Cw are chosen so that �u� and �w� ful�ll the boundary conditions�

The above equations are all in Fourier space� where the non�linear terms hv� h��
H� and H� become convolution sums� These sums can be e�ciently calculated by
transforming the velocities and vorticities using FFTs to physical space� where they
are evaluated using pointwise products�

��
 Normal discretization 	 Chebyshev expansion

The typical equation derived above is a second order constant coe�cient ODE of
the form

�D� � �� �� � �f ����� � ���� ���yL� � ��� �
��

First map the interval ��� yl� to ���� �� by setting y� � �y	yL � �� Then

�D
�� � 
� �� � �f ������ � ���� ����� � ��� �
��

where 
 � �y�L	�� In the following we have for simplicity dropped the prime�

This equation can be solved accurately if the dependent variable ��� its second deriva�
tives� the right hand side �f and the boundary conditions are expanded in Chebyshev
series� i�e��

���y� �

NyX
j��

"�jTj�y�� �
��

D� ���y� �

NyX
j��

"�
��	
j Tj�y�� �
	�

�f�y� �

NyX
j��

"fjTj�y�� �

�

����� �

NyX
j��

"�j � ��� �
��

������ �

NyX
j��

"�j����j � ���� �
��

where Tj are the Chebyshev polynomial of order j and Ny the highest order of
polynomial included in the expansion� If the Chebyshev expansions are used in

��



equation �
��� together with the orthogonality properties of the Chebyshev polyno�
mials� we �nd the following relation between the coe�cients

"�
��	
j � 
 "�j � "fj j � �� ���Ny � ����

By writing the Chebyshev functions as cosines and using well known trigonometric
identities� one �nds relations between the Chebyshev coe�cients of �� and those of
its derivative that can be used for di�erentiation and integration �see Canuto et al�

����

"�
�p	
j �

NyX
m�j��

m�j odd

m "��p��	
m j � �� ���Ny � ����

"�
�p��	
j �

�

�j
�cj��

"�
�p	
j�� � "�

�p	
j��� j � �� ���Ny � ����

where the superscript p indicates the order of the derivative and cj � � for j � �
and cj � � for j � �� In the �rst di�erentiation relation one observes that an error
in the highest order coe�cients of "��p��	 in�uences all coe�cients of its derivative
"��p	� This problem is what is supposed to be avoided by the Chebyshev integration

method discussed below� In the second relation we assume that "�
�p	
j � � for j � Ny

and note that "�
�p��	
� is an integration constant needed when the function ���p��	

is found by integrating ���p	� Note also that the integration procedure introduces a
truncation error� since an integration of a Chebyshev polynomial would result in a

polynomial of one degree higher� The coe�cient "�
�p��	
Ny�� which would have multiplied

TNy�� is in the present truncation set to zero�

If the relations ���� are used together with relation ���� a system of equations

can be derived for either coe�cients "�j or "�
��	
j � The second approach� called the

Chebyshev integration method �CIM�� was proposed by Greengaard ������ to avoid
the ill conditioned process of numerical di�erentiation in Chebyshev space� It was
implemented in the original channel code by Lundbladh� Henningson � Johanson
������ and is also included in the present implementation� However� we have found
that using this method� subtle numerical instabilities occur in some cases and we
therefore recommend to solve for the coe�cients of the function itself� "�j� Such
a Chebyshev tau method �CTM�� almost identical to that used by Kim� Moin �
Moser� is also implemented and is so far found to be stable� We �rst present the
CTM� then the CIM and �nally we discuss the instabilities observed in computations
with the CIM� Note that the instabilities have occurred only a few times and that
the results otherwise are the same for the two methods�

��



�	�	� Chebyshev tau method�CTM

If the recursion relation ���� is used to express equations ���� in the coe�cients "�j �
one arrives at the system of equations ��� below�� A more detailed derivation can
be found in Canuto et al� ������ but observe the sign errors therein� We have

� cj��


�j�j � ��
"�j�� �

�
� �


�j
��j� � ��

�
"�j � 


�j�j � ��
"�j��

�
cj��

�j�j � ��
"fj�� � �j

��j� � ��
"fj �

�j��

�j�j � ��
"fj��� j � �� � � � � Ny ����

where

�j �



� � � j � Ny � �
� j � Ny � �

� ����

Note that the even and odd coe�cients are uncoupled� Since a Chebyshev polyno�
mial with an odd index is an odd function� and vice versa� the decoupling of the
systems of equations is just a result of the odd and even decoupling of equation �
��
itself� The same can be achieved for the boundary conditions �
�� and �
�� if they
are added and subtracted�

NyX
j��

j even

"�j �
� � ��

�
�

NyX
j��

j odd

"�j �
� � ��

�
� ����

These boundary conditions together with the equations ���� constitute a linear sys�
tem of Ny � � equations that can be solved for the coe�cients "�j �j � �� � � � � Ny��
The structure of the equations involving the even coe�cients forms a tridiagonal
system and so does the equation for the odd coe�cients� The boundary conditions
�ll the top row of both systems and make the systems only quasi�tridiagonal� but it
only takes �	Ny operations to solve both systems�

The system ���� has in fact been truncated to only contains Ny�� equations and two
equations have been replaced by boundary conditions� That truncation introduces
what is usually called the tau error� In solution algorithms that solve for the three
velocity components of the Navier�Stokes equations and the pressure� the coupling
between the equations for the velocities and that for the pressure requires corrections
of the tau error �Kleiser � Schumann ������ We have chosen to eliminate the pressure
in the Navier�Stokes equations and solve for the normal velocity and the normal
vorticity� As those equations do not couple in the same way� we do not have to
correct the tau error�

�	



�	�	� Chebyshev integration method�CIM

Instead of solving for the coe�cients "�j � the CIM solves for the coe�cients of the

Chebyshev series for the second derivative� "�
��	
j � The major advantage is supposed

to come in the calculation of derivatives of the solution ��� Derivatives are needed
in the calculation of the remaining velocities and vorticities using equations �����
����� In the CIM the second derivative is already calculated and the �rst derivative
and the function itself can be found by the numerically well conditioned process of
integration�

If the relations ���� are used to write ���� in terms of "�
��	
j the result is the following

system of equations�

j � � � "�
��	
� � 
 "�� � "f�

j � � � "�
��	
� � 
� "�

��	
� � �

�
"�
��	
� � �

�
"�
��	
� � "f�

� � j � Ny � � � "�
��	
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The equations for odd and even coe�cients decouple and so do the boundary condi�
tions on the form ����� However� we now need to rewrite them with the aid of ����
to contain the coe�cients of "���	 that we are now solving for� We �nd that the �rst
sum in ���� takes the form�
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Thus� the solution of equation �
�� is found by solving the system of equations for
the second derivative of "� ��
� together with the boundary conditions ��
� and the
corresponding one at y � ��� We now have two more equations than for the tau
method and the solution to the full system is a set of Ny�� coe�cients of the second

derivative and the two integration constants "�
��	
� and "�

��	
� representing the zeroth

order Chebyshev coe�cient of D �� and �� itself� respectively� The function �� is then
found by two integrations� which in Chebyshev space can easily be constructed using
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the relations ����� The same quasi�tridiagonal form of the equation systems for the
odd and even coe�cients appears as for the CTM and the same solution routine can
be used�

�	�	� Integration correction

When the solution for ����	 is found by the CIM and integrated to obtain ����	 and
�� the same truncation is used for both the derivatives and �� itself� They are all
represented with Ny � � non�zero Chebyshev coe�cients� This means that the
truncations are not compatible� since the derivative of a function represented as a
�nite Chebyshev series should have one coe�cient less than the function itself� For
example� if the coe�cients "�j are used to construct those for the derivative� using

the recurrence relation ����� the result will not be the same as the coe�cients "�
��	
j �

There will be a slight di�erence in half of the coe�cients for the derivative� the size
depending on the magnitude of the coe�cient "�Ny � The expression for the di�erence

can be derived as follows� We write �� explicitly using the coe�cients "�
��	
j and the

relation �����
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Now ���� is applied to the Chebyshev coe�cients in ���� to calculate the derivative
D ��� Let "�D

j be its new coe�cients� We �nd that these new coe�cients will not

equal "�
��	
j and the following relation is found between them�
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Thus� we have a method of correcting the coe�cients "�
��	
j so that they represent

D �� with the same truncation as "�j represent ��� A similar correction can be derived

for the coe�cients "�
��	
j of the second derivative� After some algebra we �nd�
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where "�D�

j are the corrected Chebyshev coe�cients for D� ���

When the horizontal components of velocity and vorticity are found using the re�
lations ���� to ����� we need ��� D�v and D��� The above corrections are therefore
needed in order for the velocity and vorticity �elds to exactly satisfy the incompress�
ibility constraint ���� Note that an error in the highest Chebyshev coe�cients will
by the above correction scheme a�ect all other coe�cients of the �rst and second
derivative� Exactly what was supposed to be avoided by the integration method�

The CTM and CIM methods are equally e�cient and give the same results with the
exception of a few very rare cases� We have found that numerical instabilities may
occur when the wall normal resolution is very low and the velocity and vorticity
�elds are not divergence free� We have also found that it in those cases is enough
to make the vorticity divergence free to stabilize the calculations� With integration
correction or the CTMmethod� both velocity and vorticity are completely divergence
free� However� for one channel �ow case so far� and more frequently in the boundary
layer� a numerical instability occurs with the integration correction but not without�

Fortunately the instability causes the calculation to blow up in a few time steps and
before that the results are the same as for a stable version of the code� With su��
cient wall normal resolution �which is required anyhow� and without the integration
correction the boundary layer code has been found completely reliable� The CTM
method is� however� to prefer�

��� Pressure

By expressing the Navier�Stokes equations in the form of equations ��� and �
�� the
pressure need not to be taken into account� However� it might be of interest to solve
for this quantity as well as the velocity components� The pressure can� for example�
be used for detecting regions of rapid motion in a turbulent boundary layer�

The Poisson equation for the pressure derived above� equation ���� is written as

r��p�E� �
�Hi

�xi
� ����

where E � �
�uiui and Hi � hi � Fi � �ijkuj��k � ��k� � Fi� Note that the term

Fi does not contain the disturbances in the fringe region for the spatial simulations
and is zero for the temporal boundary layer� This equation has a similar form as the
equations for �� v and � and can thus be solved using the same numerical routine�

The boundary conditions at the wall �y � �� and at the upper boundary �y � yL� are
derived from the normal component of the Navier�Stokes equations� The boundary
condition with non�zero wall velocities becomes

��



�

�y
�p�E�

����
y��

�

�
�

R
r�v � h� � �v

�t

� ����
y��

� ����

The term �v
�t is included for the case of �ow control like blowing suction from the

wall� For a wall with zero velocities the boundary condition becomes
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At y � yL the boundary condition becomes
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where ��x� is the fringe function described in section ����

For wavenumber zero the boundary condition ��	� is automatically ful�lled if bound�
ary condition ���� is ful�lled� It is required by the compatibility conditionZ yL

�
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which comes from the integration of equation ����� A second boundary condition
for p itself is needed at y � � and this is chosen to be p � �� The mean pressure
at wall cannot be determined and p � � at the wall is a reference pressure� It is
not possible to choose p � � at y � yL because the location of the free�stream is
arbitrary chosen for numerical purposes�

It might seem to be a better approach to rewrite equation ��� as

r�p � ��ui
�xj

�uj
�xi

�
�

�xi
���ijkuj�k� �

�Fi
�xi

� ����

and solve for the pressure directly� The solution to equation ���� turns out to be
sensitive to the values of the velocities at the upper boundary� When using di�erent
boundary conditions for the velocities� the solutions are slightly di�erent� hence the
pressure will be di�erent� The sensitivity comes from the fact that derivation in
the normal direction in Chebyshev space is dependent on the coe�cients in all the
collocation points� These coe�cients change when transforming back and forth to
physical space� Thus the derivations must be� for consistency� performed at the
same time� with no transformations between them� These problems are avoided by
solving for the pressure plus energy as in equation �����

The pressure can be calculated from a speci�c velocity �eld with the post processing
program pre� The pressure needs thus not be calculated in the simulation itself� If
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turbulent statistics involving pressure are being calculated during a simulation� the
pressure is calculated in those time steps where the sampling occurs�

� Implementation

In implementing the algorithm presented above a signi�cant e�ort has been put
into portability� �exibility and computational e�ciency� The language is standard
FORTRAN 

 with the extension of the INCLUDE statements� eight character
names and lower case characters� Especially the demands on the data structure
have forced an encapsulation of the access to the main storage which requires some
attention� Also the vectorization and the need to process suitably large chunks of
data at a time adds complexity in exchange for execution speed�

��� Program structure of bla

The program bla has been divided into subroutines each with one speci�c task�
The main program steps the time and calculates the adaptive time step� The sub�
routines nonlinbl and linearbl carry out the main part of the algorithm aided
by smaller subroutines for integration� equation solving etc� The FFTs are taken
from VECFFT which was developed speci�cally for the simulation codes but is an
independent package of vectorizable Fourier and Chebyshev transforms�

�	�	� Coarse program structure
 step � � �

Since some computers cannot hold all of the three dimensional data in the main
memory simultaneously� and in any case the number of three dimensional arrays
should be minimized to save space� the three dimensional computation is carried
out by slicing the data into two dimensional planes�

In the main time stepping loop the data needs to be stepped through twice� First
slicing in x�z�planes to calculate the FFTs and the pointwise product for non�linear
terms� step �� and second in x�y�planes to calculate the normal Chebyshev transforms
and solve the equation systems for the new velocities and vorticities� step �� Step
� reads input �les� initializes the FFTs and calculates the partial right hand sides
needed to start the time stepping loop and computes the base �ow� Step � stores
the �nal velocity �eld�

�	�	� Step �
 initialization

Subroutine ppar prints the contents of the parameter �le to standard output as a
check of which size of problem the image is compiled for�
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Subroutine rparambl reads the �le bla	i which contains control information for the
program� especially the input and output �lenames and the �nal time to which the
simulation is to be done� cf� section ����

Subroutine rdiscbl reads the resolution� the computational box size and a few pa�
rameters de�ning the �ow from the �le namnin� The velocities are then read from
the �le and put into the main storage positions ���� If the resolution of the image
and the �le do not correspond� this is printed on standard output and the program
stops execution� The check can be disabled by the varsiz �ag in the bla	i �le
in which case the �eld is extended by zero�padding or truncated to �t the image
resolution�

Subroutine rescale rescales all data read from bla	i from boundary layer scaling to
the channel �ow scaling used internally� see appendix B�

Subroutine fskch computes the base �ow boundary layer pro�le�

Subroutine preprbl calculates wavenumbers and collocation points� and initializes
the FFTs�

Subroutine fshift computes a Galilei transformation which can be used to increase
the maximum stable time step�

Subroutine rwavebl reads the pro�le of forcing waves to be introduced in the fringe
region�

Subroutine getdt calculates the initial time step to set get a CFL number equal to
the c�max value� The subroutine is only used if the time stepping is adaptive�

Subroutine prhs calculates the initial partial right hand sides �p� �p�� �p��� �p�� and
places the �rst two in positions 	 and 
 of the main storage� The streamwise and
spanwise vorticities are also calculated and put into positions � and � of the storage�

Subroutine b
ow generates a base �ow used for spatial simulations�

Subroutine cb
ow reads or writes the base �ow boundary layer pro�le in basic	i

for spatial simulations�

Subroutine blfou computes the streamwise Fourier transform of the base �ow�

Some initial parameter values for the time stepping mechanism are prepared in the
main program and output �les are opened�

�	�	� Step �
 computations in physical space

The subroutine wplbl writes data to ��d plane �les�

The subroutine blshift shifts the base �ow and boundary conditions to be aligned
with the computational domain when a Galilean transform is used� i�e� if the lower
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wall is #moving$�

The subroutine gtrip generates a random force �ow trip�

The subroutine boxxys computes the spanwise and time averaged statistics for one
xz�box�

The subroutine nonlinbl calculates Hi as pointwise products in physical space and
stores them in position � to � of the main storage� It also computes the volume
forcing and adds it to Hi� As the main storage is in Fourier�physical space� cf�
section ����� below� the velocities and vorticities must be transformed back to phys�
ical space before the product can be formed� Likewise the products Hi must be
transformed to Fourier space before storing them� The velocity rms amplitudes are
computed in Fourier�physical space� The maximum CFL number and the extrema
of the velocities are calculated from the velocities in physical space�

The xy�statistics� CFL number� and rms�amplitude and extremum statistics are
written to the respective �les�

�	�	� Step �
 computations in Fourier�Chebyshev space

The time step is recalculated to regulate the CFL number close to cflmax if adaptive
time stepping is enabled� The time stepping parameters are calculated for the next
time step�

Subroutine linearbl transforms the non�linear products into Chebyshev space and
constructs the complete right hand sides for the evolution equations� The Chebyshev�
tau or Chebyshev�integration method is used to solve for the evolution variables from
a set of tridiagonal equations� The chosen boundary conditions are applied� All ve�
locities and vorticities are constructed and partial right hand sides are computed
for the next time step� Finally the velocities and vorticities are transformed back to
physical space in the y�direction� The velocities are stored into positions � to �� the
streamwise and spanwise vorticity into � and � and the partial right hand sides into
	 and 
 of the main storage�

For selected times the ��dimensional velocity data is written to �le�

Time is incremented and execution is continued with the next time step from step
� if the the �nal time tmax is not reached�

If pressure is set to one in the �le par	f� the following two subroutines are entered
if statistics are sampled in this step� In nonlinp the terms H��� �H��� and H� are
calculated and stored in position � and �� The energy E is calculated and stored in
position �� In linearp the linear and non�linear parts of the boundary conditions
and the sum H��� � H��� � H��� are calculated� The equation for the pressure is
solved and the streamwise and spanwise vorticity need to be recalculated� Pressure
is stored in position ��
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�	�	� Step �
 output

The subroutine wdiscbl handles the output of a velocity �eld to an external �le�
The �nal values of xy�statistics are written to �le by wxys� The pressure is written
to an external �le by wdiscp if pressure is set to one� The amplitude �les are
written by wamp� and planes are written by wplbl� All opened �les are closed�

��� Data structure

As the size of a problem is explicitly compiled into the program� the memory allo�
cation is for the most part static� Some e�ort was put into minimizing not only the
three dimensional storage but also the two dimensional arrays since this is the only
part residing in main memory when the three dimensional storage is located on an
external device�

�	�	� Complex numbers and FFTs

Most of the algorithm above works with quantities in Fourier space� These are in
general complex which requires storage of both real and imaginary parts� Though
FORTRAN has the capability of automatically handling complex numbers most
compilers produce ine�cient code for this� especially for mixed real and complex
expressions� Moreover FORTRAN stores complex numbers with alternating real
and imaginary parts� which causes a severe performance loss for vector fetches on
certain computers as the stride will be even� To circumvent this� it was decided
to store all complex quantities in double arrays� one for real and one for imaginary
parts� As the algorithm neither includes general complex�complex multiplications
nor divisions this did not add very much code�

The FFTs in VECFFT are built for separate storage of the real and imaginary
parts� but can optionally be used with standard FORTRAN storage�

�	�	� Main storage
 boxes
 drawers
 and planes

As mentioned above� to save on space the algorithm traverses the three dimensional
volume twice to complete a time step� The three dimensional storage is in some
cases too large to �t in the main memory in which case it may be put on an external
device such as an SSD or a disk� In order to e�ciently access this external device
the records need to be long� preferably much longer than the typical vector length
needed to get good CPU performance� If the three dimensional storage is divided
into x�z� and x�y�planes the largest common element between these is a single vector
in the x�direction� a pencil containing nx words� In order to increase this number�
planes are combined into a box consisting of an integer number of adjacent planes
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e�g�� an x�y�box holds mbz x�y�planes and an x�z�box holds mby x�z�planes� The
intersection between an x�y� and an x�z�box then holds mby�mbz pencils� which is
called a drawer� Most subroutines are made to handle a box rather than a plane at
a time� with the additional advantage that the vector length increases by a factor of
mbz or mby�

The variables in the main storage are in Fourier�physical format� i�e�� the axes are

� physical y and �� except for the partial right hand sides �pv and �p�� which are
stored in Fourier�Chebyshev space�

The structure of the �le used for the three dimensional storage is as follows� File
format � unformatted� direct access� scratch� record length nx�mby�mbz�npreal

bytes� name ur� npreal is the number of bytes used to store a real number �usually
� or � bytes�� Storage sequence� the drawers are stored in increasing y� z and i

order� with y varying the fastest and i slowest� Within each drawer the coe�cients
are stored in increasing x� y� z order with x varying the fastest and z slowest�
All the real data is stored in the �rst half of the drawer and imaginary data in the
second� The number of records is nby�nbz���

The main storage is accessed box�wise by the routines getxy
 putxy
 getxz and
putxz� The routines select between core storage and �le storage depending on the
value of the integer nfc �� ��! for the latter case the routines getdr
 putdr move
one drawer from or to the �le�

�	�	� Naming conventions

The variable names in the algorithm description above have been followed as closely
as possible� One important exception is that Ny in the algorithm corresponds to
ny��� Greek letters have been replaced by abbreviations� In the case a variable is
complex it has been replaced by two with the last letters %r� and %i�� for the real and
imaginary parts� An example of this is pomyr which is the real part of the array
�pn�� Note that the superscripts %n� etc� and the hat symbol are generally left out�
when needed for distinction they are replaced by su�ces � e�g� an�� becomes anp��
The component indices %������ in� e�g�� H� are usually found as the last index of
the array� Instead numbers in the array names are used to distinguish between the
same variable when represented by two di�erent arrays in step � and step �� Normal
derivatives are denoted by pre�xes d and d�� Sometimes a %b� is used for %box�� cf�
above� e�g�� bbeta is the wavenumber beta vector expanded to correspond to other
box sized arrays�

All variables are declared a speci�c type and the program has been compiled with
an implicit none statement� which was changed to implicit logical �a�z	 as
the former is non�standard� Thus the type rules are not into e�ect and have not
been adhered to! note especially that x� y� z are integer indices in do loops�
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� Operation

The program bla reads a velocity �eld from an external device� steps the �eld to
a selected �nal time while producing some log information on the standard output
device and writes the �nal velocities back to a �le� During the simulation it may
also output a �le of the velocity and vorticity rms amplitudes� a �le of the amplitude
of speci�c wavenumbers� a �le of extremum amplitudes� a �le of statistics averaged
over the spanwise direction� �les with velocities in two dimensional planes at regular
intervals in time and �les containing complete ��d velocity �elds at selected times�
The simulation can be run with the pressure solver to get the pressure at the same
time steps as the velocities�

The program bls may be used to produce the initial velocity �eld�

The program rit performs post processing of ��d velocity �elds into Tektronix�
Postscript or ppm �portable pixel map� compatible graphics� Linear combinations
�for example di�erence� of one or more ��d velocity �elds can be computed with
cmp� which also can calculate rms and maxnorm amplitudes of the result� This is
useful for� for example� convergence checks�

The program pre calculates the pressure for a ��d velocity �eld and produces a ��d
pressure �eld which is post processed with ritpre�

Postprocessing of two dimensional planes is done by the program rps in a way similar
to rit� Plots of amplitude �les are generated by the programs pamp� and pamp��
which handle one and multiple amplitude �les respectively� Wave amplitude �les
are plotted by the program pampw and pampw� and extremum amplitude �les
by pext��

To reduce the storage requirements of ��d velocity �les� they can be compressed
by dfc and similarly for two dimensional plane �les by dpc� Note that regular
compression programs such as gzip or compress give a negligible reduction in size of
these binary data �les� An additional advantage with using the compression routines
is that they produce a binary data format which is portable between machines with
di�erent �le formats and �oating point representations�

These programs along with the Fourier transform library VECFFT� the compres�
sion library dclib and the plot library plot� forms a completely self contained and
portable system written in FORTRAN 

�

��� Compiling

Most of the programs need to be recompiled for each size of problem to be run� Under
UNIX this is most easily handled with a make�le� As stated above the compiler must
handle INCLUDE statements and lower case characters� For compilation most of
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the programs require Fourier transforms from the package VECFFT� These are also
written in standard FORTRAN 

 and can be compiled along with the code� The
number of grid points and some other parameters must be set prior to compilation in
the �le par	f� The same par	f �le should be used for the compilation of all programs
to work on a speci�c simulation� Which routines that need to be recompiled after
changing the parameter �le is determined by the make�les�

The number of spectral modes in each direction is set by the parameters nx� ny� nz�
The following restrictions apply � nx and ny�� must be even and factorable by �� �
and �� nz must be factorable by �� �� � and at least �� Note that ny is the number
of Chebyshev polynomials and thus is equal to Ny � � used in section � above�

Dealiazing� i�e� padding to remove aliazing errors� can be switched on ���� or
o� ���� independently for each direction by the �ags nfxd� nfyd and nfzd� If
dealiazing in the respective direction is used nx� ny�� must be divisible by �� and nz

must be divisible by �� Z�symmetry can be used to reduce computation time and
storage by setting nfzsym��� If this is done nz must be divisible by �� and if used
simultaneously with dealiazing in the z�direction nz must be divisible by ��

There is an option to run � � � dimensional simulations� i�e�� simulations of �ow in
a two dimensional geometry with all three velocity components non�zero� which is
sometimes called the in�nite swept �ow� �Two dimensional �ow is a special case of
this�� In this case set nz�� nfzsym�� and nfzd��� �In this case the limitations on
nz given above do not apply��

Normally �nfc��� all the storage resides in primary memory but it is possible to
put the main three dimensional arrays in the external �le ur by setting nfc��� To
achieve maximum performance� especially for external main storage� the parameters
mby and mbz can be changed from the default value ��� see section ��� below� Note
that nz must be divisible by mbz� The program can be coarse grain parallelized� in
which case the parameter nproc should be changed from the default value one to
the number of available processors� This is also discussed in section ���� To allow for
simultaneous calculation of velocities and pressure� the parameter pressure should
be set to �� All other parameters in the par	f �le are computed and should not be
changed manually� Note that most subroutines except those in the libraries dclib�
VECFFT and plot� must be recompiled after changing par	f�

The codes are written in single precision� i�e� with REAL and COMPLEX declara�
tion� However� in most cases there is a need to run the code in double precision� i�e��
with at least ����� digit precision� For this purpose the supplied make�le convert
the programs to double precision� Note that for the programs to work with the
libraries and together with binary �les all routines must be compiled with the same
precision� The make�le automatically compile the libraries with the same precision
as the program� For the double precision� you can also use the compiler option by
specifying the default size of variables as DOUBLE PRECISION like #�r�$� This
option varies from one machine to another� In case of work stations� the compiler

�




option for the double precision is used� See the Make�le for more informations�

However� to change precision �i�e�� compiling the programs as double precision where
they have previously been compiled as single or vice versa� it is necessary to delete all
object �les before recompiling� This is not handled automatically by the make�les�

The same make�le named #Make�le$ can be used in most machines including Crays�
IBM� SGI� SUN� DEC and HP� You must have #cpp$ in path and may need to
change preprocessor option because it varies from machine to machine� The C
language preprocessor� cpp performs the preprocessing directives in some programs
like ctim�f� It is useful to handle system dependent functions in one �le�

��� Generation of initial velocity �elds with bls

An initial velocity �eld consists of a header and an array with the three components
of velocity in Fourier space ful�lling the equation of continuity� The format of the
�le is described in section ���� The routine bls may be used to generate an initial
velocity �eld� consisting of a basic laminar �ow� a localized disturbance� waves and a
random noise� The di�erent disturbances can be switched o� to allow zero to three
disturbances to be inserted�

The initial velocity �eld �le has the same format as �les generated by subsequent
execution of the bla program so that it is possible to feed the initial velocity �eld
to the postprocessing directly for examination�

To compute a velocity �eld a velocity pro�le �le must �rst be generated� The subrou�
tine fskch �nds velocity pro�les from the Blasius Falkner�Skan Falkner�Skan�Cooke
family� These are similarity boundary layer pro�les derived from the laminar bound�
ary layer �ow equations for �ow over a �at plate� wedge and in�nite swept wedge�
bls is generating a temporal spatial or parallel non�parallel velocity �eld depending
on �ow type parameter 
type�

bls is intended for batch execution and has no interactive input� The input comes
from the �le bls	i� The format of this �le is given in section ���� All input is
non�dimensionalized with the displacement thickness and free�stream velocity at
the in�ow boundary �x � �� at t � ��

��� Generation of non�similarity base 
ows

In case the streamwise free�stream velocity is not a power of the downstream dis�
tance� the boundary layer equations do not have a self similar solution� To generate
a base �ow for this situation we can �rst use bls to generate a similarity �ow �eld
�without disturbances� which is a good approximation to the sought �ow around the
in�ow boundary� I�e�� a �ow such that boundary layer thickness and acceleration are
correct around the in�ow boundary� Then this �ow �eld can be advanced in time

��



with bla to �nd a steady state using a streamwise free�stream velocity given in tab�
ular form as a function of the downstream distance �see section ��� and ������ The
generated steady �ow �eld can be input to bls and disturbances superimposed� The
same �ow �eld can be used to specify the base�ow to bla for subsequent simulations�

��� Execution of bla

The program is intended to be used in batch mode and so has no interactive input�
The main con�guration is done at compile time through changes to the �le par	f
�see section ���� and at runtime by bla	i �see section ����� An initial velocity �eld�
which can be produced by the program bls� see above� is needed to start execution�

�	�	� Storage requirements

The core size depends on the compiled size of the code� the resolution of the simula�
tion� and whether dealiazing in the y�direction is used� the tuning parameters mby�
mbz and nproc and if the three dimensional storage is in the core�

The two dimensional storage for step � is ��nx�nz�mby�nproc words! multiply by a
factor ��� each for dealiazing in the x and z�directions� by ��� for z�symmetry and by
� 
 if the pressure solver is activated� For step � storage is �
���nx�ny�mbz�nproc
words! multiply by ��� for dealiazing in the y�direction and � 
 for pressure solver�
The storage for step � and step � overlaps so that the total two�dimensional storage
is equal to the maximum of the requirement for step � and step ��

The three dimensional storage is ��nx�ny�nz words� multiply by a factor of ��� for
dealiazing in the y�direction� by ��� for z�symmetry� This storage can be kept out
of the core by setting nfc���

�	�	� Tuning

The code itself has been written for maximum speed on a vectorizing computer
using a highly optimizing compiler� To achieve highest possible performance the
main storage should preferably be kept in the core� If this is is not possible the
performance in terms of wall time will degrade due to waiting for I O� but the CPU
time will only increase in the order of ��&�

For tuning of the program to a given installation two parameters mby and mbz can
be set in par	f� This has the greatest impact on performance if the storage of the
main data is out of core� For large in�core simulations mby�mbz�� will generally
give good performance� Note that nz must be divisible by mbz�

If the three dimensional storage is in the core the value of mby and mbz a�ects only
the vector lengths� The basic vector length is nxp
���mby��	�nx
� in most of step
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� �where nxp is equal to nx without x�dealiazing and nx��
� with x�dealiazing� and
nz�mby in the x�transform� multiply the latter by ��� for z�dealiazing and multiply
by ��� and add � for z�symmetry� The vector length in step � is nx
��mbz� If these
values are lower than what is needed to get a good performance� mby and mbz can
be increased�

If the three dimensional storage is out of core it is important to keep the record
length� nx�mby�mbz�npreal bytes �where npreal is the number of bytes used to
store a real number� in communication with the main storage �le as large as possi�
ble� Since increasing mby and mbz increases the amount of internal storage� this is
preferably done by balancing the amount of storage needed for step � and step ��
cf� above� A suggestion is to put mby�mbz�� and see if this gives an acceptable
performance in terms of wall time CPU time� If not� they can be increased to see
if this improves the situation� Note �nally that nothing can be done to the �nite
bandwidth of the transfer between disk and processor� the program will do about
� �ops for every byte transferred between disk and processor �� when using ��byte
reals�� so it is quite likely that the program will spend a large portion of the time
waiting for the disk�

The program is prepared to be coarse�grain parallelized� Step � and step � can each
be divided on as many processors as there are boxes to process! typically this is
no limitation� There are directives for several compilers inserted before the loops �
and �� these may have to be replaced for compilers not previously used� To achieve
parallelization nproc in par	f should be set to the number of processors to be used�
Then all subroutines have to be compiled as recursive� i�e� with dynamic local
storage� In addition a parallelizing option has to be added to the compile statement
for the main program� The code has been run in parallel mode on the Alliant FX���
and FX������ the SGI Powerstation� Challenge and Power Challenge� the CRAY���
J�� and C��� The typical speed�up is ������� for four processors�

A slightly di�erent version of the code has been implemented on various computers
with distributed memory� such as IBM SP� and CRAY T�E� The communications
between the processors are handled with the Message�Passing Interface �MPI�� The
e�ciency has been tested and is reported in ����

��� Post processing

�	�	� Post processing velocity �les with pre and ritpre

The program pre generates a pressure �eld from a velocity �eld� The pressure can be
examined with the program ritpre in the same way a velocity �eld is post processed
with rit�
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�	�	� Post processing velocity �les with rit

The program rit generates various graphs from a velocity �eld �le� The graphs
can be generated in either Tektronix ���� format or Postscript� There is also a
possibility to produce black and white portable pixel maps �ppm�� When executed�
rit prompts for an input �le name� The �le is read and the program o�ers a choice
of various types of graphs� It is mainly intended for interactive execution and should
be self explanatory�

It is possible to use rit in a batch environment by compiling it into a input program�
This is run interactively to produce a �le ritin� which is subsequently read by the
batch code to produce the desired plots� Note that if plots in batch mode are
produced %to the screen� the resulting Tektronix graphic characters will be written
to the log �le� To compile a batch program� set imode to � in the rit	f �le and
compile a second time with imode�� to get an input program� To get an interactive
program imode should be left at ��

�	�	� Post processing velocity �les with cmp

The program cmp is used for subtracting and adding di�erent velocity �elds� This
is useful when comparing velocity �elds�

�	�	� Post processing plane �les with rps

Planes saved during a simulation can be examined with the program rps�

�	�	� Post processing velocity �les with fou

When a number of velocity �elds has been saved during a simulation� the program
fou can be used to make Fourier transforms in both time and space�

�	�	� Postprocessing amplitude �les with pamp�
 pamp�
 pampw
 pampw


pampw� and pext�

The programs pamp� and pamp� can be used to produce plots of the time history
of various amplitudes from the amplitude �les by written bla� pamp� works on one
�le and pamp� can plot one quantity from multiple �les� pext� makes plots of time
histories of extremum values �i�e� min and max values� of velocities and vorticities
and the location of extrema� pampw and pampw� similarly plot amplitudes of
wave components �streamwise�spanwise Fourier mode� from one or multiple wave�
amplitude �les� The programs are intended to be self explanatory and prompt
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for input �le names� Since the amplitude �les are formatted and normally relatively
small� no batch versions of these programs are available� The �les contain no headers
so that �les from sequential runs of one �ow case can be concatenated and then
plotted to show the complete evolution of the amplitudes�

�	�	� Postprocessing xy�statistics �les with pxyst

To get good statistics of space developing �ows with one homogeneous direction
�spanwise�� the data needs to be averaged in time� The plotting of time and spanwise
averaged data saved to �le is performed by pxyst� Note that these �les have headers�
and thus cannot be concatenated together� The statistics in di�erent �les can be
added together by the program addxyst� The format of the statistics �les is given
in section ��� below�

pxyst generates plots both of the raw statistical data and of a number of derived
quantities� It is also possible to generate various special plots of the mean �ow� such
as boundary layer thicknesses and skin friction�

There is an initial option to �lter data� which applies to the raw data� before comput�
ing other quantities� There is also an option to �lter data prior to producing plots�
the �lter is then applied to the derived quantity� The results of the two �ltering
processes may di�er� In both cases the �lter is applied in the streamwise direction�

� File formats

These are the input output �les used by the programs� For the format of the external
main storage �le see section ����� above�

��� bls�i �le

bls	i is formatted and sequential� Comments can be put after data on lines not
containing character input� All input is non�dimensionalized with the displacement
thickness at x � �� t � � and the free�stream velocity at x � �� t � �� For more
explanations see section ���� Contents line by line �

�� namnin Optional input velocity �eld �le name! character'���

As an option the base �ow can instead be given in the form of an input velocity �eld
�le�

�� namnut Output velocity �le name! character'���

�� re The Reynolds number �based on the units above�! real�
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�� xlb The length of the computational box! real�

�� h� The height of the computational box! real�

	� zlb The width of the computational box! real�

The dimension of the simulation box in all three dimensions must be given� The
streamwise extent of the box must for spatially developing �ows include the length
of the fringe region� which is typically set to ������ displacement thicknesses� The
vertical extent of the box must include the whole boundary layer� Depending on the
choice of free�stream boundary condition� the box may include only the boundary
layer or a few times more� The su�ciency of the box height may be investigated
through numerical experiments�


� fltype Type of �ow ��� temporal Falkner�Skan�Cooke� �� temporal Falkner�
Skan� � temporal Blasius BL� 	 spatial Blasius BL� 
 spatial Falkner�Skan� � spatial
Falkner�Skan�Cooke� � spatial parallel Blasius Falkner�Skan Falkner�Skan�Cooke!
integer�

�� If fltype � �� or � 
� rlam The acceleration exponent of the velocity in the
free�stream! real�

�� If fltype � �� or � �� spanv The spanwise free�stream velocity! real�

��� If fltype � 	� bstart The x�value of the start of the blending of the base �ow!
real�

��� If fltype � 	� bslope The length of base �ow blending region! real�

The base �ow can either be parallel or space developing� The parallel base �ow is
for the present version only of Blasius type and is selected by setting fltype���
The space developing base �ow can be either Blasius �fltype�	�� Falkner�Skan
�fltype�
�� or Falkner�Skan�Cooke �fltype���� For the two latter the acceleration
exponent rlam for the streamwise free�stream velocity must be given �i�e� m in
U � Cxm�� For Falkner�Skan�Cooke �swept wedge� �ow the spanwise velocity in
the free�stream must be speci�ed� Note that the spanwise direction is parallel to the
leading edge of the wedge for this case� and that the spanwise free�stream velocity
is constant� For spatially developing �ows the base �ow from the upstream and
the downstream end are blended in the fringe region� The start and blending length
must be speci�ed� Typically the start is given as a negative number i�e�� the distance
upstream of the in�ow boundary where the blend starts is given� �see section ����

��� ushift The Galilei shift velocity� �� for no shift! real�

��� locdi Flag to generate a localized disturbance! logical�

���a If locdi is true� ditype The type of disturbance � only useful values � to �!
integer�

���b If locdi is true� amp The amplitude of a localized disturbance! real�
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���c If locdi is true� theta The rotation angle of the localized disturbance in
radians! real�

���d If locdi is true� xscale The streamwise scale of the disturbance! real�

���e If locdi is true� xloc� Origin of the disturbance in x�direction! real�

���f If locdi is true� yscale The wall normal scale of the disturbance! real�

���g If locdi is true� zscale The spanwise scale of the disturbance! real�

���h If locdi is true� ipoly The wall normal distribution of the disturbance� only
useful values � to �! integer�

The ditype determines the type of disturbance� See bls	i for more information�
The example below is for ditype set to ��

The localized disturbance is governed by the amplitude� the rotation angle� the
length and spanwise scale� The rotation angle is the angle by which the spanwise
symmetric disturbance is rotated about the y�axis� The x�scale and the z�scale of
the disturbance are given to be applied to the disturbance before rotation� The form
of the disturbance is in a coordinate system aligned with disturbance�

u� � �

v � ���

�z

w� � ���

�y

� � amp
x�

xscale

z�

zscale
p�

y

yscale
�e
�� x�

xscale
	��� z�

zscale
	�

����

where p�s� is determined by ipoly� see bls	i� The relation between the disturbance
aligned velocities and coordinates �with �� and the computational box aligned ones
is �

x � x� cos�theta� � z� sin�theta� �����

z � �x� sin�theta� � z� cos�theta� �����

u � w� sin�theta� �����

w � w� cos�theta� �����

��� waves Flag to generate a pair of oblique waves! logical�
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���a If waves is true� energy Energy density of the waves! real�

���b If waves is true� ystart The lowest y�value of non�zero wave amplitude! real�

���c If waves is true� yend The largest y�value of non�zero wave amplitude! real�

���d If waves is true� yrise The switch distance from zero to max wave amplitude!
real�

���e If waves is true� yfall The highest y�value of non�zero wave amplitude! real�

���f If waves is true� walfa Streamwise wave number of the waves! real�

���g If waves is true� wbeta Spanwise wave number of the waves! real�

��� os eigen modes �ag� �true� for use of tabulated eigen modes! logical�

�	� noise noise �ag� �true� for noise! logical�

�	�a If noise is true� ed The mean energy density of the noise! real�

�	�b If noise is true� nxn The maximum streamwise wavenumber of the noise� should
be � nx �! integer�

�	�c If noise is true� nyn The number of vertical Stokes modes in the noise� should
be even� � ny��
�! integer�

�	�d If noise is true� nzn The maximum spanwise wavenumber of the noise� should
be odd� � nz! integer�

�	�e If noise is true� seed A random number seed in the range �
����� to ��! integer�

The noise is in the form of Stokes modes� i�e�� eigenmodes of the �ow operator
without the convective term� These ful�ll the equation of continuity and the bound�
ary condition of vanishing velocity at the lower and upper boundaries� Although
the actual boundary condition may allow a non�zero amplitude at the free�stream
boundary the restriction of zero amplitude for the noise doesn�t have a large impact
in practise�

The noise can be switched on by a �ag in the input �le� If noise is used the mean
energy density must be given along with the number of wave numbers to be random�
ized for each direction� In the wall normal direction the number of Stokes modes to
be randomized is given� The same noise will be generated for the same setting of
this seed� if the physical size of the simulation box is unchanged� In particular the
resolution can be changed without a�ecting the noise� as long as the number of grid
points is su�cient to resolve the noise modes� This is useful for convergence studies�

��� bla�i �le

bla	i is formatted and sequential� Comments can be put after data on lines not
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containing character input� For more explanations see section ���� Contents line by
line �

�� namnin Input velocity �le name! character'���

�� namnut Output velocity �le name! character'���

�� If pressure in par	f is �� namnutp Output pressure �le name! character'���

�� tmax The �nal time to which to simulate! real�

�� maxit The maximum number of iterations to simulate! integer�

	� cpumax The maximum CPU time in seconds! real�

The input and output �le names and the �nal time tmax determine the scope of
the simulation� in addition setting the maximum number of iterations puts a limit
on the number of iterations to be taken through the main time step loop� The
latter parameter is useful with variable time stepping in a batch environment to
ensure that the execution terminates before running out of execution time� If the
maximum number of iterations is used before the �nal time is reached the execution
will terminate normally by saving the present velocity �eld to the output velocity �le�
Note that for RK� a time step consists of three or four iterations� The execution will
only stop after completing an integer number of physical time steps� If adaptive time
stepping is used the program will adjust the �nal four time steps so that it reaches
exactly the �nal time� You can also control maximum execution time in CRAY
systems by giving the maximum CPU time for batch job so that it terminates by
cpumax� You just give a very big number if you do not need to control maximum
execution time�


� dt The time step length! real�

dt is the length of the time step� if it is set � � the adaptive time stepping is used�
The time step is regulated to keep the CFL number close to cflmax� which is set to
���
p
� for the three stage Runge�Kutta and ���

p
� for the four stage Runge�Kutta�

When using a fringe region the time step is also limited by the numerical stability
for the damping term� this is ��
�	fmax for the three stage RK and ���		fmax for
the four stage RK �fmax is the max strength of the fringe region� see below�� If dt
is set � � then �dt is used as an additional limit on the variable time step�

�� nst The number of stages in the time discretization! integer �� three stage Runge�
Kutta� � four stage Runge�Kutta��

nst selects between the di�erent formulas for the explicit time discretization� The
� stage Runge�Kutta method is about ��& more e�cient than the � stage version�

�� xl The new box length� If lower than the old length� the old value will be used!
real�

��� varsiz Flag to allow read of a �le of di�erent size than the code is compiled
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ibc BC at free�stream boundary

� u � v � w � �

� Du � Dv � Dw � �

� D�u � D�v � D�w � �

� D�u � D�v � D�w � �

�� Du� ku � Dv � kv � Dw � kw � �

�� D�u� kDu � D�v � kDv � D�w � kDw � �

�� D�u� kD�u � D�v � kDv � D�w � kD�w � �

�� Dv � kv � D�v � kDv � � � �

��� u � U� v � V�w � W

��� Du � DU�Dv � DV�Dw � DW

��� Du� ku � DU � kU�Dv � kv � DV � kV�Dw � kw � DW � kW

��� Dv � kv � DV � kV�D�v � kDv � D�V � kDV� � � �

��� u � U�Du � DU�w � W

��� u � U� v � dDV�w � W

��� u � U�Du� vx � ��Dw � �

Table �� Free�stream boundary conditions� u� v� w are the solution velocities�
U� V�W are the base �ow velocities� D is the velocity derivative normal to the
boundary� k is the modulus of the horizontal wavenumber �k� � 
� � ����

for! logical�

If varsiz is set true the program may start from an input �eld of a di�erent reso�
lution than the program is compiled for� The spectral coe�cients are padded with
zeroes or truncated to achieve a spectrally accurate interpolation� However� the res�
olution cannot be reduced in the normal direction as the truncated �eld in general
will not ful�ll the equation of continuity and the boundary conditions�

��� rot The rotation rate� �� for no rotation ! real�

rot is the angular velocity of the coordinate frame around the z�axis� For non�
rotating �ows it should be set to zero�

��� ibc The boundary condition number! integer�

ibc is the number of the free�stream boundary condition� The implemented bound�
ary conditions are given in table �� See also section ��� above� A number of
these boundary conditions makes the numerical scheme unstable� Among the stable
boundary conditions � the most used are number ��� and ����

��� cim Flag to use chebyshev integration method� If false the tau method is used!
logical�

��� If cim is true� icorr Flag to use integration correction! logical�
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icorr is a �ag to use integration correction� The combination of using integra�
tion correction and boundary conditions other than of Dirichlet type may lead to
numerical instability� The �ag is normally set false�

��� gall Flag to compute and use a Galilei transformation to increase max stable
time step! logical�

�	� spat Flag to perform spatial simulation! logical�

spat turns on spatial simulations� if it is set false the program performs a temporal
simulation� For spatial simulations a number of parameters specifying the fringe
region must be given� see section ��� above�

�
� If spat is true� tabfre Flag to use a tabulated free�stream velocity! logical�

To use a tabulated free�stream velocity the �ag tabfre is set true� The format of
the free�stream velocity �le is given in section ���� below�

��� If spat and tabfre are true� namfre Name of �le containing free�stream velocity
table! character'���

��� If spat is true� rbfl Flag to use a ��d �ow �eld as a base �ow! logical�

To use a ��d �ow �le to de�ne the base �ow the �ag rbfl is set true� The format of
the ��d �ow �le is given in section ��� below�

��� If spat and rbfl are true� nambfl Name of �le containing a ��d base �ow!
character'���

��� If spat is true � fmax Maximum strength of the fringe region! real�

��� If spat is true � fstart x�position of the start of the fringe region! real�

��� If spat is false � fend x�position of the end of the fringe region! real�

��� If spat is true � frise The distance from the start of the fringe region to the
�rst point of maximum damping! real�

��� If spat is true � ffall The distance from the last point of maximum damping
to the end of the fringe region! real�

�	� If spat is true � ampob The amplitude of oblique waves forced in the fringe! real�

A pair of oblique waves can be generated in the fringe region by setting ampfw

non�zero� The format of the waveform �le wave	d is given in section �����

�
� If spat is true � amp�d The amplitude of two dimensional T�S wave forced in
the fringe! real�

��� If spat is false � cdev The reference speed for the parallel boundary layer growth!
real�

For temporal simulations cdev must be set to the reference speed of the boundary
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layer growth� see section ��� above�

��� loctyp to generate a localized volume force disturbance! integer�

loctyp can take values from � to �� Various disturbances can be created� See locf
for more information� The di�erent values of loctyp each require a distinct number
of parameters in the �le bla	i� see rparambl for more information� As an example�
a localized volume force disturbance to generate wave packets is created by setting
loctyp to �� The following parameters ����a�i� are required if loctyp is �� Di�erent
parameters are needed when loctyp is �� �� � or �� This is explained in rparambl
and locf�

���a If loctyp is � � ampx Max amplitude of the localized volume force disturbance
in x�direction! real�

���b If loctyp is � � ampy Max amplitude of the localized volume force disturbance
in y�direction! real�

���c If loctyp is � � ampz Max amplitude of the localized volume force disturbance
in z�direction! real�

���d If loctyp is � � xscale Length scale of the localized volume force disturbance
in x�direction! real�

���e If loctyp is � � xloc� Origin of the localized volume force disturbance in
x�direction! real�

���f If loctyp is � � yscale Length scale of the localized volume force disturbance
in y�direction! real�

���g If loctyp is � � zscale Length scale of the localized volume force disturbance
in z�direction! real�

���h If loctyp is � and zscale � � � lskew The obliqueness of waves of the localized
volume force disturbance! real�

���i If loctyp is � � tscale Time scale of the localized volume force disturbance!
real�

If loctyp is �� the form of the localized disturbance is�

�
�� F�

F�

F�

�
�� �

�
B� ampx

ampy
ampz

�
CAe��y�yscale	

�
g�x� z�f�t�� �����

where

zscale � � g�x� z� � e���x�xloc�	�xscale�
�
��z�zscale	

�

zscale � � g�x� z� � cos����z � xlskew�	zscale�e
���x� xloc��	xscale�

�� �����

��



and

tscale � � f�t� � e��t�tscale	
�

tscale � � f�t� � S��t	tscale��
tscale � � f�t� � �� ���	�

and

S�x� �

	
�

�

� x � �
�	�� � exp� �

x�� � �
x�� � � x � �

� x � �

� ���
�

��� tripf Flag to generate a random #sandpaper$ volume force trip strip! logical�

���a If tripf is true � tamps Max stationary amplitude of the trip! real�

���b If tripf is true � tampt Max time varying amplitude of the trip! real�

���c If tripf is true � txsc x length scale of the trip! real�

���d If tripf is true � tx� x origin of the trip! real�

���e If tripf is true � tysc y length scale of the trip! real�

���f If tripf is true � nzt Number of z Fourier modes in the trip! integer�

���g If tripf is true � tdt Time interval between change of the time dependent part
of the trip! real�

���h If tripf is true � seed Negative number in the range �
����� to �� to initialize
the random number generator for the trip ! integer�

tripf is a �ag to enable forcing of a volume force trip strip at the wall running
in the spanwise direction� The trip can be used to generate turbulence or at lower
amplitude levels to test the stability of a boundary layer or �ow structure� The
trip has a steady amplitude tamps� and a time dependent amplitude tampt which
allow both steady and time varying trips to be generated� The volume force has
one continuous time derivative and is independent of the time discretization� The
random numbers are generated such that if the random number seed and other trip
parameters are unchanged� the same trip forces are generated� This is true even
if the simulation is split into two or more runs� For every run beyond the �rst
the random number generator is run forward to the correct state� The form of the
volume force� which is directed normal to the wall� is as follows �

F� � exp���x� tx��	txsc�
� � �y	tysc�

��f�z� t�� �����

where

f�z� t� � tampsg�z� � tampt���� b�t��hi�z� � b�t�hi���z��� �����

��



and

i � int�t	tdt��

b�t� � �p� � �p��

p � t	tdt � i� �����

g�z� and hi�z� are Fourier series of unity amplitude with nzt random coe�cients�

��� wbci Boundary conditions at wall! integer�

wbci can be set to �� �� � or �� If wbci is not equal to zero� additional parameters
must be provided� See rparambl and cwallbc� The example below is for wbci set
to ��

���a If cwallbc is � � amp Max amplitude of the localized blowing suction! real�

���b If cwallbc is � � damp Damp amplitude� No e�ect if less than one! real�

���c If cwallbc is � � xstart Start position of disturbance! real�

���d If cwallbc is � � xend End position of disturbance! real�

���e If cwallbc is � � xrise Rise length of disturbance! real�

���f If cwallbc is � � xfall Fall length of disturbance! real�

���g If cwallbc is � � zbet Spanwise variation! real�

���h If cwallbc is � � tomeg Time variation! real�

The blowing and suction at the wall is implemented in cwallbc� The form of the
boundary condition below is for wbci set to ��

vjy�� � amp � f�x� � cos�zbet � z� � sin�tomeg � t�� �����

where

f�x� � S

�
x� xstart
xrise

�
� S

�
x� xend
xfall � �

�
� �����

and S�x� is given by equation ���
��

��� icfl Number of time iterations between calculation of the CFL number! integer�

icfl is the calculation interval for the CFL number� If the CFL number is computed
each iteration this adds a few percent to the execution time� but since it is used to
regulate the time step it should not be computed too sparsely� preferably every
complete time step� i�e� icfl � nst�

��



��� iamp Number of time iterations between calculation of rms amplitudes! integer�

���a If iamp � � � namamp Output �le for rms amplitudes! character'���

iamp is the interval for evaluation of the amplitude� As for the CFL number contin�
uous calculation of the amplitude costs a number of percent in execution speed� If
iamp�� no amplitudes will be calculated and no amplitude �le will be written� To
get the correct time accuracy iamp should be an integer multiple of nst�

��� longli Flag to generate amplitude for each horizontal plane �y�value�� Applies
both to rms amplitudes �items �	��
� and wave component amplitudes �items ���	���

longli is set true the program will produce y�dependent statistics and write these
to the amplitude �les� both for the global statistics and statistics by wavenumber�
The statistics �les can become quite long if the �ag is set true�

��� iext Number of time iterations between calculation of extremum amplitudes!
integer�

iext is the interval for evaluation of the extremum values and their coordinates�
This evaluation is somewhat more time consuming than that for the amplitudes�
If iext�� no extremum amplitudes will be calculated� To get the correct time
accuracy iext should be an integer multiple of nst�

���a If iext � � � namext Output �le for extremum amplitudes! character'���

�	� ixys Number of time iterations between calculation of xy�statistics! integer�

ixys is the interval for evaluation of xy�statistics� used by pxyst� The statistics
generated and the output �le format are described in section ���� The �le is written
to every ixyss iterations� overwriting older data� To get the correct time accuracy
ixys should be an integer multiple of nst�

�	�a If ixys � � � namxys Output �le for xy�statistics! character'���

�	�b If ixys � � � ixyss Number of time iterations between saving of xy�statistics
data to �le! integer�

�	�c If ixys � � � txys Time to start accumulation of xy�statistics! real�

�
� msave The number of complete intermediate velocity �elds to be saved� If
non�zero� items a and b are repeated for each �le! integer�

�
�a If msave� � � tsave The time for which to save an intermediate �eld! real�

�
�b If msave� � �nmsave The name of the intermediate velocity �le! character'���

msave is the number of intermediate velocity �elds to be saved� maximum ��� If
higher than zero the times and names of the �les to be saved must be given� If the
time stepping is adaptive the program automatically adjusts the time step to reach
exactly the desired times� For �xed time step the save is done at the nearest time�
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��� mwave The number of wavenumbers to save amplitudes for� If non�zero� item b
is repeated for each wavenumber! integer�

���a If mwave� �� The name of the wave amplitude �le! character'���

���b If mwave� �� kx�kz The streamwise wavenumber as multiples of the fundamen�
tal ��	xL� the spanwise wavenumber as multiple of the fundamental ��	zL! both
integers�

mwave sets the number of speci�c wavenumbers to calculate amplitudes for� For each
wave� the x and z wavenumbers must be speci�ed as integers to be multiplied by
��	xL and ��	zL respectively� The wavenumbers are counted in the physical way for
positive and negative kz and kx zero and up� not in the way of the internal storage�
The wave amplitudes are calculated for each of the six velocities and vorticities at
intervals set by the iamp value�

��� npl The number of planes to be continuously saved during the simulation� If
non�zero� items b through e are repeated for each plane! integer�

���a If npl � �� ipl The saving interval for planes in number of iteration! integer�

���b If npl � �� tpl�i��	 The type of plane to be saved� � for xy�� for xz! integer�

���c If npl � �� tpl�i��	 The variable to be saved� i�e� � for u� � for v� � for w!
integer�

���d If npl � �� cpl The coordinate for which to save the plane! real�

���e If npl � �� nampl The name of the �le in which to save the planes! character'���

npl is the number of �d planes to be saved every ipl iterations during the simulation�
To get the correct time accuracy ipl should be an integer multiple of nst� It is these
�les which are used by rps for plotting� the format is described in section ��� below�

��� Velocity �le

Format of a ��d uncompressed velocity �le� The format is used for any ��d input or
output from bls and bla� The �le is unformatted� sequential�

Record �� Reynolds number! real� �false� �this is to be backward compatible with
channel �ow �les�! logical� xL! real� zL! real� the time for this �eld! real� the length
by which the box has been shifted to the right since time zero! real�

Record �� Number of spectral modes in the x�direction! integer� the number of points
in the physical y�direction! integer� the number of spectral modes in the z�direction
reduced for symmetry! integer� � � no z�symmetry z�symmetry! integer�

Record �� Flow type fltype! integer� displacement thickness expressed in half box
heights dstar! real�
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Record �� If fltype � � � start of blending region bstart� end of blending region
bslope� if fltype � 
� acceleration exponent of streamwise free�stream velocity
rlam� spanwise free�stream velocity spanv� For other values of fltype this record
is omitted�

Record �� The u� v� w�velocities in Fourier x� z and physical y space� One record
contains nx � complex coe�cients in normal Fortran format� The records are stored
in y� z� i order with y varying the fastest and i the slowest� The number of points
in the y�direction is nyp and the number in the z�direction nzc� Total number of
records nyp�nzc���

��� Pressure �le

Format of a ��d uncompressed pressure �le� The format is the same as for the
velocity �le� except the last record which contains only the pressure�

��� Amplitude �le

Formatted� sequential� The rms�levels are an average over the physical box� For
each time three records are saved�

�� Time! real� urms! real� vrms! real� wrms! real�

�� �rms! real� �rms! real� �rms! real��
�	k�! real�

�� DUuv! real� energy for wavenumber zero! real� h�� i�e� the box half�height in
wall units! real�

if longli is �true� then for each time the above is followed by statistics by y�plane
in descending y�coordinate order as follows �

�� mean squared streamwise velocity without Blasius base �ow! real� mean squared
normal velocity ! real� mean squared spanwise velocity ! real� mean squared stream�
wise vorticity ! real� mean squared normal vorticity ! real� mean squared span�
wise vorticity without Blasius base �ow ! real� mean squared vorticity squared over
wavenumber square average� no �����! real� Reynolds stress average! real� mean
streamwise disturbance velocity squared! real� mean spanwise disturbance velocity
squared! real�

��� Wave amplitude �le

Formatted� sequential� The data in this �le is in internal scaling� For each time are
saved�

�� Time! real� number of waves saved! integer� number of points in the y�direction!
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integer� Reynolds number! real� fundamental wavenumber in the x�direction! real�
fundamental wavenumber in the z�direction! real� �ag longli�

�� The wavenumber 
 as multiples of the fundamental ��	xL! integer� the wavenum�
ber � as multiple of the fundamental ��	zL! integer� urms! real� vrms! real� wrms!
real� �rms! real�

Item � is repeated for each wave�

if longli is �true� then for each time the above is followed by statistics by y�plane
in descending y�coordinate order as follows �

�� if the wavenumber is zero � �u for each y�plane �with the imaginary part zero��
otherwise �v for each y�plane! complex�

�� if the wavenumber is zero � �w for each y�plane �with the imaginary part zero��
otherwise �� for each y�plane! complex�

Item � and � are repeated for each wave�

��
 Extremum �le

Formatted� sequential� For each time are saved�

�� Time! real�

�� Min u� Ulaminar! real� x�coordinate for this minimum! real�

�� y�coordinate! real� z�coordinate! real�

�� and �� same for min v

	� and 
� same for min w

�� and �� same for min �

��� and ��� same for min �

��� and ��� same for min �

��� and ��� same for min �� �laminar

�	� through ��� same as �� through ��� but for maximum

��� Plane velocity �le

Unformatted� sequential�

Record �� Reynolds number! real� �false� �this is to be backward compatible with
channel �ow �les�! logical� xL! real� zL! real� the time for this �eld! real� the length
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by which the boxed has been shifted to the right since time zero! real�

Record �� Number of spectral modes in the x�direction! integer� the number of points
in the physical y�direction! integer� the number of spectral modes in the z�direction
reduced for symmetry! integer� � � no z�symmetry z�symmetry! integer�

Record �� The type of plane� � for xy�� for xz! integer� the variable number� i�e�� �
for u� � for v� � for w! integer� the coordinate of the plane! real� �ow type fltype!
integer� displacement thickness expressed in half box heights! real�

Record �� Time! real� the length by which the boxed has been shifted to the right
since time zero! real�

Record �� The velocity array in physical space! x�y�planes are nx�nyp with x varying
the fastest! x�z�planes are nx�nz for the non�symmetric case and nx��nz
���	 for
the symmetric case with x varying the fastest�

Record ��� are repeated for each time when the plane is saved�

��� xy�statistics �le

Unformatted� sequential�

Record �� Reynolds number! real� �false� �this is to be backward compatible with
channel �ow �les�! logical� xL! real� zL! real� the time for this �eld! real� the length
by which the boxed has been shifted to the right since time zero! real�

Record �� Number of spectral modes in the x�direction! integer� the number of points
in the physical y�direction! integer� the number of spectral modes in the z�direction
reduced for symmetry! integer� � � no z�symmetry z�symmetry! integer�

Record �� Flow type fltype! integer� displacement thickness expressed in half box
heights! real�

Record �� If fltype � � � start of blending region bstart! real � end of blending
region bslope! real � if fltype � 
 acceleration exponent of streamwise free�stream
velocity rlam! real� spanwise free�stream velocity spanv! real� For other values of
fltype this record is omitted�

Record �� Sum of the length of the time steps at which statistics have been sampled
sumw! real� number of statistics calculated nxys! integer�

Record 	���nxys� Each record contains a nx � nyp plane of statistics with the x�
index varying the fastest� The statistics are averaged over time and the z�direction�

Record 	��� u� v� w�u�� v�� w��

Record ����
 ��� ��� ����
�
�� �

�
� � �

�
�

Record ����� uv� uw� vw
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Record ����� u�x�u�x � ��� v�x�v�x � ��� w�x�w�x � �� �i�e� one point separation
auto correlations� x counted cyclically��

Record ����	 u�y�u�y � ��� v�y�v�y � ��� w�y�w�y � ��

Record �
��� u�z�u�z � ��� v�z�v�z � ��� w�z�w�z � �� �z counted cyclically�

Record �� R��� � u�x � u�y � u�z� �ij is the dissipation tensor

Record �� R��� � v�x � v�y � v�z

Record �� R��� � w�
x � w�

y � w�
z

Record �� R��� � uxvx � uyvy � uzvz

Record �� R��� � uxwx � uywy � uzwz

Record �� R��� � vxwx � vywy � vzwz

Record �	��
 p� p�� pu� pv� pw� pux� pvy� pwz� puy� pvx� upx�wpz

���� Free�stream velocity table �le

formatted� sequential

Record �� n number of table entries

Record � � n��� xtab streamwise coordinate! real� utab free�stream velocity! real�

���� wave�d forced wave �le

formatted� sequential

Record �� rew Reynolds number of wave �not used by bla�! real�

Record �� alfaw the streamwise� betaw the spanwise wavenumber of the wave! both
real�

Record �� eig the eigenvalue of the wave� the real part of which is used as the
angular frequency of the wave! complex�

Record ��n��� n chebyshev coe�cients of the mode shape of the normal velocity� of
which the �rst nyp are used� If there are not enough coe�cients they are padded by
zeroes! complex�

���� basic�i Base 
ow pro�le �le

basic	i is unformatted and sequential� basic	i is an output �le from cb
ow� basic	i
saves the basic �ow pro�le only for non�parallel spatial simulations if the �le does

�




not exist� or reads the basic �ow pro�le for the same simulation parameters�

Record �� Reynolds number! real� xL! real� the length by which the boxed has been
shifted to the right since time zero! real� displacement thickness expressed in half box
heights dstar! real� start of blending region bstart� end of blending region bslope�
acceleration exponent of streamwise free�stream velocity rlam� spanwise free�stream
velocity spanv� the number of points in the physical x�direction! integer� the number
of points in the physical y�direction! integer�

Record �� The basic u� v� w�velocities in the physical x� y space�
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A Release notes

This manual refers to the following programs and packages �

bla v���

bls v���

rit v���

pre v���

ritpre v���

rps v����

cmp v���

fou v���

pxyst v���

pamp� v���

pamp� v���

pampw v���

pext� v���

dfc v���

dpc v���
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plot� v��


VECFFT v���

dclib v���

fsdf v���

This is software which is distributed free on a limited basis! it comes with no guaran�
tees whatsoever� Problems can be reported to henning(mech�kth�se or hnd(�a�se�
but no action is promised� If results obtained by using these programs are published
the authors would like an acknowledgment�

Distribution of the code is done by email using a uuencodeed� compressed tar �le�
A complete directory structure including all of the material above can be obtained
by executing the following commands on the saved mail �le� preferably called prog

uudecode prog

uncompress prog�tar�Z

tar �xf prog�tar

Make�les appropriate for compiling the codes are also included for those using the
UNIX operating system�

A version of bla �blap v���� exists that runs on computers with distributed mem�
ory� This version is slightly di�erent from the one described in this report� and its
e�ciency has been thoroughly tested by Alvelius � Skote ����

B Scaling of variables

We have chosen a scaling for all parameters based on the displacement boundary
layer thickness and free�stream velocity at t � �� x � � for the reference or base �ow�
However� internally in the simulation code bla the implementation uses a scaling
based on the half box height� �The external and internal velocity scale is the same��
This means that all external data must be rescaled when read into the program� and
the reverse scaling applied on output� If we let dstar be the displacement thickness
expressed in half box heights� then the following scaling relationships hold�

time�internal��time�external�'dstar

length�internal��length�external�'dstar

velocity�internal��velocity�external�

vorticity�internal��vorticity�external� dstar

force�internal��force�external� dstar

	�



All formatted input and output �les except the wave amplitude �le use external
scaling� whereas the unformatted �les and the wave amplitude �le use internal scal�
ing�
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C Investigation of the fringe method

In some �ow cases with large growth rates� e�g� �ows with adverse pressure gradients
and separation bubbles� a badly chosen fringe might not o�er su�cient damping�
The present study aims to give guidelines to choose an optimum fringe� Three types
of �ow have been studied� channel �ow� boundary�layer �ow with zero pressure
gradient and boundary�layer �ow with an adverse pressure gradient�

Although this report does not contain a description of the channel �ow code� we
include this �ow case in the fringe investigation� This is done since it makes it
possible to exemplify the properties of the fringe only related to the damping of
disturbances� excluding the large forcing needed to return the mean or basic �ow to
its required in�ow state�

The main parameters deciding the damping properties of the fringe are

� Length of Fringe �L�

� Strength of Fringe ���

� Shape of Fringe

� Resolution

� In�uence of Blending �For Boundary�Layer�

Variations in all of these parameters have been made� with the main focus on the
length and strength of the fringe� The shape of the fringe� i�e� how � is varied in the
fringe region� is of some importance� To simplify the investigation and reduce the
number of variables it was decided to use a fringe where the strength is gradually
increased until a maximum is reached and then immediately decreased to zero� This
way only two variables describe the shape of the fringe� see �gure �� Generally the
rise has been three fourths of the total length and the decrease of fringe strength
one fourth of the length� The maximum strength is what will be denoted with �
hereafter� The gradual change of strength of the fringe is done with a smooth step
function that has continuous derivatives of all orders� equation ������ Throughout
this investigation the damping has been measured as the di�erence in amplitude of
the disturbance when going into the fringe compared with the value going out of
the fringe� All calculations were continued until the disturbance had been convected
through the computational domain more than once� thus ensuring that a steady
state was reached�

C�� Channel 
ow

In the channel �ow calculations� a �xed physical box of length �� h	� was used and
thus the length of the computational box was varied when the length of the fringe
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� �z �
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� �z �
Figure �� Schematic picture of the fringe used in the investigations� For this fringe
the sum of the rise and fall is the same as the total length�
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Figure �� Damping as function of � for channel �ow�

changed� The Reynolds number based on the channel half height and centerline
velocity was ���� for all computations� To obtain the results shown in �gures � and
� a periodic volume force located at x � �� with � � ��� has been used to introduce a
disturbance that then evolved downstream� Figure � shows the damping as function
of � for a �xed length of the fringe� Note that the damping increases very rapidly
with � until it reaches a certain level from where further increase in damping is very
modest� It is obvious that the strength integrated over the length of the fringe plays
a major role of the damping� In �gure � this is shown in a di�erent way� Contours of
the damping are plotted as function of the length and strength of the fringe region�
For a given integral of the fringe region it is however advantageous to have a longer
fringe with a lower ��

In �gure � the damping is shown as function of 
 � ��	�� where � is the wavelength�
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Figure �� Contours of damping as function of the length of the fringe and �� Each
contour represents a magnitude of amplitude� from � to �� Picture for channel �ow�

for three di�erent frequencies� In all the cases the same fringe parameters have been
used� The curves are obviously very close� This implies that without su�cient
resolution the fringe cannot damp disturbances e�ciently regardless of how well the
fringe parameters are chosen� There is however an upper limit of the fringe damping
regardless of the resolution� It is desirable to be close or at least know where this
limit is� Based on this investigation one should strive for 
dx to be approximately
���� i�e� �	dx � ��	��� 	 ����� This is a very high value for optimum performance
of the fringe� it is however not likely that the highest frequencies are particularly
ampli�ed in other parts of the computational box and thus need the best damping� It
is also possible that other parts of the �ow require better resolution than the fringe�
in which case the above requirement would not determine the necessary resolution�

C�� Boundary�Layer Flow

In boundary�layer geometry the forcing is gradually varied from the corresponding
out�ow boundary�layer to the desired in�ow� This variation in the forcing function
is accomplished by the blending� The blending is achieved by varying the streamwise
component of the velocity toward which the solution is forced according to

u���x� y� � U�x� y� �
h
U�x� xperiod� y�� U�x� y�

i
S

�
x� xstart
xrise

�
� �����

where U�x� y� typically is a solution to the boundary�layer equations� xperiod the
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Figure �� Damping as function of resolution for three di�erent angular frequencies�
� � � solid line� � � ��	� dotted line and � � � dashed line� where 
 � ��	��
Result for channel �ow�

streamwise length of the simulation box and

S�x� �

	
�

�

� x � �
�	�� � exp� �

x�� � �
x�� � � x � �

� x � �

� �����

The wall normal component of the velocity toward which the solution is forced is
calculated from continuity�

Tests showed that the blending is of little importance for the damping� The blending
should therefore be determined for maximum computational e�ciency� If the �ow
is laminar or almost laminar the longest possible blending should be used� as the
greatest gradients of the �ow are likely to appear due to the blending� and thus
regulate the �nest resolution� If on the other hand the �ow is turbulent� the largest
gradients are usually in other parts of the domain and the resolution requirements
due to the �ow in the fringe are of less importance� allowing both shorter fringe
and blending� It is worth noting that the pro�les which the �ow is forced towards
are generally not solutions of the Navier�Stokes equations� rather these are usually
similarity solutions of the boundary�layer equations�

For the calculations of the zero pressure�gradient boundary�layer �ow a physical
box of length ��� ��� ���� � �� at in�ow� and height �� ��� was used� The Reynolds
number was ���� and the disturbance was introduced at x � ��� ��� with � � ���

For boundary�layer �ow� there are di�erences in the fringe damping depending on
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Figure 	� Damping as function of � for three di�erent boundary conditions� Solid
line for bc prescribing the normal derivatives� dashed line for bc prescribing the
streamwise velocity and dash�dotted line for the asymptotic condition� Length of
fringe ���� with 
� & used for rise and �� & for fall of the fringe function� Note
that the damping is less than for channel �ow�
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Figure 
� Damping as function of length of fringe and �� Solid lines denote magni�
tudes of damping� from � to �� The boundary condition prescribing the streamwise
velocity has been used�
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Figure �� Damping as function of shape of fringe� Solid line corresponds to �� &
rise and 
� & fall� Dashed �� ��� dotted 
� �� and dash�dotted ��� & rise and
zero distance for fall� The integral was held constant for the di�erent lengths� The
boundary condition prescribing the streamwise free�stream velocity� ��� in table ��
has been used�

the boundary condition used� Three di�erent boundary conditions have been used
in this investigation� the condition prescribing the normal derivatives� ��� in table
�� the asymptotic condition� ��� in table �� and �nally the boundary condition
prescribing the streamwise velocity� ��� in table �� In �gure 	 the damping is
plotted as function of � for the di�erent boundary conditions� The damping using
the asymptotic boundary condition is somewhat less than the other two� and all
three are smaller than in the channel �ow calculations�

In �gure 
 contours of damping are shown as function of strength and length of
the fringe� The basic characteristics are the same as in the channel case� Figure
� shows the e�ect of the shape of the fringe� The di�erences between the di�erent
cases are not large� This implies that there is only a small dependence on where
the maximum strength of the fringe is reached� although the case with a very early
maximum strength is the worst and should be avoided�
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Figure �� Damping as function of � for boundary�layer �ow with an adverse pressure
gradient� Length of fringe was ��� ��� � The boundary condition prescribing the
streamwise velocity has been used�

C�� Boundary�Layer with Pressure Gradient

C	�	� Qualities of the fringe

For these calculations Re��� � ���� and Hartree�Parameter � � ����� were chosen�
Length of the physical part of the box was set to ��� ��� and the height to ��� The
blending started at the end of the physical box and used a rise distance of ���� A
volume force with � � ���� was applied at x � ��� ��� �

The main characteristics from the investigation with boundary layer �ow are un�
changed� However� there is now a much stronger natural ampli�cation of distur�
bances� The same behavior of the damping as a function of � as was observed for
the investigation without pressure gradient is observed in �gure �� The total damp�
ing in the fringe is somewhat better than in the case without pressure gradient� In
�gure �� contours of the damping are shown as function of the strength and length
of the fringe� Quite surprisingly the damping deteriorates in some cases when the
strength increases� The best damping is obtained with rather low values of ��

C	�	� Spatial evolution of a disturbance

The purpose of the remaining �gures is mainly to show the evolution of a disturbance
when it is convected through the computational box� Two di�erent cases are studied�
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Figure ��� Contours of damping� Solid lines denote magnitudes of amplitude� The
boundary condition prescribing the streamwise velocity has been used�

one without any forced disturbance and one with an introduced Tollmien�Schlichting
wave� In �gure �� the frequency spectra at several downstream positions are shown
for the undisturbed case� Each curve shows the general disturbance level at the
corresponding streamwise position� It is apparent that frequencies with � � ��� to
��� are the most ampli�ed� The smallest disturbances are found at x � ��� and are
mainly due to truncation errors� As the strength of the fringe decreases they start to
grow� They reach their maximum intensity at x � ���� where they enter the fringe
and are quickly damped� In �gure �� this evolution as well as that for the forced
disturbance are shown� but only for the frequency that the TS�wave is forced with�
Note that after the forcing the growth of the forced disturbance is greater than that
of the unforced� It is also possible to see the upstream in�uence of the forcing� Of
great importance is that the curve of the forced disturbance is above the curve of
the undisturbed one� Figure �� shows the evolution of the forced disturbance in
the same manner as �gure ��� i�e� the evolution for di�erent frequencies at several
streamwise positions� The greatest di�erence with the unforced case is the well
de�ned peak at the frequency of the forcing� It is also possible to see that other
frequencies than the forced one are the ones which grow at the end of the fringe�
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Figure ��� Frequency spectrum for di�erent x�positions� For each line the x�position
is given to the right� The fringe starts at x � ��� and total the length of the
computational box is ���� No forcing is applied to create a disturbance� instead
truncation errors grow in the physical part of the box�
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Figure ��� Energy of the forced wave as function of x� The solid line denotes a case
where a volume force was introduced at x � ���� The dashed line represents the
case of no forcing�
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Figure ��� Frequency spectrum for di�erent x�positions� For each line the x�position
is given to the right� The fringe starts at x � ��� and total length of the computa�
tional box is ���� A volume force is applied at x � ��� with the frequency � � �����
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D Examples� user created �les

D�� Example par�f� bls�i� bla�i �le for a simple simulation

Below is an example of the adjustable part of a par�f include �le� It is set up for a ��������
spectral mode simulation without spanwise symmetry� dealiazing in the x and z�direction�
and in�core storage� The parameters mby and mbz are set for minimum storage�

c par�f contains size of problem

�

�

�

c adjustable parameters

c number of spectral modes

parameter �nx����ny����nz����

c dealiazing flags

parameter �nfxd�	�nfyd�
�nfzd�	�

c symmetry flag

parameter �nfzsym�
�

c core storage flag

parameter �nfc�	�

c boxsize

parameter�mby�	�mbz�	�

c number of processors

parameter�nproc�	�

c bla with pressure solver �	�

c bls�rit�pre�cmp and bla without pressure �
�

parameter�pressure�
�

c statistics

parameter �nxys����

c computed parameters

�

�

�

Below is an example of a simple bls�i �le to generate a localized disturbance in a �le named
bl��u� Note that comments are allowed on lines with non�character data�

bl
�u

�

� re

	

� xl

	
� yl



� zl

� fltype


� no Galilei shift velocity

�true� generation of localized disturbance

	 type of disturbance


�




�


� amplitude


� rotation angle

�� scale in x�direction


� origin in x�direction

�� scale in y�direction

�� scale in z�direction

	 type of distribution in the wall normal direction

�false� no waves

�false� no noise

Below is an example of a simple bla�i �le to run initial data in �le bl��u to time 
� and
output the result to �le bl���u� An amplitude list is written to bl
�amp�d

bl
�u

bl	
�u

	
� time for simulation

	

 max iterations

��

� max CPU time to stop�give a big value if not needed�


�
 time step� �
 for automatic variation

� number of time integration stages �	�����

	

� keep old box length

�false� no variable size

�
 rotation rate� no rotation

		
 boundary condition at the free�stream

�false� no chebyshev integration method� tau method

�false� no Galilei transformation

�false� no spatial simulation� temporal simulation


�
 the boundary layer development speed


 no localized volume force

�false� no trip force


 the boundary condition at the wall� no blowing�suction

� cfl calc interval

� amp calc interval

bl	
amp�d

�false� no y�dependent statistics


 extremum calc interval� no extremum calc


 xy�statistics calculation interval� no xy�stat calc


 number of saved ��d fields


 number of saved wavenumbers


 number of save planes

D�� Example par�f� bla�i �le for a simulation of a turbulent bound�

ary layer under an adverse pressure gradient�

When running this example the turbulent statistics are stored in the �le endxys�u� The
simulation has to be run for a long time for the statistics to be su�ciently smooth� On
a super computer the job can be restarted again after accomplishing a run� The di�erent


�



�les for the statistics are then added together by the addxys program� The statistics
are evaluated with the program pxyst� The velocity �eld bl�����u and free�stream table
freestream�d��� are required when running this example�

c par�f contains size of problem

�

�

�

c adjustable parameters

c number of spectral modes

parameter �nx���
�ny�	�	�nz����

c dealiazing flags

parameter �nfxd�	�nfyd�
�nfzd�	�

c symmetry flag

parameter �nfzsym�
�

c core storage flag

parameter �nfc�	�

c boxsize

parameter�mby���mbz���

c number of processors

parameter�nproc���

c bla with pressure solver �	�

c bls�rit�pre�cmp and bla without pressure �
�

parameter�pressure�	�

c statistics

parameter �nxys����

c computed parameters

�

�

�

Below is the bla�i �le�

bl��

�u

bl��	��u

p��	��u

��	�� total simulation time

�





 number of iterations

��




� cpu time


�
 time step

� 	���� number of stages

�

� keep old box length

�false� variable size

�
 rotation rate

	
	 boundary condition number

�false� no cim� use tau method

�false� no Galilean transform

�true� spatial simulation


	



�true� read tabulated free�stream

freestream�d
	


�false� read in base flow� no base flow

	��
 strength of fringe region

�

� start of fringe region

�
 end of fringe region

�
� rise distance of fringe

	
� fall distance of fringe


�
 no oblique waves forced in the fringe


�
 no two dimensional T�S wave


 no localized volume force

�true� trip forcing


�
 steady forcing amplitude


�� time dependent forcing amplitude

��
 x�length scale of trip

	
� x�origin of trip

	�
 y�length scale of trip

	
 number of z�modes in trip

��
 time�scale of trip

�	 random number seed for trip


 the boundary condition at the wall� no blowing�suction

� cfl calc interval


 amp calc interval� no amplitude calculation

�false� no y�dependent statistics


 extremum calc interval� no extremum calculation

�
 xy statistics calculation interval

endxys�u






 iterations between saves� do not save until finished


� time to start accumulation of statistics

� number of saved ��d fields

��
��

bl��
��u

��
��

bl��
��u

��	��

bl��	��u


 number of saved wavenumbers


 number of save planes
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