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Abstract Three-dimensional velocity fields were measured using tomographic par-
ticle image velocimetry (Tomo-PIV) on a model of the blade of a small-scale hor-
izontal axis wind turbine (HAWT) to study the effects of rotation on separated
turbulent flows during stall delay at a global tip speed ratio (TSR) of 3 and a
Reynolds number of 4800. The flow fields on a static airfoil were also measured at
a similar angle-of-attack (AOA) and Reynolds number for comparison. It was ob-
served that the blade’s rotation in the streamwise direction significantly affected
both the mean flow and the turbulence statistics over the suction surface. The
mean velocity fields revealed that, different from the airfoil flow at large AOA,
the recirculation region with reversed flow did not exist on the suction surface of
the blade and the flow was rather attached. Mean spanwise flow from blade’s root
to its tip was also generated by the rotation. The mean vorticity vector of the
blade flow was found to be tilted in the rotational direction of the blade, as well
as in the wall-normal direction. Of particular effects of the rotation on Reynolds
stresses were the enhancement of ⟨w2⟩ and the creation of strong ⟨vw⟩. The pro-
duction of Reynolds stresses was also affected by blade’s rotation directly through
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the rotational production terms and indirectly by dramatically changing the fluc-
tuating velocity fields. The distribution of enstrophy was observed to be modified
by rotation, too.

Keywords rotational effects · separated turbulent flow · stall delay · horizontal
axis wind turbine · Tomographic PIV

1 Introduction

The use of two-dimensional steady-state airfoil data in the actuator disc theory
results in unsatisfactory predictions of wind turbine loads when operating in yaw
and at high wind speeds. One of the well-known differences is that the angle of
attack (AOA) at which stall occurs for a rotating wind turbine blade was found
to be larger than that for a static airfoil, a phenomenon called stall delay. The
science behind this engineering phenomenon has been studied in the past in a
limited number of works [1–11]. The main discoveries from these research included
reduced size of the flow separation, stabilization of the shedding vortices, existence
of the spanwise flow, and the reduction of the adverse pressure gradients due to
Coriolis force and/or external pressure modifications. However, much more work
needs to be done in order to significantly improve our primitive understanding of
the fluid physics of stall delay.

In particular, in the experimental studies of Lee and Wu [9–11], the existence
of turbulent flows was observed at the inboard (close to the blade’s root) section of
the turbine blade when the incoming flow was separated from the blade’s leading
edge. Therefore, it is expected that the turbulence inside the separated flow on
the suction surface is also going to be affected by the rotation of the blade. The
objective of this paper is to investigate those effects of rotation on the characteris-
tics of the separated turbulent flows during stall delay by comparing to the static
airfoil case.

In the literature, most of the past studies on the effects of rotation on tur-
bulence for flows relevant to turbomachinery were performed with a spanwise
rotation [12–17], which means that the rotation vector is parallel to the mean
flow vorticity. These research are more relevant to the radial flows rather than the
axial flow of the wind turbine studied herein. Although a majority of them were
dealing with rotating channel flows, a few [18,19] have investigated the spanwise
rotated backward-facing-step turbulence in which a massive flow separation oc-
curred, similar to what happens at the inboard section of the turbine blade during
stall delay. The studies on the effects of rotation on turbomachiery related flows
with a streamwise rotational component started to appear in the last decade, but
mainly from two research groups [20–22] and only on turbulent channel flows.
Since it appears that no research has ever been done so far on how the streamwise
rotation affects the separated turbulent flow, as in the case of the current study,
the following literature review will summarize the current state-of-the-art on the
spanwise rotation of backward-facing-step flows and streamwise rotation of the
channel flows separately.

Barri and Andersson [18] applied direct numerical simulations on a turbulent
backward-facing step flow subject to spanwise rotations. They found that the sep-
aration bubbles with recirculation flow became smaller with increasing rotational
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rates, which is due to the increase of the cross-stream (wall-normal and spanwise
directions) turbulence intensity in the anti-cyclonic shear layer formed between the
bulk flow and the recirculation bubble. Significantly high levels of velocity fluc-
tuations were also observed in the spanwise direction close to the reattachment
behind the step, thanks to the longitudinal Taylor-Gortler-like roll cells extending
into the backflow. Measurements of velocity fields were performed by Visscher and
Andersson [19] using particle image velocimetry on the separated flow downstream
of a backward-facing step in a spanwise rotating channel. The experments were
made with 13 different rotation numbers at a bulk Reynolds number of 5600. The
mean flow patterns were observed to be dramatically affected by the system rota-
tion. Specifically, the recirculation region was decreased with larger anti-cyclonic
rotation while it was increased by the cyclonic rotation. The Reynolds normal and
shear stresses were also observed to be severely affected by the spanwise rotation.
The anti-cyclonic rotation enhanced the turbulence level in the mixing layer re-
sulting in a higher spreading rate, while the cyclonic rotation exerted the reverse
effects.

The effects of arbitrary system rotation on the turbulent channel flows were
studied by Wu and Kasagi [20] using a series of direct numerical simulations. They
observed that the streamwise rotation, if stronger than the spanwise rotation, could
enhance not only the turbulence on the suction side but also the secondary flow
which rotated in the positive streamwise direction. Recktenwald et al. [21] stud-
ied the streamwise rotated turbulent channel flow using both direct numerical
simulation and particle image velocimetry measurements. It was found that the
streamwise rotation mainly affected the components of the Reynolds shear stresses
involving the spanwise velocity component. Through the two-point velocity cor-
relation coefficients, the length scales of the flow structures were also observed
increased in all three directions. A large-eddy simulation of streamwise-rotating
turbulent channel flow was performed by Alkishriwi et al. [22] at Reτ=180. The re-
sults showed the development of a secondary flow in the spanwise direction, which
became stronger with higher rotational speed. In addition, they observed a distor-
tion of the mean velocity profile, the slight decrease of the streamwise Reynolds
stress close to the walls, and a significant increase of the spanwise Reynolds stress
not only near the walls but also in the center of the channel.

2 Experiments

Details of the experiments were reported in Lee and Wu [9–11] and only a brief
summary is provided here. Measurements were conducted in a wind tunnel with a
test section of 0.4m×0.4m with a freestream turbulence intensity of about 0.4%.
The rotating blade studied is a down-scaled model of the wind turbine blade de-
signed using the blade element momentum (BEM) method for a 5 KW horizontal-
axis wind turbine (HAWT). The design tip-speed-ratio, TSR=ΩR

V∞
, is 6, where Ω

is the rotating speed of the blade, R is the radius of the blade which is 0.309m,
and V∞ is the freestream velocity. This single-blade rotor was oscillating about
±25◦ in the test section due to the limited size of the wind tunnel. The center of
rotation is located at the center of the hub or shaft, as shown in Figure 1. Note
that the separated turbulence on the current oscillating blade at the instant of
time of the middle of the oscillation can be well representative of the turbulence
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Fig. 1 Experimental setup of the Tomo-PIV measurements. In the current coordinate system,
x is the freestream direction, z is along the span of the airfoil or the blade, and y is perpendic-
ular to the other two directions and is perpendicular to the bottom wall of the wind tunnel’s
test section.

on the rotating blade that rotates with 360◦. This is because the angle of attack
and the relative velocity of the current oscillating blade are the same as those of
a rotating blade, when our tomographic PIV measurements were performed at a
time after the motor has already achieved a steady rotation. The similarity of the
flow on the rotating blade to that on the oscillating blade at the middle of the
oscillation has been substantiated by the similarities of the pressure distributions
between a typical rotating blade during stall delay (Figure 3.74 in Ref.[23]) and the
current setup (Figure 3 in Ref.[10]). Nevertheless, it is arguable that the transient
effects due to the change of AOA in the oscillation might affect the second-order
statistics presented below.

The experiments were performed at a TSR of 3 where stall delay was ob-
served[10]. The angle of attack (AOA) on the blade at the center of the tomo-
graphic PIV measurement of 0.25R is approximately 30◦. The Reynolds number
Re=Vrc/ν is about 4800, where c is the chord length of the blade at the measure-
ment location and Vr is the relative velocity which is determined by

Vr =
√

V 2∞(1− a)2 + (Ωr)2(1 + a′)2, (1)

where r is the local radius of the blade, a is the axial induction factor and a′ is
the angular induction factor. Both a and a′ were obtained from the BEM method
during the design of the turbine blade. The AOA at each blade section can be
estimated by [24] AOA = γ − β, where γ is the angle between the freestream

velocity and chord. β is determined by tanβ = λr(1+a′)
(1−a) , where λr is the local TSR,

and a & a′ are axial and angular induction factors. A non-dimensional parameter
to quantify the rotation is the upstream rotation number[18], R0 = Ωc/V∞, which
is −0.34 in the current study. The negative sign of R0 is due to the fact that the
rotational vector Ω is opposite to the positive x direction which is the direction of
the incoming flow.

An S809 airfoil, the same airfoil shape used for the rotating blade, with the
span of the wind tunnel’s width and a chord of 0.03m was also fabricated in order
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to compare the turbulent flow on the suction surface of this static airfoil with that
over the blade model. The Re and AOA for the measurements of the static airfoil
were similar to those of the rotating blade. The blockage ratios for the blade and
the airfoil are 5.5% and 3.8%, respectively.

Due to the intrinsic three-dimensionality of the flow, Tomographic PIV (Tomo-
PIV) was used to measure the velocity fields within the volume of fluid. Tomo-PIV
measurements were made when the blade is rotating upwards to the horizontal
position. The experimental setup is shown in Figure 1. A 8mm-thick laser light
volume illuminated the flow at the suction side of the blade at the spanwise lo-
cation of 0.25R, where the turbulent separated flow was found to exist. The time
separation between the pair of images was ∆t = 150µs. The inline configuration
was chosen in which the four cameras were mounted on the same side of the laser
light volume, since the other side of the light was blocked by the nacelle. The angle
between the principle axes of the cameras and the z direction ranged from about 5◦

to 45◦. The Tomo-PIV setup for the static airfoil was similar to Figure 1, in which
the airfoil spans the entire width of the tunnel’s test section. As in Lee & Wu [10]
and Tang et al.[25], three-dimensional light intensity fields were firstly obtained
using 7 iterations of FastMART algorithm in the software LaVision Davis 8.1.1.
Volume self-calibration imbedded in the software was also applied to reduce the
calibration errors. Recursive volumetric cross-correlations were then performed on
the particle intensity fields to yield the three-dimensional velocity fields within
the whole measurement volume. The final interrogation spot is 96×96×96 voxels
with 75% overlap, resulting in 106×92×11 vectors per instantaneous velocity field
with a vector spacing of 0.76 mm. The precision measurement uncertainties of the
current ensemble size of 500 have been estimated for the turbulence statistics pre-
sented hereafter at a 95% confidence level according to the procedures in Figliola
& Beasley [26]. The maximum uncertainties within the field of view for the studied
turbulence statistics are tabulated in table 1. While the current precision uncer-
tainties of the Reynolds stresses are comparable to past studies using PIV[27–29],
the relative uncertainty of the Reynolds shear stress < uv > for the airfoil is more
than twice larger than for the blade due to the strongly unsteady reversed flow
over the airfoil at large angle of attack in the x−y plane. The reasons of the much
higher relative uncertainty of < vw > than that of another Reynolds shear stress
< uv > include (1) the RMS error of the out-of-plane velocity component of w is
approximately twice as large as that of the in-plane components of u and v[30]; and
(2) the magnitude of < uv >max is about five times as large as that of < vw >max.
Finally, the relatively large uncertainty of the precision terms is due to the fact
that Pij embodies multiplication of mean velocity gradient and Reynolds stresses.
Using the method of Wilson & Smith[31], the bias or systematic uncertainties were
estimated to be about 2% of Vr for the mean velocities, and 4∼8% of V 2

r for the
Reynolds stresses.

3 Results and Discussion

3.1 Mean Fields

The mean velocity field relative to the rotating blade at the middle of the measure-
ment volume is presented in figure 2(a) while the mean velocities over the static
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Table 1 Maximum precision measurement uncertainties, ϵ, at a 95% confidence
level.

Statistics Blade Airfoil

Mean streamwise velocity U ϵU/Vr=1.8% ϵU/V∞=3.0%
Mean vertical velocity V ϵV /Vr=2.7% ϵV /V∞=4.0%
Mean spanwise velocity W ϵW /Vr=1.8% —
Mean velocity magnitude q ϵq/Vr=2.5% ϵq/V∞=2.5%
Mean streamwise vorticity ωx ϵωx/ωzmax=1.1% —
Mean wall-normal vorticity ωy ϵωy/ωzmax=1.1% —
Mean spanwise vorticity ωz ϵωz/ωzmax=2.1% ϵωz/ωzmax=3.2%
Streamwise Reynolds normal stress ⟨u2⟩ ϵ⟨u2⟩/⟨u2⟩max=10.7% ϵ⟨u2⟩/⟨u2⟩max=12.0%

Wall-normal Reynolds normal stress ⟨v2⟩ ϵ⟨v2⟩/⟨v2⟩max=7.0% ϵ⟨v2⟩/⟨v2⟩max=3.2%

Spanwise Reynolds normal stress ⟨w2⟩ ϵ⟨w2⟩/⟨w2⟩max=1.2% —

Reynolds shear stress ⟨uv⟩ ϵ⟨uv⟩/⟨uv⟩max=7.0% ϵ⟨uv⟩/⟨uv⟩max=16.7%
Reynolds shear stress ⟨vw⟩ ϵ⟨vw⟩/⟨vw⟩max=40.0% —
Production Pij ϵPij

/Pij,max = 40 ∼ 50% ϵPij
/Pij,max = 40 ∼ 60%

airfoil at AOA of 30◦ are shown in Figure 2(b) for comparison. These mean fields
as well as the following statistics were obtained through ensemble averaging. Note
the different orientations of the blade and the airfoil in the figure, which is due to
the rotational speed of the blade in the +y direction rendering the velocity vector
of the incoming flow relative to the blade different from the freestream velocity for
the airfoil. Firstly for the static airfoil case, massive flow separation over the entire
suction surface can be observed in figure 2(b) showing large recirculation bubbles.
This flow field is consistent with the well-known flow physics associated with the
stalled airfoil at large angles of attack. However, as seen in figure 2(a), the rotation
annihilates the large recirculation bubbles and the strong reverse flows in the sep-
arated flows behind the blade’s suction surface. Another distinct feature caused by
the rotation of the blade is the appearance of the strong spanwise flow (shown as
the contour in figure 2), or radial flow, from blade’s root to its tip, which is similar
to the streamwise rotating channel flow in which spanwise flow was also observed to
be produced due to rotation [21,22]. The spanwise flow behind the rotating blade
at large AOA has been believed to be mainly produced by the centrifugal force,
Ω2R[4]. Since the rotational speed Ω varies little around our measurement instant,
it is therefore reasonably believed to have similar spanwise flow characteristics be-
tween our oscillating blade and the rotational blade. The three-dimensionality and
complexity of the separated flow on the rotating blade during stall delay can be
further observed by the streamlines in the insets which illustrate the flows in three
different cross-sectional planes (x−z planes) along the blade’s chord. The spanwise
velocity is observed to be stronger near the blades but to decrease further away.
One-dimensional profiles of the mean velocities over both the blade and the airfoil
along the y direction at the spanwise center of the measurement flow volume at
the streamwise location of x/c=1 and x/c=1.5, respectively, are also presented in
figure 2 in order to provide some quantitative data for future model validations.
These two locations were chosen since turbulence statistics illustrated below are
relatively strong. For the same purpose, one-dimensional profiles of other statistics
are also presented hereafter.
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Fig. 2 (a) Mean velocity fields relative to the rotating blade. The vectors illustrate the velocity
components U and V while the contour represents the velocity component W in the middle
x − y plane of the measurement fluid volume. Shown in the insets are the streamlines at
three different cross-sectional planes (x− z planes) along the blade’s chord and the streamline
colors indicate the magnitudes of W velocity component. The thick black arrow above the
blade indicates the direction of the relative velocity Vr; (b) Mean velocity fields over the static
airfoil; (c) One-dimensional profiles of mean velocities, U/Vr, V/Vr and W/Vr, over the blade
along y direction at the spanwise center of the measurement volume and at x/c=1; (d) One-
dimensional profiles of mean velocities, U/V∞, V/V∞, over the airfoil along y direction at the
spanwise center of the measurement volume and at x/c=1.5.

The rotational effects on the shear layers can be observed from Figure 3 which
shows the mean velocity magnitudes of the flows, q =

√
U2 + V 2 +W 2, over both

the rotating blade and the static airfoil. A readily observable feature is that the
shear layers produced from both leading and trailing edges of the blade are slightly
thicker, with less velocity gradient, than those of the airfoil. The waviness of the
shear layer from the blade’s leading edge is due to the persistence of the vortical
structures [10]. In addition, the external flows immediately outside of the shear
layers are obviously different between the cases of the blade and the airfoil, sub-
stantiating the speculation of Wood [3] that the external flow may be modified by
the rotation during stall delay. Further, while the region of flow separation between
the two shear layers for the airfoil case shrinks noticeably downstream, that of the
blade does not appear so. In addition, the magnitudes of the velocities within the
separated flow region recover much faster, than the airfoil case, from low values
close to the blade’s surface to substantial values further away from it.
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Fig. 3 Mean velocity magnitudes of the flows, q =
√
U2 + V 2 +W 2, over (a) the rotating

blade. The thick black arrow above the blade indicates the direction of the relative velocity
Vr; (b) the static airfoil. (c) One-dimensional profiles of q over both blade and airfoil at the
spanwise center of the measurement volume along y direction.

The mean vorticity fields for the blade and the airfoil are presented in Figure
4. While the two-dimensional mean flow over the static airfoil has only one mean
vorticity component in the spanwise direction, the rotation of the blade produces
extra mean vorticity components both in the streamwise and wall-normal direc-
tions, as seen in Figure 4(a) and (b). However, the magnitudes of ωx and ωy are
much smaller than that of ωz, which means that the vorticity vector in the flow
over the blade is still mainly in the z direction, but slightly tilted in both x and
y directions. Due to the large velocity gradients, the mean vorticity is concen-
trated at the shear layers generated from both leading and trailing edges of the
blade and the airfoil. Interestingly, Figure 4(a) shows that the streamwise com-
ponents of the mean vorticity are mainly negative at both shear layers. This is
because the blade’s rotational vector is in the −x direction, too, and the rota-
tion of the blade thus tilts the vorticity vector to the rotational direction. Since
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Fig. 4 (a) Mean streamwise vorticity, ωx, over the blade; (b) Mean wall-normal vorticity, ωy ,
over the blade; (c) Mean spanwise vorticity, ωz , over the blade; The thick black arrow above
the blade indicates the direction of the relative velocity Vr. (d) Mean spanwise vorticity, ωz ,
over the airfoil. (e) One-dimensional profiles of ωx, ωy , and ωz over the blade along y direction
at the spanwise center of the measurement volume and at x/c = 1; (f) One-dimensional profile
of ωz over the airfoil along y direction at the spanwise center of the measurement volume and
at x/c = 1.5.

ωx = ∂W/∂y − ∂V/∂z, the relatively large values of ωx at the upper shear layer
from the leading edge is mainly due to the ∂W/∂y. Since the mean spanwise ve-
locity component W is mostly created within the separated flow region by the
rotation, from the freestream downward along the −y direction into the separated
flow, positive W velocity is obtained, thus producing strong negative values of
∂W/∂y. However, at the lower shear layer from the trailing edge, the ∂W/∂y term
is positive, but small since the W component close to the trailing edge of the blade
is much smaller than in the upper shear layer. In any case, this positive ∂W/∂y

term is slightly overweighed by the positive ∂V/∂z term to yield extremely small
negative values of streamwise vorticity there. For the wall-normal vorticity com-



10 Yanhua Wu et al.

ponent at the two shear layers, the major contribution is from the term involving
the spanwise velocity, ∂W/∂x. Given the fact that both shear layers are inclined
in the −y direction, ∂W/∂x is positive in the upper shear layer but negative in
the lower one, resulting in the corresponding signs of ωy. The effect of rotation on
the major vorticity component ωz is also significant, as seen in Figure 4(c) and
(d). The drastically different distributions of U and V between the flows over the
blade and the airfoil cause the remarkably distinct pattern of ωz. There exist a
few discrete peaks of ωz along the upper shear layer of the blade, corresponding to
the discrete coherent vortices observed there by Lee and Wu [10]. The streamwise
sizes of ωz at both layers are also clearly reduced by rotation.

3.2 Fluctuating Velocity Fields

Examples of instantaneous fluctuating velocity fields over the blade and the airfoil
are presented in Figure 5. These fields are chosen because they are the significant
contributors to the turbulent kinetic energy [32]. The velocity vector scales are
the same between these two fields presented in this figure. A common feature is
that the fluctuating velocities become stronger further downstream of the blade
or airfoil. Not far from the airfoil’s suction surface is the laminar-like flow due to
extremely small fluctuating velocities, which is similar to the laminar-like flow in
the recirculation region of the backward-facing-step flows [33,34]. However, due to
the rotation of the blade, the fluctuating velocities near the blade’s suction surface
are becoming much larger. Along the blade’s leading-edge shear layer, two counter-
rotating vortex pairs, which are circled in the figure, can be observed at about
x = 0.5c and x = 1c. Very strong v velocity components are induced in between
the vortex pair located at x = 1c. In contrast, such vortex pairs do not appear
along the airfoil’s leading-edge shear layer. Further, while a few small counter-
clock rotating vortices can be seen along the blade’s trailing-edge shear layer, the
fluctuating velocities at similar locations of the airfoil are too weak to observe
any discernable vortices. The spanwise fluctuating flows over the blade and the
airfoil are illustrated in the insets of the figures. Although the mean separated flow
above the airfoil’s suction surface is two-dimensional, the fluctuating field presents
three-dimensionality with spanwise velocity components and velocity variation in
the z direction. However, the spanwise velocity component in the fluctuating field
over the arifoil is found to be weaker than that over the blade.

3.3 Reynolds Stresses

The normalized Reynolds normal stresses over both the blade and the airfoil are
presented in Figure 6. The relative velocity, Vr and the freestream velocity V∞
are used for normalizing the blade and airfoil flows, respectively. Since the turbu-
lence statistics of the flow over the airfoil are two-dimensional, they are presented
as planar contours rather than the three-dimensional contour surfaces as for the
blade.

The three diagonal components of the Reynolds stress tensor, ⟨u2⟩, ⟨v2⟩, and
⟨w2⟩, have been found to be significantly changed by the blade’s rotation, reflecting
the drastic modification of the fluctuating velocity fields shown in Figure 5. For
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Fig. 5 Examples of instantaneous fluctuating velocity fields (a) over the blade and (b) over
the airfoil. The insets present the velocity vectors in the cross-sectional plane (x − z plane)
at the location indicated by the dashed line to illustrate the instantaneous spanwise flow. The
thick black arrow above the blade indicates the direction of the relative velocity Vr.
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Fig. 6 Reynolds normal stresses. (a) Streamwise Reynolds normal stresss, ⟨u2⟩, over the blade;
(b) ⟨u2⟩ over the airfoil; (c) wall-normal Reynolds normal stress, ⟨v2⟩, over the blade; (d) ⟨v2⟩
over the airfoil; and (e) spanwise Reynolds normal stress, ⟨w2⟩, over the blade. The thick black
arrow above the blade indicates the direction of the relative velocity Vr. (f) One-dimensional
profiles of Reynolds normal stresses over the blade along y direction at the spanwise center
of the measurement volume and at x/c=1; (g) One-dimensional profiles of Reynolds normal
stresses over the airfoil along y direction at the spanwise center of the measurement volume
and at x/c=1.5.
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the airfoil case, Figure 6(b) illustrates that negligible ⟨u2⟩ exists within one chord
length from the leading edge above the airfoil’s suction surface, while much higher
values of ⟨u2⟩ are observed further downstream concentrating in two parallel re-
gions aligned horizontally. Referring back to Figure 5, it can be understood that
these two regions of high streamwise Reynolds normal stresses correspond to the
large magnitudes of the fluctuating u velocity components induced by one large
vortex generated there. While ⟨u2⟩ are negligible along the leading- and trailing-
edge shear layers of the airfoil flow, Figure 6(a) shows that ⟨u2⟩ for the blade flow
are concentrated there. In addition, along the leading-edge shear layer, ⟨u2⟩ are
focused in three discrete regions in the current field of view. The first two regions
closer to the blade’s leading edge coincide with the two counter-rotating vortex
pairs in Figure 5(a) while the third region corresponds to the large-scale flows
there.

Figure 6(d) shows that appreciable values of ⟨v2⟩ are only obtained at least
one chord length downstream from the leading edge of the airfoil, similar to ⟨u2⟩.
The peak value of ⟨v2⟩ is noticeably higher than that of ⟨u2⟩. This region of high
⟨v2⟩ can be associated with the induced strong vertical flow on the right side of
the large vortex seen in Figure 5(b). However, due to the existence of other flow
structures on the left side of the large-scale vortex, the induced vertical velocities
there are much weaker, rendering much smaller values of ⟨v2⟩ between x = 1c and
x = 1.5c. For the blade, ⟨v2⟩ are concentrated on the leading-edge shear layer,
while having negligible values along the trailing-edge shear layer. The strongest
⟨v2⟩ in the present field of view occurs around the induced vertical flow in between
the second vortex pair in Figure 5(a). The distribution of ⟨v2⟩ along the blade’s
leading-edge shear layer is similar to that of ⟨u2⟩, indicating that they may be
associated with similar fluctuating flow structures such as the counter-rotating
vortices in Figure 5(a).

The spanwise Reynolds normal stress, ⟨w2⟩, for the blade is about a magnitude
smaller than the other two diagonal components, but still much larger than that
for the airfoil flow due to the blade’s rotation. The spatial distribution of ⟨w2⟩ for
the blade flow is quite similar to that of ⟨v2⟩ and ⟨u2⟩ along the leading-edge shear
layer, indicating that the same flow structures, as indicated above, are responsible
for producing these three Reynolds normal stresses. ⟨w2⟩ measured for the airfoil
flow are negligibly small, partly because the resolution of the current Tomo-PIV
is too coarse to resolve them, and are therefore not presented here.

The normalized Reynolds shear stresses are presented in Figure 7. Since the
Reynolds shear stresses with the spanwise velocity component are zero for the
two-dimensional airfoil flow, they are therefore not shown. In addition, it was
observed in this study that ⟨uw⟩ were extremely small, too, for the flow over
the blade, and thus its plot is not included in Figure 7 either. The distributions
of ⟨uv⟩ for both blade and airfoil are quite similar to those of ⟨u2⟩. ⟨uv⟩ along
the blade’s leading- and trailing-edge shear layers are mainly negative, indicating
Q2 (u < 0 and v > 0) and/or Q4 (u > 0 and v < 0) vectors are dominant
over Q1 (u > 0 and v > 0) and/or Q3 (u < 0 and v < 0) vectors there. Again,
⟨uv⟩ are stronger further away along the blade’s leading-edge shear layer due to
the increased fluctuating velocities. Although the wall-normal normal stress ⟨v2⟩
is larger at x = 1c than further downstream, the velocities may be dominantly
vertical with much smaller streamwise velocity component, as indicated in the
induced flow in between the second vortex pair shown in Figure 5(a), and therefore
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Fig. 7 Reynolds shear stresses. (a) Reynolds shear stress ⟨uv⟩ over the blade; (b) ⟨uv⟩ over
the airfoil; and (c) ⟨vw⟩ over the blade. The thick black arrow above the blade indicates the
direction of the relative velocity Vr. (d) One-dimensional profiles of Reynolds shear stresses
over both blade and airfoil along y direction at the spanwise center of the measurement volume.

produce less shear stress ⟨uv⟩. The peak values of ⟨uv⟩ for the airfoil flow roughly
coincide with those of ⟨u2⟩, indicating the major contribution from the strong
streamwise velocity components at those locations. The opposite signs of ⟨uv⟩
for the airfoil case correspond to the opposite flow directions below and above
a large-scale vortex there, as indicated in Figure 5(b). Most ⟨vw⟩ shear stresses
are produced within x = 1.5c along the blade’s leading-edge shear layer. The
positive values of ⟨vw⟩ indicate the positive correlation between strong wall-normal
and spanwise fluctuating velocity components. The weak ⟨vw⟩ shear stress beyond
x = 1.5c is due to the much weaker w component further away from the blade’s
suction surface.
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3.4 Turbulence Production Terms

The transport equation for the Reynolds stresses in a rotating frame of reference
for an incompressible fluid is written as [35]

∂⟨uiuj⟩
∂t

+Uk
∂⟨uiuj⟩
∂xk

= −
(
⟨uiuk⟩

∂Uj

∂xk
+ ⟨ujuk⟩

∂Ui

∂xk

)
−2Ωm

(
ϵmki⟨ujuk⟩+ ϵmkj⟨uiuk⟩

)
+ ν

∂2⟨uiuj⟩
∂xk∂xk

− ε

k
⟨uiuj⟩+ ℘ij −

∂Πijk

∂xk
, (2)

where ϵijk is the permutation tensor, Ωi is the ith component of the angular
velocity vector of the reference frame, and ε is the dissipation. The first term on
this equation’s right-hand side is the production tensor due to the mean velocity
gradient (Pij) and the second term is the production due to the frame rotation

(Gij). Since the present frame rotation vector is
−→
Ω=−Ωx

−→
i , the components of

Gij are

G11 = 0, G22 = −4Ωx⟨vw⟩, G33 = 4Ωx⟨vw⟩,
G12 = −2Ωx⟨uw⟩, G13 = 2Ωx⟨uv⟩, G23 = 2Ωx(⟨v2⟩ − ⟨w2⟩). (3)

The fifth term on the right side of equation 2 is given by

℘ij = −⟨p
ρ

(
∂ui
∂xj

+
∂uj
∂xi

)
⟩ − εij +

ε

k
⟨uiuj⟩, (4)

which is a traceless redistribution tensor. εij is the rate of viscous dissipation which

is given by εij = ν⟨ ∂ui
∂xk

∂uj

∂xk
⟩. Πijk in the sixth term of equation 2 is

Πijk = ⟨uiujuk⟩+
δki
ρ

⟨ujp⟩+
δkj
ρ

⟨uip⟩, (5)

which represents the turbulent and pressure diffusion. In shear layers that obey
the thin shear layer approximation, the production terms of the turbulent ki-
netic energy dominate while other terms receive their energy largely through the
pressure-velocity terms. Therefore, the rotational effects on these production terms
are examined in this section.

Since G11 = 0, blade’s rotation does not directly affects the production of
⟨u2⟩, which, however, is indirectly affected by rotation through the modification
of the fluctuating velocity fields and thus the Reynolds stresses and mean velocity
gradients. Due to the two-dimensional flow for the airfoil case, and negligible ⟨uw⟩
and spanwise variation of U for the blade’s flow, Puu for both cases are essentially
the summation of mean strain production term −2⟨u2⟩∂U/∂x and mean shear
production term −2⟨uv⟩∂U/∂y. Figure 8(a) shows that, for the blade flow, Puu are
mostly positive and concentrated along the two shear layers with smaller parts
of the regions with weaker negative values. Across the inclined leading-edge shear
layer, −2⟨u2⟩∂U/∂x tends to be negative while −2⟨uv⟩∂U/∂y is positive, the balance
between these two terms created Puu of different signs at different regions. At
the leading-edge shear layer, it appears that the mean shear production term
dominates. On the other hand, across the trailing-edge shear layer, the signs of
the mean strain and shear production terms are opposite to those at the other shear
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Fig. 8 Production terms, Puu, Pvv , and Pww. (a) Puu over the blade; (b) Puu over the airfoil;
(c) Pvv over the blade; (d) Pvv over the airfoil; and (e) Pww over the blade. The thick black
arrow above the blade indicates the direction of the relative velocity Vr. (f) One-dimensional
profiles of Puu, Pvv , and Pww over the blade along y direction. (g) One-dimensional profiles
of Puu and Pvv over the airfoil along y direction.
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layer. Therefore, positive Puu there indicate that the mean strain production term
dominates at the trailing-edge shear layer. For the airfoil, Figure 8(b) shows that
Puu are focused far downstream as the distribution of ⟨u2⟩. Due to the flip of the
sign of ⟨uv⟩ across both shear layers of the airfoil flow, both mean strain and mean
shear production terms are positive. Inside the shear layers of the airfoil flow, some
quite strong negative Puu can be observed, which are therefore the sinks of ⟨u2⟩
at those parts of the separated flow over the airfoil.

Similarly, Pvv is mainly balanced by the two terms −2⟨uv⟩∂V/∂x and −2⟨v2⟩∂V/∂y
for both flows over the blade and the airfoil. While Pvv are mostly positive along
the blade’s leading-edge shear layer, they are negative along the trailing-edge layer.
The distribution of Pvv for the airfoil flow is quite similar to ⟨v2⟩ indicating a dom-
inant mean strain production term. Blade’s rotation does have a direct influence
on the production of wall-normal Reynolds normal stress through the G22 term
(see equation 3). The distribution of ⟨vw⟩ shown in Figure 7(c) indicates that the
blade’s rotation generated sinks for ⟨v2⟩ mostly within x = 1.5c along the leading-
edge shear layer while the direct rotational effects on the production of ⟨v2⟩, G22,
at other parts of the flow are quite small.

While Pww = 0 for the two-dimensional airfoil flow, it is mainly contributed
by the term −2⟨vw⟩∂W/∂y for the blade flow. Since ⟨vw⟩ is positive, Pww is there-
fore mostly positive along the leading-edge shear layer while negative along the
trailing-edge layer due to the different signs of ∂W/∂y, as illustrated in Figure
8(e). In addition, the rotation contributes sources of the production ⟨w2⟩ through
the positive values of G33.

Because Gii = 0, the blade’s rotation therefore does not directly affect the
production of the turbulent kinetic energy, P = 1

2Pii, which is however indirectly
affected through the drastically modified velocity fields. In addition, the rotation
redistribute the kinetic energy among the components, through the G22 and G33

terms, by extracting the energy from ⟨v2⟩ to transfer to ⟨w2⟩.

Figure 9(a) shows that Puv are all negative along both shear layers of the
blade’s flow while Puv along the leading-edge layer is much stronger. Since ⟨uv⟩
in the leading- and trailing-edge shear layers are negative, Puv therefore increases
the magnitudes of the Reynolds shear stress ⟨uv⟩ there. The rotational produc-
tion term G12 = −2Ωx⟨uw⟩ contributes very little to the production of ⟨uv⟩ of the
blade flow due to the negligible values of ⟨uw⟩. The distribution of Puv of the airfoil
flow, as illustrated in Figure 9(b), is quire similar to that of ⟨uv⟩ and therefore
Puv provides sources to this Reynolds shear stress. As seen in Figure 9(c), Pvw for
the blade flow is mostly positive along the leading-edge shear layer, which thus
increases the value of positive Reynolds shear stress ⟨vw⟩ there. Blade’s rotation
provides sources to ⟨vw⟩, too, since G23 = 2Ωx(⟨v2⟩ − ⟨w2⟩) is positive along the
leading-edge layer. Finally, although the Reynolds shear stress ⟨uw⟩ is very small,
the production term Puw has negative values whose magnitudes are comparable to
that of Pvw along the leading-edge shear layer. In addition, the rotational produc-
tion term G13 = 2Ωx⟨uv⟩ is observed to achieve quite significant negative values.
However, these large amount of productions of ⟨uw⟩ along the blade’s shear lay-
ers are eventually diffused, dissipated, and redistributed by other terms in the
Reynolds stress transport equation.
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Fig. 9 Production terms Puv , Puw, and Pvw. (a) Puv over the blade; (b) Puv over the airfoil;
(c) Puw over the blade; and (d) Pvw over the blade. The thick black arrow above the blade
indicates the direction of the relative velocity Vr. (e) One-dimensional profiles of Puv , Puw,
and Pvw over the blade and airfoil along y direction.

3.5 Enstrophy

The distributions of the enstrophy ⟨ω′
iω

′
i⟩, where ω′

i is the ith component of the
fluctuating vorticity, for both blade and airfoil flows are presented in Figure 10.
Similar to other turbulence statistics, enstrophy of the blade flow is mainly confined
closer to the blade’s leading and trailing edges along the two shear layers while
that of the airfoil flow are focused further downstream from the airfoil’s edges.
While the magnitudes of enstrophy along the leading- and trailing-edge shear
layers of the airfoil flow are quite similar, those at the leading-edge layer of the
blade flow are much higher than at the trailing-edge layer. It is known [18] that
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dimensional profiles of enstrophy over the blade and airfoil along y direction.

fluctuating vorticity is primarily associated with the small-scale turbulence and
therefore the distribution of enstrophy roughly resembles that of the turbulence
energy dissipation. As such, Figure 10 indicates that the turbulent kinetic energies
of the blade flow are mainly dissipated along the shear layers, too, particularly
along the leading-edge layer.

4 Summary and Conclusions

Three-dimensional velocity fields were measured using Tomo-PIV on a model of the
wind turbine blade to study the effects of rotation on the separated turbulent flow
during stall delay of the blade. The measurements were conducted at Re≈4800 and
a global TSR of 3 which is much lower than the design TSR of 6. For comparison,
the flow fields on a static airfoil were also measured at similar AOAs and Re using
Tomo-PIV. The following significant changes have been observed in both the mean
flow fields and the turbulence statistics made by the blade’s streamwise rotation:
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1. The most obvious difference between the mean flow field for the blade and that
for the static airfoil is that the massive recirculation which forms above the
surface of the static airfoil does not exist.

2. The blade’s rotation created a spanwise or radial flow from blade’s root to tip
within the separated flow region.

3. While the major mean vorticity component of the blade’s flow was still in
the spanwise (z) direction, the rotation of the blade generated extra mean
vorticity components in the other two directions, making the mean vorticity
vector slightly tilted, not only towards the blade’s rotational direction but also
towards the wall-normal direction.

4. Due to the drastically different distributions of the mean velocity fields in the
separated flow region, the distributions of the major mean vorticity component,
ωz, were also found to be distinct between the blade and the airfoil cases.

5. While the turbulence statistics were concentrated along the leading-edge shear
layer of the blade flow, they were mainly located quite far downstream of the
airfoil’s suction surface.

6. Some of the Reynolds stress components involving the spanwise fluctuating
velocity were observed to be particularly affected by the blade’s rotation which
enhanced the spanwise Reynolds normal stress ⟨w2⟩ and created noticeably high
values of shear stress ⟨vw⟩.

7. The production of the Reynolds stresses were affected by the rotation both
directly through the rotation production terms and indirectly by changing the
fluctuating velocity fields. The rotation production terms were found to provide
sources to ⟨w2⟩ but sinks to ⟨v2⟩. As such, the direct effect of blade’s rotation
on the turbulent kinetic energy is to extract energy from ⟨v2⟩ to transfer to
⟨w2⟩. In addition, the direct effects of rotation included providing sources to
⟨vw⟩ and sinks to ⟨uw⟩.
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