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Abstract
Turbulent flows are multi-scale with vortices spanning a wide range of scales continuously. Due to such complexities, turbulence
scales are particularly difficult to analyze and visualize. In this work, we present a novel and efficient optimization-based
method for continuous-scale turbulence structure visualization with scale decomposition directly in the Kolmogorov energy
spectrum. To achieve this, we first derive a new analytical objective function based on integration approximation. Using this
new formulation, we can significantly improve the efficiency of the underlying optimization process and obtain the desired filter
in the Kolmogorov energy spectrum for scale decomposition. More importantly, such a decomposition allows a “continuous-
scale visualization” that enables us to efficiently explore the decomposed turbulence scales and further analyze the turbulence
structures in a continuous manner. With our approach, we can present scale visualizations of direct numerical simulation data
sets continuously over the scale domain for both isotropic and boundary layer turbulent flows. Compared with previous works on
multi-scale turbulence analysis and visualization, our method is highly flexible and efficient in generating scale decomposition
and visualization results. The application of the proposed technique to both isotropic and boundary layer turbulence data sets
verifies the capability of our technique to produce desirable scale visualization results.

1. Introduction

Turbulent flows are multi-scale in nature. As revealed by both ex-
perimental observations and numerical simulations, the vortical
structures in turbulent flows can span a wide and continuous range
of spatial scales [Pop01]. Since vortical structures of many differ-
ent scales could co-exist collectively in one turbulent flow, it is thus
complicated to analyze and visualize turbulence dynamics directly
from the turbulence data sets.

This motivates the development of multi-scale methods [Far92,
BMP08] to analyze turbulent flows by scale decomposition. For
example, finer-scale flow structures tend to be more stretched com-
pared to the coarser-scale structures [BMP08], but such a phe-
nomenon is not obvious when directly examining the original flow,
which aggregates all different scales. Moreover, analyzing the inter-
scale transition and interaction of flow structures by multi-scale de-
composition can enrich our understanding of turbulence dynam-
ics, especially for the transition from laminar to turbulent flows
in boundary layers [YP11]. However, current methods that rely
on wavelets [Far92, vdB04] and curvelets [BMP08, MHVD09] for
multi-scale turbulent flow decomposition only produce discrete s-
cales that are limited by the data resolution, preventing useful anal-
ysis on transitional flows. For such purpose, continuous-scale de-
composition, where scales continuously transit over the spectrum,
is more favorable [MLSF14], and the visualization of continuously

varying spatial scales is highly desirable for the scientific study of
turbulent flows, from both the fundamental perspective [Jim13] and
the modeling purposes [Spa15].

Scale decomposition for turbulent flows is different from the
conventional vector field decomposition in that it often employs
the Kolmogorov energy spectrum [MHVD09] [YPI10] to charac-
terize the decomposed scale [SDT06]. It was discovered earlier by
Kolmogorov that the energy of turbulent flows follows a similar
spectrum, especially for the inertial range, where the famous 5/3-
law was derived and verified [Kol41, Kol62]. Such a spectrum in-
dicates the variation of turbulent flow energy in different length
scales. A scale in the decomposition is usually referred to as a band
of wavenumbers in the Kolmogorov energy spectrum. Ideally, this
should be determined by employing a perfect band-pass filter (BPF)
in the spectrum. However, such a straightforward decomposition
usually leads to strong ringing artifacts [Gib99], which contaminate
the decomposition and disturb the real turbulence scale structures
in the decomposition results. This is why wavelets- and curvelets-
based methods are often employed for the decomposition task.

While wavelets and curvelets can better represent the data with
reduced ringing artifacts due to their multi-scale basis function-
s, they have various drawbacks that make them inappropriate for
continuously decomposing high-resolution turbulent flows: finite
number of scales that are restricted by the data dimension, relative-
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ly large memory footprint, and high computational cost. Recently,
Mishra et al. [MLSF14] proposed a new method called KoSCO
based on filter optimization to operate directly in the domain of the
Kolmogorov energy spectrum. It was the first work to overcome the
drawbacks of wavelets- and curvelets-based methods with compa-
rable spectrum distribution for continuous turbulence scale decom-
position. However, its computational cost is still very high due to
the discrete numerical integral of the objective function, making it
inefficient for supporting analysis and visualization of large-scale
time-varying turbulent flows. In addition, this work explored only
isotropic turbulent flows, but not other situations such as boundary
layer turbulent flows, which behave quite differently.

Our approach. To address the drawbacks of existing method-
s, we present in this paper a novel method, aiming at improving
the computational efficiency of continuous-scale turbulent flow de-
composition for flow visualization in large-scale turbulence data
sets. By adopting the framework of [MLSF14], our contribution
lies in a new mathematical formulation that delivers a very effi-
cient continuous-scale turbulence visualization. This includes a re-
formulation of the objective function with integral approximations
to transform the original discrete numerical integral into a purely
analytical one, as well as the pre-computation of the optimization
for the analytical objective function, allowing us to significantly re-
duce the heavy computational cost. More importantly, the decom-
position results in a new style of visualization, which combines
isosurface technique for the spatial structure of the decomposed
scale and the surface texturing technique by referring to the color-
mapping of the corresponding velocity field. Hence, we can more
effectively and intuitively visualize and analyze the high-resolution
continuous-scale decomposition data sets for turbulent flows.

Based on our scale decomposition method with an analytical ob-
jective function, we can efficiently generate continuous-scale vi-
sualization results. Instead of focusing on the visual analysis of
single-scale local/global features as in existing visualization work-
s such as [SUT05, SBV∗11], we can present visualization results
across a continuous range of scales for both isotropic and bound-
ary layer turbulent flows. This is highly beneficial for the scientific
study of turbulence structures, and has not yet been explored and
presented in any previous flow visualization works. In addition, ex-
perts in turbulence research are also involved as collaborators in
this work to support with domain knowledge, and to help evaluate
and enhance the visualization results.

2. Related Work

Turbulent flow analysis and visualizations are usually based on di-
rect numerical simulation (DNS) data sets, which are useful, e.g.,
in studying near-wall flow structures [WM09] and developing new
turbulence models [RPP11], where accurate experimental measure-
ments are still difficult to obtain. Moreover, the control of turbu-
lence with methods yet to be realized in a laboratory can also be
investigated by using DNS [Sko13, Sko14]. This section reviews
and discusses the areas of research related to turbulent flow analy-
sis and visualization based on DNS data sets. Note that due to space
limits, we do not include research work in general flow simulation
and visualization.

2.1. Multi-scale Analysis of Turbulence

A key approach to turbulence analysis is multi-scale flow decom-
position. Early methods [Far92, CD99] are mainly wavelet-based
since wavelets are multi-scale in nature and can help reduce the
ringing artifacts. However, wavelets have a number of shortcom-
ings; e.g., Candes and Donoho [CD99] showed that due to the
isotropic basis, wavelets are not effective in representing stretched
structures in a turbulent flow. Hence, curvelets, which are exten-
sions of wavelets with elongated basis, were proposed [CDDY06]
for scale decomposition with highly-stretched structures. Bermejo-
Moreno and Pullin [BMP08] presented a multi-scale geometrical
decomposition method based on curvelets for isotropic flows while
Yang et al. [YPI10] showed the evolutionary geometry of the La-
grangian scalar field for stationary isotropic turbulence. Other than
wavelets and curvelets, Leung et al. [LSD12] used a spatial filter
for flow decomposition, but since the filter is too wide, the decom-
posed flow may include excessively many nearby scales. Recently,
Mishra et al. [MLSF14] developed an optimization method to con-
struct Fourier-space filters, but their method is inefficient and com-
putationally less reliable for continuous-scale flow decomposition.

This paper presents a new continuous-scale decomposition
method based on optimization. Compared to previous works, we
derive a novel analytical model for the objective function, as well
as various techniques for supporting efficient and stable decompo-
sition of turbulent flows in continuous scales. Thus, we can deliver
turbulence scale structure visualizations and support visual analysis
for high-resolution flow data sets in various situations.

2.2. Turbulence Visualization

There are three major research directions in turbulence visualiza-
tion: i) improving the data processing efficiency, particularly for
interactive visualization; ii) developing visualizations targeted for
specific applications; and iii) enhancing the visualization by iden-
tifying structures/features in the flow data sets.

Among various works in the first research direction, Johnson et
al. [JCG08] developed a system that optimizes the data manage-
ment and caches the computations, thereby enabling interactive vi-
sualization of terabyte-sized flow data sets. Treib et al. [TBR∗12]
presented a GPU-based system design for feature-based turbulence
visualization; their method works on a flow field with a compressed
representation, and can efficiently deliver high-resolution visualiza-
tion on a desktop computer.

The second research direction is application-oriented. Wiebel
et al. [WTS∗07] employed the footprint of vortices induced from
boundary walls to form a new type of streak line visualization.
Williams et al. [WPB∗11] used a reference model of an ideal vor-
tex to model and identify real vortex cores for geophysics. Wei et
al. [WYG∗11] introduced a dual-space method to analyze parti-
cle data from turbulent combustion simulation using model-based
clustering. Koehler et al. [KWDG11] developed visual analysis of
vortices produced from the deformable flapping wings of a dragon-
fly. More recently, Shafii et al. [SOL∗13] extracted vortices in wind
farms, and visualized and analyzed the interplay between these vor-
tices and the forces on the wind turbine blades.

The third direction focuses on extracting turbulent features for
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Figure 1: The Kolmogorov spectrum (left) of a 5123 DNS data set
(right) of isotropic turbulence. The color in the direct volume ren-
dering of the isotropic turbulent DNS data set indicates the magni-
tude of the velocity field with red colors indicating high velocities
and blue colors representing low velocities.

turbulence visualization, where many criteria have been explored,
e.g., the Q and λ2 criteria [JH95]. Silver and Wang [DX97] iso-
lated and tracked the local volume-based features in the form of
regions-of-interest in time-varying 3D fluid data sets. Stegmaier
et al. [SUT05] combined vortex core line detection and the λ2
method to visualize and analyze turbulent flows. Helgeland et
al. [AØA∗04] visualized the energetic structures in a turbulen-
t flow field by using structure-based tensors. Later, Helgeland et
al. [ABAPØCE07] developed a vorticity field line approach with
specialized particle advection and a seeding strategy. Schafhitzel
et al. [SVG∗08] improved the vortex core line detection by con-
structing curves that connect λ2 minima. Pobitzer et al. [PTA∗11]
employed proper orthogonal decomposition (POD) to separate the
energy scales in a turbulent flow.

Coherent structures are another useful features for enhancing
turbulence visualization. Garth et al. [GGTH07] characterized
and visualized coherent Lagrangian structures by adaptive com-
putation of finite-time Lyapunov exponent fields. Schafhitzel et
al. [SBV∗11] visualized and tracked coherent structures based on
shear stress, so that one can identify and track both vortices and
shear layers, while Gaither et al. [GCS∗12] detected and visualized
critical structures in a massive turbulent-flow simulation.

This work presents a continuous and highly efficient scale de-
composition method to aid turbulent flow visualizations. Compared
to previous works in turbulent flow visualization and analysis, we
devise a novel optimization-based technique in the Kolmogorov en-
ergy spectrum. Due to our analytical formulation and various relat-
ed techniques, we can efficiently obtain the turbulence scales with
high performance. Through this, we can efficiently optimize the
separation of turbulence scale structures, and then extract and visu-
alize useful features relevant to the Kolmogorov energy spectrum.
This is a new form of decomposition-based visualizations, where
we developed the research work with domain experts in turbulence
research, and explored several data sets, including high-resolution
isotropic and boundary layer turbulent flows.

3. Our Approach

For visualizing continuous turbulence scale structures, we focus
our method on an efficient continuous-scale decomposition, fol-

lowed by an isosurface technique with surface texturing to help vi-
sualize and analyze various scales in the turbulence data sets in a
continuous manner.

3.1. Efficient Continuous Scale Decomposition

This section presents our novel optimization formulation to effi-
ciently decompose a turbulent flow field based on the Kolmogorov
energy spectrum. Such a spectrum is computed based on the Fouri-
er transform of a turbulent flow field, and is one-dimensional by
nature [Pop01], see Figure 1 for an example.

To achieve our goal, we propose the followings: first, we de-
scribe how to compute the Kolmogorov energy spectrum (subsec-
tion 3.1.1) and employ a parameterized filter shape with fall-off
regions in the spectrum domain similar to the filter in [MLSF14]
(subsection 3.1.2). Then, we formulate an objective function to
measure the filter sharpness and the amount of ringing (subsec-
tion 3.1.3), with a novel derivation to give an efficient analytical
model of the objective function with simplification and approxima-
tion (subsection 3.1.4). Finally, we solve the optimization to obtain
appropriate filters for the decomposition (subsection 3.1.5).

3.1.1. Kolmogorov Energy Spectrum

The Kolmogorov energy spectrum is a one-dimensional function
that specifies the energy distribution over scales in a turbulen-
t flow field. To obtain such a spectrum, one usually first calcu-
lates the Fourier transform of the velocity magnitude, and then
integrates all the Fourier coefficients whose norms are identical.
This projects the multi-dimensional spectrum in Fourier space in-
to a one-dimensional spectrum. To have a better observation, the
log-log plot of the spectrum is usually preferred, and the famous
Kolmogorov 5/3-law was also discovered in such a log-log plot of
the spectrum [Pop01].

With the Kolmogorov energy spectrum, the turbulence scales are
usually defined with a filter in the log-log plotted space. To define
such a filter, we work in the Kolmogorov energy spectrum with a
logarithmic mapping, which we call the log-mapped Kolmogorov
energy spectrum. Note that such a process can be reversible. Once
we have a filter in the log-mapped Kolmogorov energy spectrum,
we can obtain the filter in Fourier space by first performing an in-
verse logarithmic mapping of the filter and then symmetrically ex-
tending the re-mapped 1D filter to form a multi-dimensional filter,
assuming that the wave vectors are equally distributed along the
iso-sphere. Finally, the original flow field is multiplied by the filter
in Fourier space, followed by an inverse Fourier transform to obtain
the decomposed scale. Note that to obtain the desired decomposed
scale, the distribution of the filter in the log-mapped Kolmogorov
energy spectrum is important.

3.1.2. Parameterized Band-Pass Filter

Our filter is specified in the log-mapped Kolmogorov energy spec-
trum domain with a variable k in that range. Note that when k
varies, it corresponds to a non-linear variation with respect to an
inverse logarithmic mapping in the Kolmogorov energy spectrum.
Similar to [MLSF14], we can build our one-dimensional param-
eterized band-pass filter (BPF) by attaching two extended fall-off
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Figure 2: Blue line: perfect band-pass filter (BPF). Red lines: our
parameterized filter with two extended fall-off regions.

regions to a perfect BPF, see Figure 2. Note that to avoid bias, the
two fall-off regions should be symmetric. Moreover, they should
be monotonically attenuating in both spatial and wavenumber do-
mains, i.e., the filter value should gradually drop to zero, e.g., see
the red curves in Figure 2, to avoid unwanted intermittency effects.

Here we use the Gaussian function with a shape parameter θ to
model the fall-off regions in our parameterized filter, and the whole
filter is defined in the log-mapped Kolmogorov energy spectrum
domain as:

G(k;θ) =


1 if k ∈ [k1,k2]

e−θ(k−k1)
2

if k < k1

e−θ(k−k2)
2

if k > k2 ,

(1)

where G(k) is defined in the log-mapped Kolmogorov energy spec-
trum domain; k1 and k2 are lower and upper bounds of the filter
band, respectively; and θ is a parameter to control the extent of the
fall-off. By varying θ, we can introduce different amount of near-
by scales into the decomposition to suppress ringing. However, we
need to keep θ small to maintain the band-pass property for the de-
composition. Note that when we do the actual filtering, we should
transform the filter back to the Fourier domain with wave vector
k, where k = logmap(|k|) with logmap(·) the operator mapping
from linear to logarithmic space, and we further denote the filter in
Fourier space as G(k). Note that k is normalized in the range [0,1],
while k is kept with its original range in Fourier space.

The reason why we choose the Gaussian function is due to the
minimization property of the uncertainty principle [Str08]: when
the support range of a Gaussian in the spatial domain is squeezed
for suppressing the ringing, its spreading in the wavenumber do-
main is simultaneously minimized. Thus, we can employ a Gaus-
sian to look for a balance between the support in the spatial domain
and the filter sharpness in the wavenumber domain.

3.1.3. The Objective Function

After defining the filters in the log-mapped Kolmogorov spectrum
domain, we next reformulate the objective function as in [MLSF14]
for finding suitable filters to decompose the turbulence scales by
optimization. To facilitate our discussion and subsequence deriva-
tions, we first define the following quantities:

• u and u: the flow velocity field and its magnitude in spatial do-
main;

• k and k: the wave vector and its log-mapped magnitude (k ∈
[0,1]);

• G: the desired filter in the log-mapped Kolmogorov energy spec-
trum domain;

• G0: the perfect BPF (θ→∞) in the log-mapped Kolmogorov
energy spectrum domain;

• G: the desired filter in Fourier space, which is a function of the
wave vector k;

• hat (ˆ): the operator to transform from spatial domain to the log-
mapped Kolmogorov energy spectrum domain;

• hat ( ˇ ): the inverse operator of ( ˆ ) to transform from the log-
mapped Kolmogorov energy spectrum domain to spatial domain;

• θl and θu: the lower and upper bounds of θ, respectively, during
the optimization process; and

• θm: the optimal θ value after optimization.

The formulation of the objective function in this paper follows
the framework in [MLSF14]. Hence, we first review the objective
function in [MLSF14] before deriving our analytical form of the
objective function.

Filter sharpness. The first term Ed of the objective function evalu-
ates the filter sharpness by measuring how close the decomposition
results by G and G0 are, which is defined in the log-mapped Kol-
mogorov energy spectrum domain as:

Ed = ψd

∫ 1

0
(G(θ)−G0)dk , (2)

where ψd is formulated as ψd =
(∫ 1

0 (G(θl)−G0)dk
)−1

, which

normalizes Ed to [0,1]. Note that the support range of G(θ) is al-
ways larger or equal to G0. Hence, there is no need to square the
integrand in Eq. 2.

Amount of ringing. Recall that the Fourier basis has global sup-
port, and it propagates wave-like rings from high-frequency fluctu-
ations, thus contaminating surrounding smooth regions. Hence, we
estimate the amount of ringing to constrain the flow decomposition
by examining the difference between the given and the decomposed
flow fields in the originally-smooth regions in spatial domain Ω:

Er = ψr

∫
Ω

∣∣w∇(u−Ǧ(θ)∗u
)∣∣2 dΩ, (3)

where ψr =
(∫

Ω

∣∣w∇(u−Ǧ(θu)∗u
)∣∣2 dΩ

)−1
is a normalization

factor similar to ψd ; w = e−|∇u|2/2σ
2

is a Gaussian weight with
respect to the gradients of the original field, helping to enforce a
strong constraint in the originally smooth regions; and σ is the s-
tandard deviation of the gradients in the whole original flow field.
Here, by saying “originally smooth”, we mean the smooth regions
(with small gradients) in spatial domain from the original (given)
flow field without any operation. Note that while Ed is defined in
the log-mapped Kolmogorov energy spectrum domain, Er is, how-
ever, defined in the spatial domain.

Eqs. 2 and 3 can be used to construct an objective function, but
they are not efficient for computation since they are defined in two
different domains which are connected by Fourier transform. More-
over, their current formulations cannot lead to effective parameter
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Figure 3: Objective function Ẽ and its constituting components Ẽd
and Ẽr. Note that both axes are in log-scale.

fine-tuning for creating a filter with a sharp fall-off. Hence, we en-
hance the order of magnitude of their measurements, and raise both
Ed and Er by an exponent m, which is set to be 5 in our implemen-
tation, in order to match the decomposition result by curvelets as
presented in [BMP08].

Overall objective function. Based on the above formulations, we
define the overall objective function E as a linear combination of
Ed and Er with parameter λ > 0 to control the influence of Er to E:

E = Ed
m +λEr

m, (4)

Note that a larger λ introduces more nearby scales to the decompo-
sition result, thus better suppressing the ringing artifacts; however,
the filter shape (G) in return would deviate more from the perfect
band-pass filter (G0).

3.1.4. Deriving an Effcient Analytical Form

Eq. 4 is the objective function in [MLSF14]. Since it requires a nu-
merical integration over the entire discrete data space, it is compu-
tationally very expensive to evaluate. Especially, it would require a
large number of iterations to complete the optimization when pro-
cessing high-resolution 3D DNS data sets. Having noted that the
model can be reformulated by considering domain transformation
and integral approximation, which is our core technical motivation,
we derive and reformulate Eq. 4 to form an analytical objective
function, which can be evaluated with exceedingly high perfor-
mance. Note that such a mathematical derivation and reformulation
has never been done in any existing work.

Domain consistency. Since Ed and Er are defined in two differen-
t domains (Ed in wavenumber domain and Er in spatial domain),
their optimization becomes inefficient due to the time-consuming
integral transforms. Hence, like in [MLSF14], Plancherel’s theo-
rem [Pin02] is employed to unify Ed and Er by transforming Er
from the spatial domain into the Fourier domain:

Er = ψr

∫
W
|ŵ∗ ikû(1−G(k;θ))|2 dk, (5)

where ψr =
(∫

W |ŵ∗ ikû(1−G(k;θu))|2 dk
)−1

. Note that to com-
pute the integral, we need to transform from the log-mapped Kol-

mogorov energy spectrum domain back to the Fourier domain with
symmetric extension of k to form wave vector k as explained in
Section 3.1.1.

Reformulating Ed . The reformulation of Ed term is relatively
easy. Since we normalize k in the range [0,1] and the filter is de-
fined in this range, in order to obtain an analytical form, we can
obtain an integral approximation of Eq. 2:

Ed = ψd

∫ 1

0
(G(θ)−G0)dk ' ψd

∫ +∞

−∞
(G(θ)−G0)dk. (6)

The approximation is still accurate, since the function values out-
side [0,1] is relatively very small compared to function values in
[0,1]. Inserting the specific form of G (Eq. 1) into Eq. 6, we can
reformulate Ed as

Ẽd =

√
θl
θ

, where θ > 0 . (7)

Obviously, Ẽd is an asymptotically-decreasing function that ap-
proaches 0 when θ→∞, see Figure 3 for an illustration.

Reformulating Er. The reformulation of the Er term is mathemat-
ically more complicated. Since ŵ and û are independent of θ, when
θ varies, their contributions to the integral can be considered as
a scaling factor. Thus, they can be taken out of the integral and
absorbed into a scaling parameter λ by forming a new parameter
λ̃, making the new formulation of Er data independent, which is
our novel observation when simplifying the Er term. In addition,
by taking the two quantities out of the integral, we only leave k
and G, which can be equivalently evaluated in the log-mapped Kol-
mogorov energy spectrum domain. Thus, Er can be simplified and
reformulated as:

Ẽr = ψ̃r

∫ 1

0
k2(1−G(θ))2dk = ψ̃rH(θ), (8)

where ψ̃r = (
∫ 1

0 k2(1−G(θu))
2dk)−1 is for normalization. Insert-

ing the specific form of G(θ) into H(θ), we can obtain:

H(θ) =
∫ k1

0
k2[1− e−θ(k−k1)2

]2dk+
∫ 1

k2

k2[1− e−θ(k−k2)
2
]2dk.

(9)
The two separate integrals can also be approximated by extending
outside the range [0,1] similarly as the integral approximation for
Ed term, which leads to the following integral approximation:

H(θ) '
∫ k1

0 k2dk+
∫ 1

k2
k2dk

− 2
(∫ k1
−∞ k2e−θ(k−k1)

2
dk+

∫+∞
k2

k2e−θ(k−k2)
2
dk
)

+
(∫ k1
−∞ k2e−2θ(k−k1)

2
dk+

∫+∞
k2

k2e−2θ(k−k2)
2
dk
)
.

(10)
Note that a general definite integral from calculus is:∫ b

a x2e−θ(x−α)2
dx = 1

4θ3/2 (2
√

θ(a+α)e−θ(a−α)2

−
√

π(2α
2
θ+1)erf(

√
θ(a−α))

− 2
√

θ(α+b)e−θ(b−α)2

+
√

π(2α
2
θ+1)erf(

√
θ(b−α))) ,

(11)
where erf(·) is the error function, which is still an integral. Howev-
er, we will later find that such an integral can be canceled out. By
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using such an integration result for Eq. 10, we further obtain:∫ k1
−∞ k2e−θ(k−k1)

2
dk+

∫+∞
k2

k2e−θ(k−k2)
2
dk =

1
2θ3/2 [

√
π(θ(k2

1 + k2
2)+1)−2

√
θ(k1− k2)],

(12)

and ∫ k1
−∞ k2e−2θ(k−k1)

2
dk+

∫+∞
k2

k2e−2θ(k−k2)
2
dk =

1
25/2θ3/2 [

√
π(2θ(k2

1 + k2
2)+1)−2

√
2θ(k1− k2)].

(13)

We can see that the error function which is defined by an integral
disappears, and we therefore obtain a purely analytical expression:

H(θ) =
γ

3
− 2(23/2−1)

√
παθ+3

√
2β
√

θ+η

25/2θ3/2
, (14)

where α = k2
1 + k2

2, β = 2(k2− k1); γ = 1+ k3
1− k3

2; η = (25/2−
1)
√

π; and ψ̃r = H(θu)
−1. From the formulation of Ẽr, it is seen

that the variation of Ẽr is consistent with the observation: when
θ increases, the filter is narrowed and the ringing effect becomes
more apparent as Ẽr becomes larger, see Fig 3 for an illustration.

Analytical objective function. Lastly, we reformulate our objec-
tive function by combining Ẽd , Ẽr, and λ̃:

Ẽ = Ẽm
d + λ̃Ẽm

r =

(
θl
θ

) m
2

+ λ̃

[
H(θ)

H(θu)

]m

. (15)

Note that the value of θl and θu remain to be determined. Since Ẽ
is an approximation of E, θl should not be small; otherwise, the be-
havior of the objective function may be undesirable. As noted from
the formulation of the filter, θ corresponds to the standard deviation
of the Gaussian fall-off by θ = 1/σ

2. To keep the filter sharpness,
σ should not be large. Since we work in the normalized spectrum
domain (k ∈ [0,1]), σ = 0.2 is sufficiently large, corresponding to
θ = 25. Thus, we assign θl = 25. When the filter approaches an
ideal BPF, θ would become very large. To determine θu, we use a
relatively large value instead for θ and assign θu = 104.

Originally, λ̃ is a user-tuned parameter for regularizing the ring-
ing: if we increase λ̃, more nearby scales are taken into the decom-
position to suppress the ringing. However, not all λ̃ values are ac-
ceptable. Hence, we need to determine appropriate λ̃ values, prefer-
ably in an automatic manner, which is described in the following.

Determination of λ̃. Experimentally, we found that to yield an op-
timizable problem, i.e., a minimizable Ẽ, λ̃ should be larger than
a certain critical value. This forms the optimizability constraint,
which makes Ẽ almost flat beyond a certain θ as in [MLSF14];
see Figure 3. Such a constraint requires Ẽ to have small gradients
for all its values beyond the minimum of Ẽ, thus allowing us to
automatically determine an appropriate λ̃.

Denoting the upper limit of θ as θu, and the derivatives of Ẽd
and Ẽr at θu as Ẽ′d(θu) and Ẽ′r(θu), respectively, we compute λ̃ by
solving the equation ∂θẼ(θu) = ε with the identity Ẽm−1

r (θu) = 1,
which gives:

λ̃ =
ε

mẼ′r(θu)
− Ẽm−1

d (θu)
Ẽ′d(θu)

Ẽ′r(θu)
, (16)

where the parameter ε is a fixed small gradient value chosen to be

5×10−8 in all our experiments. Note that such automatic calcula-
tion of λ̃ has already included the scaling introduced by taking ŵ
and û out of the integral. This is also another reason why we need
an automatic procedure to compute λ̃.

3.1.5. Solving the Optimization and Decomposing the Flow

After computing λ̃, we employ Brent’s algorithm [Bre02] to quick-
ly search for an appropriate θ to minimize the objective function
(Eq. 15). With the automatic method to calculate λ̃ (see Eq. 16), our
optimization model is ensured to be unconditionally stable because
the objective function is guaranteed to always attain the minimal
value within the search range. In addition, the optimization mod-
el always converges effectively to the desired solution. We want to
emphasize that due to our new formulation, the calculation of opti-
mal θ is no longer data-dependent, and can be precomputed for all
decomposed scales.

Figure 12 presents a comparison between our decomposition re-
sults and those from a perfect BPF (without any optimization) and
from the curvelets method (we ignore the results from KoSCO s-
ince our results look almost the same as KoSCO’s). It is apparen-
t that the decomposition results from perfect BPF may introduce
unexpected structures, which are inappropriate to use. Comparing
with curvelets, our optimization also demonstrates closeness to the
corresponding spectrum in the results, particularly for preserving
structures appropriately for the corresponding scales.

To avoid potential ringing artifacts from the boundary reflection
of non-periodic data sets, we create a mirror extension of the data
to enforce periodicity in the computation, which is also required
in other methods, e.g., curvelets, see Yang et al. [YP11]. Figure 4
shows one of our 2D flow decomposition results (see the supple-
mentary video for a continuous version of it), and the following
summarizes the whole scale decomposition procedure:

• [Step 1]: first, we define a scale-decomposition filter (Eq.1) in
the log-mapped Kolmogorov energy spectrum domain, with a
parameter θ to be determined.

• [Step 2]: then, we construct the objective function (Eq. 15) in
the log-mapped Kolmogorov energy spectrum domain.

• [Step 3]: by calculating the derivatives of Ẽd and Ẽr at θu, we
compute λ̃ according to Eq. 16.

• [Step 4]: given λ̃ and an initial θ (θ0 = (θl +θu)/2), we employ
Brent’s algorithm to efficiently find the optimal filter parameter
θm according to the objective function.

• [Step 5]: since the filter is formulated to be data independent, we
can pre-compute the filters for all the scales we need for scale
decomposition by giving different k1 and k2 in the log-mapped
Kolmogorov energy spectrum and solving the optimization.

• [Step 6]: lastly, we convert the optimized filter back to Fourier
domain, multiply with the original data, and perform an inverse
Fourier transform to obtain the corresponding scale decomposi-
tion results.

3.2. Continuous-scale Visualization

After the flow decomposition, turbulence structures hidden in dif-
ferent scales of the input flow fields can be revealed by visualizing
the magnitude of the decomposed flow. To this end, we employ
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Figure 4: Continuous-scale decomposition on a 512× 512 isotropic DNS turbulent flow data. Red and blue colors indicate high and low
velocities, respectively. Please refer to the supplementary video for a continuous version of this decomposition result.

the isosurface visualization to produce 3D renderings of the de-
composed flow field, since it is commonly adopted by the domain
scientists. Following the convention in the turbulence communi-
ty [BMP08], the velocity magnitude of the decomposed flow field
is assumed to conform to a Gaussian distribution since turbulen-
t flows are chaotic by nature. Hence, we follow [BMP08] to use
µ+1.5σ as the isovalue to produce the isosurface meshes by a high-
resolution Marching cubes algorithm [LC87], where µ and σ are the
mean and standard deviation of the decomposed velocity field, re-
spectively. Such a selection of isovalue was found in previous work
for a clear and rich representation of the flow structures.

However, unlike the conventional isosurface rendering, which
shades the scale isosurfaces with a constant color, in this work,
we propose a new style of visualization, which combines isosur-
face extraction from the scale-decomposed flow fields with surface
texturing from the color map of the input flow velocity, e.g., see
Figure 5, where the color indicates the magnitude of the flow ve-
locity. Traditional isosurface can only show spatial structures in a
particular scale. By texturing the surface with color-mapping from
the corresponding velocity field in the domain, we can better reveal
and relate the distributions of turbulence scale structures with re-
spect to the input flow fields. This can lead to more intuitive visual
analysis, similar to the λ2 flow visualization [SLÖ∗14].

In our decomposition framework, we can flexibly decompose an
input flow field into continuous scales, and produce continuous-
scale visualization to smoothly reveal the variation of length scales
as distributed over the input flow field. This is particularly useful for
showing fractal-like turbulence structures. See Figures 5, 8, and 10

for our continuous-scale visualization results. It is worth noting that
the conventional flow decomposition methods with wavelets and
curvelets can only produce discrete rather than continuous scale de-
compositions. Continuous visualization of length-scale structures
is highly desirable for scientific study of turbulent flows, especially
in transitional regions of the boundary layer flow [Jim13]. How-
ever, it has not been explored and presented in any of the existing
flow visualization work we are aware of. Note also that since we
can only show static images of particular decomposed scales in the
paper, readers can refer to the supplementary video for the contin-
uous versions of these decomposition results.

4. Results and Discussions

We implement our scale decomposition method and its related
visualization on a workstation with Intel Core (TM) i7-3930K
CPU@3.20GHz, 28GB RAM and 2TB hard drive. Since we base
our optimization framework on an analytic objective, it takes only
around 0.02 sec. (experimentally over different scales) to optimize
the filter shape for a given scale. Note that the filter optimization is
independent of the data sets, which can be verified by referring to
our optimization formulation, where the filter parameters are actu-
ally independent of the data values. After we obtain the filter shape
for a given scale, we then extract the turbulence structures related
to the scale by a filtering in the Fourier space, whose computational
time depends on the size (resolution) of the data set. For a 2D da-
ta set of resolution 5122, our method takes around 0.3 seconds for
the filtering, while for a 3D isotropic turbulence data set of resolu-
tion 5123 and a 3D boundary layer turbulence data set of resolution
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Figure 5: Continuous-scale visualization of turbulence structures in an isotropic turbulent flow. The color indicates the magnitude of the
flow velocity, with red and yellow colors indicating large velocities and blue color indicating small velocities.

1000×257×1024 (to be shown later), our method takes around 5
and 2 minutes, respectively, for the filtering. Compared with [MLS-
F14], our method accelerates the computation by around five times
with compelling decomposition results.

4.1. Visualization Results

In the following, we present case studies of visualizing a variety of
turbulent flows using our method. Note that there are two classes
of turbulent flows in general: isotropic and sheared flows [Tri88].
For isotropic flows, we consider a typical turbulent flow by an ini-
tial random force in a periodic cube, whereas for sheared turbulent
flows, we consider a boundary layer case on a long flat plate, where

the no-slip condition is applied at the plate boundary. They are both
typical representatives of the two basic turbulent flow classes. Thus,
we use their DNS flow data sets, particularly with different parame-
ters such as varying Reynolds numbers in the boundary layer flows,
for the visual examination of the scale structures in the turbulent
flow fields. Note also that the analysis below is done with the in-
volvement of domain experts in turbulence research.

4.1.1. Isotropic Turbulence

The first data set we experimented with is an isotropic DNS turbu-
lence data we obtained from John Hopkins University (JHU) tur-
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Figure 6: Fourteen selected representative filters that are rough-
ly evenly distributed in the Kolmogorov energy spectrum; the first
eight filters starting from wavenumber 0.3 were used to produce the
eight visualizations (scales 1-8) shown in Figure 5. Note that the
solid and dotted lines indicate even-numbered and odd-numbered
scales, respectively.

Figure 7: A zoom-in view to show the smaller-scale dissipative
range: scale [0.80,0.85] in the Kolmogorov energy spectrum. The
yellow boxes above highlight some of the sheet-like structures in
this smaller-scale isotropic turbulence.

bulence database cluster [LPW∗08] at Reλ = 433. The simulation
was done in a cube with a grid resolution of 10243.

Figure 5 shows our visualization results. Here, we use a band-
width of size 0.05 (i.e., δk = k2 − k1 = 0.05 in Figure 2) in the
Kolmogorov energy spectrum, smoothly shifting the scales like
a sliding window, and optimize the related filters to produce the
continuous-scale visualization. Again, since the figure can only
show certain image instances in the continuous-scale visualization,
Figure 5 shows only the visualizations of the eight larger scales
as the representatives. See Figure 6 for the corresponding opti-
mized filters in the Kolmogorov energy spectrum, where we pick
14 (roughly evenly distributed) scales from the continuous filter s-
pace. Note also that if we use curvelets to decompose this data set
for visualization, only six discrete scales can be obtained due to the
dyadic (powers-of-two) scale limit, while by using our decomposi-

tion framework, we can flexibly specify a scale and explore turbu-
lence structures continuously in the Kolmogorov energy spectrum.

The first three scales with larger-scale structures (i.e., scales 1
to 3 in Figure 5) are in the forcing range of the Kolmogorov ener-
gy spectrum. They contain most of the turbulent energy and form
the larger-scale structures. In these scales, thick tubes or blob-like
structures can be observed. The rest of the scales with smaller-scale
structures (i.e., scales 4 to 8 in Figure 5) correspond to the inertial
range, where thinner tube-like structures dominate. The tubes be-
come even thinner and more stretched as we continuously move to
smaller scales, indicating a turbulent stretching process. This dis-
sipative range of decomposed scales are not presented in Figure 5
because the related structures are too small to be recognizable if
we show their visualizations in the same size as the scales 1-8 in
Figure 5. Hence, we use a separate zoom-in figure, i.e., Figure 7,
to show a small-scale example in the dissipative range, where the
camera is located inside the turbulent flow region with the same
view direction as in Figure 5, and the zoom-in view-port is only
around 1/20 of the whole region projected onto the imaging plane.

Our visualization results are consistent with previous work on
multi-scale (discrete and fixed number of scales) turbulence anal-
ysis. For example, Moreno et al. [BMP08] also observed blob-like
structures in larger-scale energy-containing range. This is similar
to our decomposition results in larger scale, i.e., scales 1 to 3 in
Figure 5. Moreover, they also observed sheet-like structures in the
dissipative range, and this can also be seen in our decomposition
results, see the boxed regions in Figure 7 for examples of sheet-like
structures in isotropic turbulence.

4.1.2. Boundary Layer Turbulence

A classic example of anisotropic turbulence is the turbulent bound-
ary layer flow over a flat plate. Here, we use two DNS bound-
ary layer turbulence data sets we obtained from Royal Institute of
Technology (KTH) Sweden at Reτ = 1000 and Reτ = 4000 [SÖ10]
to explore the capability of our method for anisotropic turbu-
lence. The simulations that produced these data sets were done
in a very high resolution rectangular domain, where we cropped
a 1000× 257× 1024 region for visualization and analysis. Note
that unlike isotropic turbulence, the grid along the wall normal di-
rection (+y) is stretched to account for the wall effects; see Figure 8
(top left).

Decomposing turbulence scale structures in boundary layer
flows requires special treatment, since the scales for a turbulen-
t boundary layer flow along the wall normal direction is not well
defined in terms of the Kolmogorov energy spectrum due to the
data non-periodicity and the stretching of the simulation coordi-
nates along wall normal direction, where the Fourier transform is
not applicable. Hence, we can only decompose the flow field over
the X-Z plane, i.e., the streamwise and spanwise directions, see a-
gain Figure 8 (top left). As a result, we perform our decomposition
2D slice by 2D slice along the Y axis, and then stack the 2D de-
composed results to form the overall flow decomposition. Since we
do not discard any point from the data, the data resolution remain-
s unchanged after the decomposition. Figures 8 and 10 show our
continuous-scale decomposition results of the turbulent boundary
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Figure 8: Continuous-scale visualization of boundary layer turbulence at low Reynolds number 1000. The image on top left shows the input
flow velocity field, which is visualized using the standard λ2 isosurface visualization method. The color indicates the magnitude of flow
velocity.

Figure 9: Hairpin structures observed in different visualizations: (a) the hairpin structure in standard λ2 visualization of the original flow;
and (b) to (d) hairpin structures observed in our visualizations, as continuously distributed over nearby scales. As we go across scales, we
may continuously visualize the formation, evolution, and splitting of these structures. Note that the hairpin structures in λ2 may not exactly
match the continuous-scale visualizations.
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Figure 10: Continuous-scale visualization of boundary layer turbulence at high Reynolds number 4000. Again, the image on top left shows
the input flow velocity field, which is visualized using standard λ2 isosurface visualization method. The color indicates the magnitude of flow
velocity.

layer flows at low and high Reynolds numbers. Like isotropic tur-
bulence, we present mainly the larger scales in these figures.

Low Reynolds number boundary layer flow. If we zoom into the
visualizations in Figure 8, we can find some important Ω-shaped
structures known as the hairpin structures, see Figure 9. These
structures were initially observed in the isosurface visualization of
λ2 features, see Figure 9(a), but from our visualization results, see
Figure 9(b-d), we can see that such structures are also captured, but
at relatively smaller scales, indicating that hairpin structures are
usually formed with small-scale structures. Across scales, we can
see their formation, evolution, and splitting. However, the location
of hairpin structures in our continuous-scale visualization does not
necessarily match with those from the overall visualization of λ2
features since they exist in different domains.

Moreover, unlike λ2 hairpin structures, which cannot tell what
scale the structures are associated with in the Kolmogorov energy
spectrum, our method can pinpoint the scales for the structures in

a continuous manner, see again Figure 9. Hence, we can enable
more precise length-scale analysis of hairpin structures, which λ2
visualization cannot offer. Note also that such analysis has not been
achieved in any existing turbulence research.

High Reynolds number boundary layer flow. Figure 10 presents
isosurface visualizations of some larger scales selected from our
continuous-scale visualization. From the visualizations, we can find
that most larger-scale structures are further away from the wal-
l (y=0), while smaller-scale structures occur relatively closer to the
wall. These visualizations are consistent with the physical property
of boundary layer turbulent flows, which are known to consist of
two layers: an outer layer, which tends to have larger length scales,
and an inner layer, which tends to possess smaller length scales.
Furthermore, it is interesting to note that the Ω-shaped structures
are not visible for this case, which is consistent with the all but
vanishing hairpin structures observable with λ2 [SLÖ∗14], thus in-
dicating that these structures are associated with the low-Reynolds
number transitional boundary layer only.
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Scale k1 k2 θm σm =
√

1/(2θm)

1 0.10 0.15 770.17 0.02547
2 0.15 0.20 789.41 0.02517
3 0.20 0.25 803.81 0.02494
4 0.25 0.30 818.87 0.02471
5 0.30 0.35 835.51 0.02446
6 0.35 0.40 853.09 0.02421
7 0.40 0.45 872.61 0.02397
8 0.45 0.50 893.75 0.02365
9 0.50 0.55 915.73 0.02337
10 0.55 0.60 942.51 0.02303
11 0.60 0.65 968.29 0.02272
12 0.65 0.70 996.53 0.02239
13 0.70 0.75 1023.12 0.02211
14 0.75 0.80 1054.54 0.02177
15 0.80 0.85 1088.58 0.02143
16 0.85 0.90 1122.53 0.02111
17 0.90 0.95 1158.62 0.02077
18 0.95 1.00 1195.77 0.02045

Table 1: Filter parameters estimated for different scales in the log-
mapped Kolmogorov energy spectrum; σm is the standard deviation
of Gaussian to measure the sharpness of the filter fall-off regions.

4.2. Filter Parameter

Our optimization process starts with a given scale, i.e., k1 and k2,
and optimizes the related filter parameter, see Figure 2. Table 1
shows the estimated filter parameters for different given scales,
where σm =

√
1/(2θm) is the standard deviation of the Gaussian

function, indicating the sharpness of the fall-off regions; a larger
θm indicates a sharper fall-off.

From Table 1, we can see that as we move from larger to smaller
scales (top to bottom in the table), θm increases; hence, it shows
an increase in the sharpness in the fall-off region defined in the
log-space of the Kolmogorov energy spectrum. However, it does
not mean that there is an increase in the sharpness of the fall-off
region in the Fourier space since there is a log-transformation, and
the filters for smaller scales are more compressed. In fact, as we go
to smaller scales in the Fourier domain, the sharpness of the fall-off
region decreases. This indicates stronger ringing artifacts at smaller
scales, thus requiring more nearby scales to suppress them.

To demonstrate how the optimal filter parameter (θm) affects the
optimization results, we present Figure 11, which shows the ob-
jective function values of the largest (blue curve) and the smallest
(green curve) scales in Table 1, with the red lines indicating the cor-
responding locations of θm in the spectrum. It is noted that smaller
scales have larger decreasing regions in the objective function, thus
leading to a larger value of θm.

4.3. Ringing Artifacts

In our flow decomposition framework, we aim to maintain a sharp
filter shape while minimizing the ringing artifacts. To show that
our method can still effectively minimize the ringing artifacts while
maintaining a sharp filter, Figure 12 compares the results from our

Figure 11: The shape of the objective functions and the optimal
values of θ (marked by red lines) for decomposing scales 1 (blue
curve) & 18 (green curve) in Table 1.

method with the results from the curvelets method [BMP08], as
well as the results from the perfect band-pass filtering in Fourier
space. In the first row of Fig 12, we can see that since the Fourier
basis has only global support, a perfect band-pass filter may discard
necessary basis functions, and thereby produce oscillatory ringing
structures in the decomposed results. On the other hand, in the sec-
ond row of Figure 12, we can see that although the curvelets method
can suppress the ringing problem with local-support basis, certain
amount of ringing artifacts still remain.

In Figure 12, we generate our decomposition results by con-
structing an optimized filter shape from each scale used in the
curvelets method. Although ringing artifacts cannot be completely
avoided especially for smaller scales, our method can still effec-
tively minimize the ringing artifacts with a quality which is com-
parable to and sometimes better than that of the curvelets method.
Note that our method does not generate strong intermittency effect-
s: the laminar region will still remain laminar, as can be seen from
the plane regions around the fractal in first column of Figure 12. In
this case, curvelets method still produces some ringing while our
method performs better without obvious ringing.

4.4. Kolmogorov Energy Spectrum Space Filtering

Our filters, which are constructed in the Kolmogorov energy spec-
trum space, are essentially filters in the Fourier space, but with non-
linear logarithmic mapping. Thus, the decomposition is not purely a
linear decomposition. In addition, the scale decomposition results
do not necessarily satisfy the underlying Navier-Stokes equation-
s. Rather, they represent the structure of the solution at particular
scales for better visualization and analysis to understand the turbu-
lence scale characteristics.

Note that our scale decomposition is not a local decomposition,
and the proposed method does not aim to detect local scale phe-
nomena. On the contrary, it extracts global scale structures as in any
previous work, like [BMP08] and [MLSF14], which is the reason
that filtering in Kolmogorov energy spectrum space can be adopted
in this paper. Wavelets/curvelets-based approaches only utilize the
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Figure 12: We compare the scale decomposition quality of our method against the curvelets method [BMP08] and perfect BPF using a
fractal image (Julia fractal image), which exhibits spatial structures of varying scales; here, we follow Bermejo-Moreno and Pullin, who
conducted experiments on curvelets-based method by analyzing multi-scale features in this fractal image. Visual comparison above shows
that our results are comparable to the curvelets results. See the intermittencies illustrated in the red box of the curvelets result. Our method
can, however, mostly avoid them with better structure preservation.

Figure 13: Comparison with curvelets-based decomposition
method [BMP08] and KoSCO [MLSF14];. It is noted that although
we employ completely different approach, our result is similar to
curvelets-based method and KoSCO especially for smaller scales,
indicating ring minimization property of our method.

multi-scale nature of wavelets/curvelets for scale decomposition, as
well as their ringing minimization feature. Our comparisons in Fig-
ures 12 & 13 verify that our decomposition method produces very
similar results as the curvelets-based approach.

Remark: please refer to the supplemental video for animated re-
sults and additional comparisons. In addition, we will prepare a
project website and release the code for decomposing and visualiz-
ing turbulent flow scales.

4.5. Evaluation

4.5.1. Energy Spectrum Distribution

To verify our decomposition results, we compare the energy spec-
trum distribution of our results to that from curvelets, which have
been widely used in turbulence research community, and that from
our previous work [MLSF14]. To prepare for this experiment, we
use the fractal image (see Figure 12 (middle left)) from Bermejo-
Moreno and Pullin [BMP08], who also conducted experiments with
curvelets decomposition methods and considered the fractal image
since it exhibits multi-scale features. Moreover, we estimate the ex-
tent of the scales in the energy spectrum from the curvelets decom-
position result, and then use them as the input parameters in our
method to obtain our scale filters.
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Figure 13 presents the corresponding energy spectrum distribu-
tions for curvelets results [BMP08], results from [MLSF14] and
ours. From Figure 12, we observed previously that our decomposi-
tion results are similar to those from curvelets. Furthermore, from
Figure 13, we can also see that the three spectrums are similar in
shape, but the spectrums for curvelets have more fluctuations and
jerkiness, which may lead to artificial intermittency structures, e.g.,
see the red box in Figure 12. On the contrary, due to our optimiza-
tion formulation, our method can better preserve the structures (see
again Figure 12). Furthermore, our method allows the specification
of scales continuously spreading over the Kolmogorov energy spec-
trum (for continuous-scale visualization), while curvelets methods
can only provide a maximum of six scales (for 512×512 images)
due to dyadic scaling.

4.5.2. Feedback from a Domain Scientist

We invited a domain expert in turbulence research from Royal In-
stitute of Technology (KTH) Sweden to help evaluate our results.
In his expert review, he stated that “the inertial range located in
spectral space between the integral and viscous scales is dominat-
ed by a continuous distribution of energy in scale space. Therefore,
any decomposition of turbulence data sets needs to take into ac-
count this range of scales, either by filtering in physical space (e.g.
based on volume or life time), or in spectral space as proposed in
the present article. Thus, I can clearly confirm the motivating state-
ments by the authors in that a continuous-scale decomposition is
relevant.” He further stated that “the turbulence cascade is trans-
porting energy through from large to small scales in scale space.
This process is very complex on an individual structure level, and
may involve merging and splitting of structures in a chaotic way,
which means that individual structures move continuously through
scale space. Only by being able to fine-tune the relevant scales in a
specific decomposition, one is able to visualize and eventually track
an individual element of the cascade. It is exactly this insight that
will lead to better understanding and modeling possibilities of the
complex phenomenon of turbulence.” Finally, he concluded by say-
ing “I can confirm that the premise the authors started with, i.e. the
importance of a continuous-scale decomposition, is indeed relevant
to turbulence. I can definitely see the potential of the method. This
type of continuous-scale visualization of structures might prove rel-
evance to improving structure-based turbulence models.”

5. Conclusion

In this paper, we present a novel optimization-based technique
to decompose a turbulent flow field into scale components in
the Kolmogorov energy spectrum. The decomposed scales can be
continuously specified, and our method can enable us to deliv-
er continuous-scale decomposition and continuous-scale visualiza-
tion of the decomposed turbulence structures.

Our method is derived from an analytical optimization objec-
tive function, which can be solved with particularly high efficien-
cy to produce an optimal filter shape that maintains a sharp fil-
ter shape while reducing the amount of ringing. By this, we can
produce high-quality scale decomposition that is comparable (and
sometimes superior) to the state-of-the-art methods. Moreover, our
computing time is much shorter, making our method suitable for

processing large volume of data sets with higher resolutions and
dimensions, e.g., time-varying flow data sets. We also applied our
method on DNS data sets, including isotropic and boundary layer
turbulent flows; the results show that our visualization can unveil
hidden turbulence structures such as blob-like, sheet-like and hair-
pin structures in different scales in a continuous manner.

In the future, we would like to explore time-varying DNS tur-
bulence data sets in order to track turbulence scale structures for
further analysis. This is particularly useful for turbulent boundary
layer flows to understand the dynamics of hairpin structures: their
birth, evolution, merging, and splitting. Since our method is high-
ly efficient for scale decomposition, it can help to enable structure
tracking in a continuous-scale manner.
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