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The velocity and friction properties of laminar pipe flow of a viscoelastic solution are bounded by the corre-
sponding values for two Newtonian fluids, namely, the solvent and a fluid with a viscosity identical to the total
viscosity of the solution. The lower friction factor for the flow of the solution when compared to the latter
is tracked to an increased strain rate needed to enhance viscous dissipation. Lastly, we show analytically
that the effective viscosity varies similarly to the radial diagonal component of the conformation tensor as
observed numerically in turbulent flows, and give a lucid interpretation of shear-thinning through a sequence
of underlying constitutive physical phenomena.

Elasticity effects have long been known to affect tran-
sition to turbulence and drag in fluid flows, whether
these effects are induced by fluid-structure interaction1–3,
or by viscoelastic rheological aspects associated with
non-Newtonian fluids4–8. For instance, the addition
of low concentrations of long-chain polymers generates
an astounding 80% drag reduction (DR) in turbulent
regimes9,10, which has significant implications for prac-
tical applications. At relatively low Reynolds numbers,
elasto-inertial effects sets in11,12, which are also observed
in the instabilities of flow bounded by compliant walls1–3.

When considering turbulent dilute polymeric solutions,
the exhibited DR has been attributed to the interplay
between flow turbulence and elasticity of the polymers
in the near-wall region9,10,13,14. DR is most prominent
when the time scale of the polymer elastic dynamics—
known to be dependent on the number and length of
monomers making the polymer—is of the same order or
higher than that of the turbulent fluid flow15. In ad-
dition, such fluids exhibit a maximum drag asymptote
with respect to the polymer concentration15–20, which is
suggested to be associated with elasto-inertial instabil-
ity11,12. A phenomenon of reverse transition has even
been uncovered in such flow recently21,22. The energy
cascade is also different from that of the Newtonian coun-
terpart23 since some energy is rerouted to the polymer
stretching dynamics, thereby reducing the formation of
the smallest eddies and the associated viscous energy dis-
sipation.

However, this DR phenomenology is absent in steady
laminar flows with polymers9,16 due to absence of small
time scale in the flow dynamics. Here, we show ana-
lytically that the laminar drag of a FENE-P fluid (the
solution) in a cylindrical pipe exhibits a set of lower and
upper bounds. Specifically, the laminar drag is lower
than that of a Newtonian fluid with a viscosity match-
ing that of the total viscosity of the solution, while being
higher than that of the pure solvent. This previously un-
reported phenomenon is due to the effective viscosity of
the solution being bounded by the limits of that of two
Newtonian flows: (i) the flow of pure solvent and (ii) that
of a viscosity-matched fluid.

a)m.skote@cranfield.ac.uk

Finally, we relate the radial component of the stress
tensor to the effective viscosity, which has observational
support from direct numerical simulations of turbulent
flows24. Based on this result, we give an interpretation of
shear-thinning, which is well-known to be directly corre-
lated with the axial elongation of polymer molecules. We
argue that the perceived effect of shear-thinning is due
to a sequence of constituent fundamental physical phe-
nomena, such as elasticity and force balancing wrapped
together.

The flow dynamics is characterized by three nondimen-
sional parameters: (1) Re = ρUcR/µ, (2) β = µs/µ, and
(3) Wi = λUc/R, with µ (resp. µs) the total viscosity
(resp. the solvent viscosity), Uc the centerline velocity
in the absence of polymer, R the pipe radius, and λ the
elastic relaxation time. A steady flow of dilute polymers
modeled as dumbbells is governed by25

u ·∇u = −∇p+ Re−1
[
β∇2u + (1− β)∇ · τ

]
, (1)

u ·∇c− c ·∇u− (∇u)T · c = −τ , (2)

where τ = (fc − I)/Wi is the elastic stress of the poly-
mers of maximum extensibility L. Under the FENE-
P model, the Peterlin function takes the form f =
(L2 − 3)/(L2 − tr(c)). The conformation tensor has for

entries cij = 〈R̃iR̃j〉, where R̃i is the end-to-end vector
of a polymer molecule, and I denotes the identity ma-
trix. For a formulation of FENE-P model alternative to
Eqs. (1) and (2) with an extended set of parameters and
a different set of unknowns, see, for example, Bird et
al.26, which has been solved by Cruz et al.27 for laminar
profiles in pipe and channel. (For the profiles for inviscid
solvent, see Oliveira28). However, the FENE-P model is
widely known to the community studying turbulence and
transition as it appear in Eqs. (1) and (2) with the Pe-
terlin function f as mentioned. We therefore solve these
equations below and use the resulting analytic solutions
to study the bounds for velocity and friction. The lam-
inar profiles derived here will also enable the study the
transition to turbulence by perturbing Eqs. (1) and (2).
Hitherto, the absence of a solution to Eqs. (1) and (2)
has resulted in that transition studies have only been
conducted under the Oldroyd-B model7.

For steady laminar flows, p = P (x), c = C(r), and
u = [U(r), 0, 0] using cylindrical coordinates (x, r, θ),
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which are in axial (ê1), radial (ê2) and azimuthal (ê3) di-
rections, respectively. The components of ∇·τ in Eq. (1)
can be found in Bird et al.29, while Eq. (2) becomes

Ur

 2C12 C22 C23

C22 0 0
C23 0 0


=

1

Wi

 FC11 − 1 FC12 FC13

FC12 FC22 − 1 FC23

FC13 FC23 FC33 − 1

 , (3)

where F (r) = (L2 − 3)/(L2 − tr(C)) and the subscript
r denotes derivative along the radial direction. Equa-
tion (3) gives the non-zero elements of C:

C11 = (2Wi2U2
r + F 2)/F 3, (4)

C22 = C33 = 1/F, (5)

C12 = WiUr/F
2. (6)

Equation (5) implies that the transverse components of τ
follows τ22 = τ33 = 0, which is in agreement with Ref.27.
Substituting Eqs. (4)–(6) in F yields:

F 2(F − 1) = 2Wi2U2
r /L

2. (7)

Since the driving pressure gradient in a pipe is given by

dP/ dx = −4/Re, (8)

Eq. (1) can be written as, β (rUr)r + (1− β) (rUr/F )r =
−4r, which under the condition Ur(0) = 0 gives

Ur = −2rF [β(F − 1) + 1]−1. (9)

Substituting this expression for Ur into Eq. (7), we have

β2(F − 1)3 + 2β(F − 1)2 + (F − 1) = 8Wi2r2/L2. (10)

Given that Eq. (7) implies F − 1 ≥ 0, a solution of
Eq. (10) reads

F (r) = 1 + (ζ
1/3
1 + ζ

1/3
2 − 2)/(3β), (11)

where ζ1 = a +
√
a2 − 1, ζ2 = a −

√
a2 − 1 and a = 1 +

108βWi2r2/L2 with positive square-root and real cubic-
root implied. Eventually, Eq. (9) gives the velocity profile

U(r) = 2

∫ 1

0

r′F (r′)[1− U(r − r′)]
β[F (r′)− 1] + 1

dr′, (12)

where U(r) is the Heaviside step function. The set (4)–
(6), along with Eqs. (11) & (12) give the complete FENE-
P steady laminar pipe flow solution that we use to study
the laminar drag. Their behaviors close to the pipe cen-
ter, i.e.,

Ur(r) = −2r − 16(1− β)Wi2L−2r3 + · · · , (13)

F (r) = 1 + 8Wi2L−2r2 + · · · , (14)

C11(r) = 1 + 8Wi2(L2 − 1)L−2r2 + · · · , (15)

C12(r) = −2Wir + 32Wi3L−2r3 + · · · , (16)

C22(r) = C33(r) = 1− 8Wi2L−2r2 + · · · , (17)

show that they exhibit even or odd symmetries with re-
spect to r. These parities can assist when analyzing the
symmetries of small perturbations close to the wall as
performed for the case of Newtonian flows30 and when
deploying them in the numerical calculations31,32.

Figure 1(a) shows the velocity profiles in the New-
tonian case (β = 1) and three non-Newtonian cases
(β = 0.8 and increasing Wi). They reveal that under
the same driving pressure gradient, the volume flow rate

q̇ = 2π
∫ 1

0
U(r)r dr increases when β drops from 1 to 0.8,

thereby implying an apparent DR in the laminar regime.
This increase in q̇ is further amplified when considering
increasingly large Wi. However, this should not be in-
terpreted as that the addition of polymer reduces drag
compared to the pure solvent Newtonian case.

To better understand that, let us recall that the pres-
sure gradient (8) is defined based on the Reynolds num-
ber and therefore the total viscosity µ. For a given
fixed value of dP/ dx, the total viscosity has to be the
same for all values of β. Hence, when β is altered, the
viscosity of the solvent changes for the profiles shown
in Fig. 1(a). This implies that the various profiles for
different β values correspond to different solvents, and
that the non-Newtonian flow effectively exhibits less drag
when compared against a Newtonian fluid—other than
the solvent—having the same total viscosity as the one
at the particular β value considered.

We now show that the drag of a Newtonian flow of the
pure solvent is lower than that of the non-Newtonian so-
lution after adding polymers. In the non-Newtonian case,
the dimensional pressure gradient is given by dP ∗/ dx∗ =
−4µUc/R

2, where the superscript ‘∗’ indicates the di-
mensional value of a given variable. If the same dimen-
sional pressure gradient is applied on the pure solvent,
the centerline velocity increases by a factor of 1/β since
dP ∗/ dx∗ = −4µs[Uc/β]/R2. Hence the dimensional ve-
locity profile of the pure solvent is U∗s = Uc(1 − r2)/β
and its non-dimensional counterpart Us(r) is shown in
Fig. 1(b) together with the profile U(r) of the polymeric
solution. As can clearly be observed, the pure solvent ex-
periences less drag. To study for a range of Weissenberg
numbers Wi, we compare the volume flow rate of the

polymeric solution, q̇ = 2π
∫ 1

0
rU(r)dr against that of the

pure solvent, q̇s = π/(2β). As can be seen in Fig. 1(c),
there is always a drag enhancement for all values of Wi,
and this result holds when varying L.

In the limit of Wi → ∞ or L → 0, we find F →
∞ from Eq. (7). Hence, considering the same limit in
Eq. (9), we obtain Ur → −2r/β, which is the derivative
of (1−r2)/β. These results therefore provide the bounds
for the velocity profile as

1− r2 ≤ U(r) ≤ (1− r2)/β, (18)

for all values of Wi and L. Physically, this implies that
the polymeric solution experiences less drag than the
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0

0.5

1

r Wi = 5

Wi = 50

Wi = 200

(f)

FIG. 1. Profiles and flow rates for L = 20: (a) U(r); (b) U(r) and Us(r); (c) q̇/q̇s vs. Wi; (d) Components of Cij(r) for β = 0.8
and Wi = 50 where the inset is a zoom-in on C12, and C22 = C33; (e) F (β = 0.8); (f) Divergence of polymer-stress for β = 0.8.
The arrows, covering three profiles in each figure (a, c, e, f), indicate the increasing order of Wi (a, e, f) or β (c) on the curves.

Newtonian flow of a fluid having a viscosity identical to
the total viscosity of the former, but higher drag than
that of the pure solvent under same driving pressure gra-
dient. This can be made more clearer from the behaviors
of their respective friction factors.

The Darcy friction factor is defined as

f ≡ −8[µsU
∗
r∗ + (µ− µs)τ

∗
12]|r∗=R

ρ〈U∗〉2
, (19)

where τ∗12 is a component of the dimensional version of
the elastic stress tensor τ and 〈U∗〉 is the cross-sectional
average of U∗(r∗). For Newtonian flows, the same defini-
tion holds but without the second term within the square
brackets. The inequalities in Eq. (18) translate into the
following inequalities for the friction-factor:

64β2

Re
≤ 4

Re

(∫ 1

0

U(r)r dr

)−2

≤ 64

Re
. (20)

The right-most term of Eq. (20) is f for a Newtonian
fluid with viscosity same as the total viscosity of the so-
lution. The middle and the left-most terms are f for the
polymer solution and the pure Newtonian solvent, re-
spectively. These expressions for the friction-factor can
be derived from Eqs. (6), (9) and (19) in the case of poly-
meric solutions and by using the parabolic profiles in the
case of Newtonian flows.

To analyze the influence of Wi and L, we consider
the limit β → 0 whereby the solutions are such that
F = 1+8Wi2r2/L2, and U(r) = 1−r2+4Wi2(1−r4)/L2.
These relations show that the volume flow rate increases
with Wi and decreases with L. Indeed, a large Wi im-
plies that the relaxation time is far greater than the time
scale of the flow, allowing the polymer strain—i.e. the

stretching of the ends of the polymer molecules—to be
increased by the mean shear. In what follows, we show
that an enhanced stretching of polymers reduces the drag
when compared with a Newtonian fluid with the same
viscosity as the total viscosity of the non-Newtonian case.
Moreover, a large L implies that the ratio of

√
Cii to L

becomes small, resulting in a reduction of the restoring
elastic modulus F . This, in turn, generates an increase
in C22 and C33 given by Eq. (5). As shown below, an in-
crease in C22 yields an increase in the effective viscosity.

The profiles of the non-zero components of Cij(r) are
shown in Fig. 1(d). The large values of C11 originates
from the polymers undergoing stretching in the axial di-
rection. On the other hand, the fact that C22 and C33

have values below one implies contractions in both the
radial and azimuthal directions. The term C12 plays
a crucial role in translating polymer strain represented
by C11 into an enhancement of the strain rate Ur of
the flow, as revealed by the ê1ê1 component of Eq. (3):
2C12Ur = (FC11 − 1)/Wi.

F (r) is essentially a representation of the elastic mod-
ulus (see Fig. 1(e)). The polymers undergo maximum
stretching near the wall given the higher values of the
strain rate Ur. This causes an increase in F ; a feature of
FENE models that is absent with the Oldroyd-B model.

We can now explain the lower drag in the polymeric
solution when compared to that of the Newtonian fluid
with identical total viscosity. The divergence of the New-
tonian stress tensor (∇ · τ ) · ê1 (see Fig. 1(f)) without
polymer stands at a constant value of −4, with the nega-
tive sign implying (positive) dissipation. When polymers
are added, a ratio of (1 − β) of this viscous dissipative
component is replaced by the component due to polymer
stretching, which is also dissipative of the fluid momen-

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
02

12
2



4

tum. As evident from Fig. 1(f), this component is al-
ways greater than −4 throughout the flow field except at
the center of the pipe. (Note that this component can
be written as {−2r2/[β(F − 1) + 1]}r/r which takes the
value of −4 in the limit r → 0, which is same as the
Newtonian component.) To counterbalance the constant
pressure gradient term, the Newtonian part readjusts it-
self to increase the dissipation by increasing the overall
strain rate, thereby resulting in an enhanced volume flow
rate. Such an increase in the strain rate is characterized
by an increase in the slope of the velocity near wall with
respect to 1− r in Fig. 1(a).

To explain the decrease in |(∇·τ )·ê1| as r increases, we

first note that C12 ≡ 〈R̃1R̃2〉 = 0 at the pipe center, thus
implying that the polymer molecules undergo an uncor-
related random motion there. Since C11 increases from
the value of 1.0 with respect to r, the polymers undergo
a rapid stretching in the x-direction (see Fig. 1(d)) caus-

ing the R̃2 component to pick-up a negative correlation
with the R̃1 component that undergo stretching. This
negative correlation is due to the resistance to elonga-
tion associated with the restoring tendency F . However,
this negative correlation starts to decrease with respect
to r partly due to the slow-down in the axial stretch-
ing C11 and the restoring tendency, F—i.e. C11rr < 0
and Frr < 0 for most part of the pipe. This causes
less drag as the absolute value of the resistance term
[(C12F )r + C12F/r]/Wi comes down.

This phenomenon of C11 or C12 playing a crucial role
in the laminar regime is in stark contrast with the tur-
bulent regime, where the transverse diagonal component
C22 (or C33) plays a critical role—it acquires a radial dis-
tribution similar to the effective viscosity18,24. In fact,
both interpretations are reconciled as explained below.

The decrease in flow rate when compared to that of the
pure solvent, or, the increase of the same when compared
to that of a viscosity-matched Newtonian fluid, can also
be understood by considering the effective viscosity µeff,
which is defined as

µeff(r)

µ
=

[β∇2u+ (1− β)∇ · τ ] · ê1
[∇2u] · ê1

= β + (1− β)

[
1

F
− rUrFr

F 2(Ur + rUrr)

]
. (21)

Taking note of the facts that F →∞ in the limits Wi→
∞ or L→ 0, and F → 1 in the limits Wi→ 0 or L→∞,
we arrive at the following bounds for µeff/µ:

β ≤ µeff/µ ≤ 1, (22)

which contains the analogous information as the inequal-
ities in Eq. (18), i.e., the effective viscosity is less than
the total viscosity, but higher than the viscosity of the
solvent. In Fig. 2, µeff/µ is shown for parameters set
equal to that of Fig. 1(d). The figure confirms that the
ratio µeff(r)/µ obeys the inequalities in Eq. (22). Clearly,
µeff(r)/µ has a trend with respect to r that is opposite
to that of C11. This shows that the stretching in the

0.8 0.9 1

µeff/µ

0

0.2

0.4

0.6

0.8

1

r

Solution
Solvent
Newtonian
(viscosity
-matched)

FIG. 2. Effective viscosity for L = 20, β = 0.8 and Wi = 50

axial direction reduces the effective viscosity. As a gen-
eral non-auxetic matter, the polymer exhibits opposite
trend in C22 and C33 by way of contraction of the poly-
mer dumbbells. This sets C22 and C33 to follow the same
trend as µeff(r)/µ (see inset of Fig. 1(d)). As stated pre-
viously, this phenomenon is well-known in the turbulent
regime18,24. The linear relation (up to the leading order)
between of µeff(r)/µ and C22 is revealed by re-writing
Eq. (21) as

µeff(r)

µ
= β+(1−β)C22

{
1− 2rFr

2F − Urr[β(F − 1) + 1]

}
,

where the second term within the braces can be shown
to be of O(r2).

In summary, the laminar regime of this non-Newtonian
flow has interesting bounds for flow and friction deter-
mined by two corresponding Newtonian flows. The flow
of a polymeric solution with a total viscosity identical to
that of a Newtonian fluid exhibits lower drag on compar-
ison with the latter. Nonetheless, the experienced drag
is higher than that of the pure solvent under the same
driving pressure gradient. It should be noted that these
bounds are also valid for plane Poiseuille flow.

During the course arriving these bounds, we also solved
the FENE-P model in a form widely known to the com-
munity researching turbulence and transition. These al-
ternative solutions to those found by Cruz et al.27 will en-
able the study of small perturbations to FENE-P model
expressed in Eqs. (1) and (2). However, any future study
on transition should take into account that the stability
of the viscoelastic flow at a certain Re should be com-
pared against that of the corresponding flow of the sol-
vent at Re/β in order to maintain the same pressure gra-
dient. If not, the comparison would not be against stabil-
ity of the flow of the solvent, but with another Newtonian
fluid with the same viscosity as the total viscosity of the
solution.

This rich phenomenology can also be interpreted as
an explanation of the well-known shear-thinning effect
through the following sequence of comprehensive argu-
ments. (1) The strain rate of the flow stretches the poly-
mers in the axial direction, a phenomenon also known
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from earlier literature; (2) Such an extension causes
contraction in the radial direction, due to the resis-
tance to elongation exerted by restoring force between
the ends of the polymer molecules; (3) This triggers a
nonzero negative correlation between the x−component
and r−component of the end-to-end polymer vector, re-
sulting in an elastic shear stress (τ12) to develop; (4) Since
there is no strain rate at the pipe center, this correlation
is zero due to the liberty of the ends of the polymers to
be at random motion; (5) Due the increase of the elas-
tic modulus with respect to r, a feature of the FENE-P
model, the stretching rate with respect to r slows down,
giving rise to convexity of C11 (i.e., C11rr < 0), which
in turn causes concavity in τ12; (6) The points in (3),
(4) and (5) imply that the divergence of elastic shear-
stress, i.e, the resistive force contribution to the flow by
the polymers decreases with r; (7) The driving force, i.e.,
the pressure gradient, which is balanced completely by
the Newtonian viscous force and elastic force, is a con-
stant; (8) Since the elastic force decrease radially, the
Newtonian viscous force should increase with r; (9) Fi-
nally, this is achieved by enhancing strain rate owing to
the fact that the dynamic viscosity of the solvent is a
constant, thus increasing the flow rate. The last point
in this sequence could be perceived as shear-thinning by
introducing a variable viscosity as a factoring function
together with ∇2U , which balances the total dissipation.

Indeed, we proved that U and the components of the
tensor C exhibit even or odd symmetries with respect
to r. As an outlook, these symmetries can be exploited
to derive conditions for the regularity of perturbations
at the pipe center as derived in the Newtonian case32.
These are expected to be valuable for the study of the
stability and transition of viscoelastic pipe flows.

We thank Dr. Jurriaan J. J. Gillissen at the Depart-
ment of Mathematics, University College London, for his
fruitful comments on this letter.
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