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Multi-scale analysis is widely adopted in turbulence research for studying flow struc-
tures corresponding to specific length scales in the Kolmogorov spectrum. In the
present work, a new methodology based on novel optimization techniques for scale
decomposition is introduced, which leads to a bandpass filter with prescribed prop-
erties. With this filter, we can efficiently perform scale decomposition using Fourier
transform directly while adequately suppressing Gibbs ringing artifacts. Both 2D
and 3D scale decomposition results are presented, together with qualitative and
quantitative analysis. The comparison with existing multi-scale analysis technique is
conducted to verify the effectiveness of our method. Validation of this decomposi-
tion technique is demonstrated both qualitatively and quantitatively. The advantage
of the proposed methodology enables a precise specification of continuous length
scales while preserving the original structures. These unique features of the pro-
posed methodology may provide future insights into the evolution of turbulent flow
structures. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871106]

I. INTRODUCTION

Turbulent flow consists of self-similar structures with a wide range of length scales. This self-
similarity has led to the idea of energy cascade,1–3 which governs turbulent flows universally. Over
the past few years, multi-scale decomposition has gained increasing interest in turbulence community
for both modeling and analysis,4 and has proven to be useful for understanding the evolution of
eddies and the interaction between turbulent flow structures at different scales. This can be pivotal
in understanding the morphology and dynamics of turbulent flow structures. An exploration in this
direction can be motivated by the question of whether there are universal structures across different
scales.5

The energy cascade phenomenon for a turbulent flow is characterized by the Kolmogorov
spectrum which gives the variation of energy E(k) contained by all eddies with different length
scales (k) in a log-transformed Fourier space. A scale for a turbulent flow is usually referred to as a
range of wavenumbers that can be obtained via a perfect bandpass filter (BPF) in the Kolmogorov
spectrum, which also corresponds to a perfect BPF in Fourier space. However, it is well known
that Fourier transform with perfect BPF usually produces strong Gibbs ringing artifacts6 due to
insufficient basis.

This phenomenon can generate spurious structures, leading to error-prone conclusions regarding
the flow characteristics. The drawback of using perfect BPF in Fourier space has motivated the
research in the direction of utilizing local-support basis multi-resolution methods such as wavelets7, 8

and curvelets.9 Wavelets are based on a symmetric local basis, while curvelets, as an extension of
wavelets, have an extended dimension of localized orientation with finer-scale ridge-shaped basis
functions.
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In recent years, curvelets have found increasing use among various research groups for scale
decomposition studies. Bermejo-Moreno and Pullin10 presented multi-scale geometrical decom-
position for isotropic flow and performed characterization of the flow structures based on direct
numerical simulation (DNS) data. Geometry of enstrophy and dissipation structures were shown
by Bermejo-Moreno et al.11 Ma et al.12, 13 also used curvelets to provide a geometric analysis of
flow structures. Using a similar methodology, Yang et al.14 showed the evolutionary geometry of
the Lagrangian scalar field for stationary isotropic turbulence. Yang and Pullin15 reported results for
anisotropic channel flow with a study of the geometry of Lagrangian and Eulerian structures.

In addition to wavelets and curvelets, Leung et al.16 also presented multi-scale decomposition
based on spatial filtering. However, the effect of spatial filtering in Fourier space does not character-
istically confine the results to a sharp band and hence a large overlap of different scales results as a
consequence. Due to the large overlap, the flow structures cannot be uniquely identified as belonging
to different energetic bands.

With the use of curvelets/wavelets, one can significantly reduce Gibbs rings due to band-limiting
basis in comparison to the Fourier transform. However, a severe drawback with those methods is
that they impose a strong restriction on the selection of scale location and bandwidth, leading to
dyadic discontinuous scales with fixed bandwidth.

In fact, curvelets/wavelets were not originally designed for scale decomposition purpose. Their
advantage of using a localized basis suits better representation of sharp edges and hence is a better way
for data representation and compression. However, in the case of turbulence, scale decomposition is
a global operation, and Kolmogorov spectrum is nothing but a symmetric extension of the Fourier
transform. Thus, it is more discernible to perform scale decomposition directly in Fourier space.
Moreover, by carefully examining the curvelets/wavelets scale decomposition results, they are no
different from a BPF in Kolmogorov spectrum with a certain fall-off. This motivates us to develop a
scale decomposition technique directly with Fourier transform. The distinct advantage of methods in
Fourier space, e.g., scale selection and bandwidth, can be better exploited using this approach, as it
enables us to have a continuous scale decomposition which is very important for more comprehensive
study of coherent structures across different scales in turbulence.

The only hurdle which prevents most researchers from using this naive approach is the ringing
artifacts due to Gibbs phenomena. However, if nearby scales are introduced using the global-support
Fourier basis, it can significantly reduce Gibbs rings to similar levels as methods using a local-
support basis. Considering the drawbacks of present methodologies, we propose an alternative to
curvelets/wavelets, which in essence is an optimization-based approach to retaining the benefits of
using Fourier transform and reducing Gibbs phenomena without having to confine the scale numbers
to be only dyadic. Therefore, a filter in Fourier space can be directly designed to achieve multi-scale
decomposition similar to ones using a local-support basis. The filtered data are then converted back
to the physical domain, which gives us the scale decomposition results. Guided by the previous
discussion on the advantages of using Fourier-based methods and drawbacks of curvelets/wavelets,
our proposed method provides the following contributions to the field of multi-scale flow analysis:

� We developed a new scale decomposition method, Kolmogorov Spectrum Consistent Opti-
mization (KoSCO), where the filter is designed directly in the Kolmogorov spectrum consistent
space.

� We developed a novel optimization-based framework where an objective function is designed
and its minimization gives the desired filter shape for scale decomposition.

� More flexible control over the band location and bandwidth in Kolmogorov spectrum is achieved
with the proposed method. This unique feature of having continuous scales, which is the
deficiency of the current methods based on curvelets/wavelets, can be beneficial for turbulence
research as it greatly enhances the capability to track the evolution of structures across different
continuous scales.

This paper is organized as follows. In Sec. II, a formal derivation of the proposed scale separation
method and the solution procedure are given. In Sec. III, the method is verified for different test
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cases and the results are further discussed. Finally, in Sec. IV, we draw the conclusion and discuss
the future work.

II. KOLMOGOROV SPECTRUM CONSISTENT OPTIMIZATION

In Secs. II A and II B, we point out some of the key observations which led us to the proposed
method in this paper.

A. Filter design

First, we define the scale for a turbulent flow suitable for decomposition purposes. The Kol-
mogorov spectrum, which illustrates the energy cascade governing turbulent flows, consists of the
total energy carried by different sizes of eddies. Ideally, a scale is referred to as being a perfect BPF
in Kolmogorov spectrum, which is illustrated in Fig. 1(a) as the solid line. However, a perfect BPF
exhibits strong Gibbs ringing artifacts, which will be further discussed in detail in Sec. III A.

Since Gibbs ringing artifacts are generated due to insufficient basis, they can be suppressed by
adding a few neighboring scales. On the other hand, the number of neighboring scales should be kept
at minimum in order to preserve the sharpness of the filter. Thus, by introducing a certain amount
of nearby scales, the Gibbs rings can be suppressed, while the extent of the deviation from a perfect
BPF is limited. The filtered results using such filter could therefore be much more meaningful than
either a perfect BPF or a filter that includes an excessive amount of other scales.

Hence, the filter can be designed such that it has a fall-off from a perfect BPF to include some
nearby scales. A fall-off is a non-zero extended region from the perfect BPF, which should be
monotonic. Such monotonicity criterion is to ensure we do not introduce falsely magnified nearby
scales; otherwise some spurious oscillating structures may appear. Thus, we model the filter with
the fall-off as a Gaussian function

Ĝ(k) =
{

1 if k ∈ β

e−r2/2σ 2
if k /∈ β

, (1)

where β is the scale bandwidth; σ is a parameter to control the extent of the fall-off; and r is
the distance from the perfect BPF. Fig. 1(a) illustrates the shape of the designed filter with a
dashed line. This filter is applied to a Kolmogorov spectrum consistent space, which is obtained by
using the similar procedure as in Kolmogorov spectrum calculation. This involves reduction of an
N-dimensional field to a scalar (i.e., energy) in the Fourier space at different wavenumbers.
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FIG. 1. Constraints for the filter design process. (a) Design of filter. Solid line: perfect bandpass filter; Dashed line: our filter.
(b) Objective function and its components. (−) E; (···) Er or Eg; (− · −) Ek.
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Now the problem is on how to specify an appropriate value of σ such that Gibbs ringing artifacts
can be greatly suppressed while introducing a minimum amount of nearby scales. If σ is too small,
Gibbs ringing artifacts will not be suppressed, whereas the filter remains very sharp. On the other
hand, if σ is large, a wide range of nearby scales are added; although Gibbs ringing is suppressed,
the notion of a sharp bandpass filter is lost. Thus, an optimization problem can be defined where we
try to balance the preservation of the sharp filter fall-off and the removal of Gibbs rings by finding a
suitable σ . We refer to such optimization as KoSCO and we entail further details in the following.

B. Objective function definition

LetG be the desired filter andG0 be a perfect BPF (σ → 0) defined using Eq. (1) in a Kolmogorov
spectrum consistent space. Then, we can perform an inverse log transform and symmetric dimension
extension to get the desired filter in Fourier space. In the following, u denotes the magnitude of the
velocity vector u. All quantities with a hat (ˆ) are Fourier transform of the respective quantities.

Our objective function consists of two terms. We define the first term as the difference to measure
the closeness between the result from a perfect BPF and the result from the designed filter. This is
to ensure that the desired filter has a sharp fall-off. Mathematically, this term can be written as

Ek = ψ

∫ (
Ĝ2 − Ĝ0

2
)

|û|2dk and ψ =
(∫

Ĝ0
2|û|2dk

)−1

, (2)

where ψ is a normalization constant. Ek is a decreasing function (see Fig. 1(b)) with respect to the
filter parameter σ defined in Eq. (1), since as σ decreases, the desired filter approaches a perfect
BPF.

Next, we try to model the Gibbs rings or oscillation artifacts from which most of the decompo-
sition methods (including wavelets and curvelets) suffer inherently. An example of this phenomenon
is shown in Fig. 2 (which will be described further in Sec. III A). Applying a naive bandpass filter
using FFT results in spurious rings which contaminates the results and is a known problem due to
which Fourier based methods are not generally utilized for such decomposition purpose. We define
the second term in our objective function as a measure of these spurious structures. Quantifying
the Gibbs rings in the objective function allows us to reduce them as much as possible through our
optimization process. This is the key to utilizing Fourier based methods and their superior advan-
tages of continuous scale location and bandwidth. One implicit condition which the decomposition
method must obey, and which is also physically intuitive, is that a region which is originally smooth
(small gradients with low frequency) should also be smooth in the resulting decomposition. Based
on this, we define the second term of our objective term as the regularization term for measuring the
strength of the Gibbs rings, which measures the difference of the gradients in the original field and
the decomposed result as a weighted sum of the gradients where the weight is inversely proportional
to the strength of gradient and can be mathematically written as

Er = φ
∑

α

∫
|wα : ∂α ∗ u(1 − G)|2 and φ =

(∑
α

∫
|wα : (∂α ∗ u)|2dk

)−1

, (3)

FIG. 2. Gibbs ringing phenomena. (a) Original, (b) Bandpass FFT, (c) Curvelets, (d) KoSCO.
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where * is the convolution operator; α denotes any derivative direction; : represents element wise
product; φ is the normalization constant, and wα = e−(∂αu)2/2θ2

is a Gaussian weight with respect
to gradients of the original field. The parameter θ is the standard deviation of the gradients of the
original field (calculated by comparing the value at each point with the mean gradient over the field).
Although a Gaussian weight has been chosen for the present case, any function with a monotonic
fall-off can be used to define the weights. We use the weight at different locations to control the
influence of the regularization term, where regions with large gradients will have less impact on the
measurement and vice versa. This will enforce a strong constraint only in smooth regions. Since
the Fourier transform has global support basis, the constraint in smooth regions will also give the
constraint in the surrounding non-smooth regions. Therefore, this term can effectively measure
the overall strength of ringing artifacts. As shown in Fig. 1(b), with lower σ , Er increases, which
indicates that the result contains more rings. Note that the choice of the weight wα only alters the
objective function, and thus does not violate the invariance of spectral cascade rate.

Note that the two terms Ek and Er are defined in two different domains: Ek in wavenumber
domain and Er in spatial domain–which is inefficient for optimization. Thus, we unify the two
domains by transforming term Er into wavenumber domain using Plancherel’s theorem, which gives

Eg = φ
∑

α

∫ ∣∣ŵα ∗ [
∂̂α û(1 − Ĝ)

]∣∣2
dk. (4)

Er and Eg have the same value; they only differ in space for optimization purpose. To enhance the
order of magnitude of the difference measurement, both Ek and Eg are raised to an exponent m. In
the remainder, m is chosen to be around 5 in the results presented here.

The total objective function can be defined as a linear combination of Ek and Eg as

E = (1 − λ)Ek
m + λEg

m, (5)

where λ is a regularization parameter in the range [0, 1] to control the relative importance of Ek and
Eg. Not all λ values yield an optimizable problem, i.e., a minimizable function E. See Fig. 1(b) for
an illustration of Ek, Eg, and E, respectively. An appropriate λ can be calculated by enforcing the
optimizability constraint.

By increasing λ, the impact of Eg is increased, which has the effect of introducing more nearby
scales to suppress rings for the final decomposition result. There exists a constraint such that rings
are suppressed by introducing minimum amount of Eg, which makes the objective function locally
optimizable, as shown by the solid line in Fig. 1(b). We call this constraint the optimizability
constraint and it requires that the objective function has small gradients for small σ . This allows us
to automatically calculate the most appropriate λ.

Given a relatively small value of σ , and denoting the derivatives for Ek and Eg at this value as
E ′

k and E ′
g , λ can be calculated as

λ = ε − m Em−1
k E ′

k

m(Em−1
g E ′

g − Em−1
k E ′

k)
, (6)

where ε is a small gradient tolerance value which is selected to be around 0.001 in our experiments.

C. Solution procedure

With λ calculated, we can search for the filter parameter σ by minimizing the objective
function (5). Note that by automatically computing λ, we ensure that the objective is always opti-
mizable. Thus, the minimization can be quickly solved using Brent’s method,17 which makes our
optimization very stable and ensures that it always yields a solution. Once we obtain an optimized
σ , we can perform fast Fourier transform (FFT) filtering to efficiently obtain scale decomposition
results.

In order to avoid the wave reflection effects due to non-periodic boundary, a periodic reconnec-
tion by mirror extension of the data is performed, which is also required in curvelets.15
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The procedure for KoSCO algorithm can be summarized as follows:

� A filter is designed in Kolmogorov spectrum consistent space with an unknown parameter σ ,
and is subsequently transformed to Fourier space.

� Based on this transformed filter in Fourier space, an objective function is constructed with
Eq. (5).

� With the derivatives of Ek and Eg, λ is computed according to Eq. (6).
� Using the computed λ and given an initial σ (e.g., σ 0 = 1.0), the Brent’s algorithm is employed

to efficiently find the optimal filter parameter σ m.
� Finally, FFT filtering is performed with parameter σ m to get the scale decomposition result.

III. RESULTS AND DISCUSSIONS

A. Gibbs ringing artifacts

We use a circle image (see Fig. 2(a)) as a test case to demonstrate the performance of KoSCO
compared to other existing methods with the same scale parameters (the location and bandwidth of
the scale). The reason we chose this image is because it is simple with sharp edges, and hence may
have strong Gibbs rings around the edge if inappropriately decomposed. Fig. 2(b) shows the scale
decomposition result from a perfect BPF in Fourier space, which introduces strong ringing artifacts.
Due to the global-support Fourier basis, a perfect BPF in Fourier space lacks suitable basis functions
to completely represent structures, making the result contaminated by oscillating patterns.

Curvelets use local-support basis to avoid ringing artifacts. Fig. 2(c) shows scale decomposition
result using curvelets (DCuT)9 which is the technique used by several groups recently. We can
easily notice that it has less rings than perfect BPF in Fourier space. However, the rings are still not
adequately suppressed.

In Fig. 2(d), we show the scale decomposition result from KoSCO. Clearly, the Gibbs rings are
much more suppressed. Although we are unable to completely remove the Gibbs rings, KoSCO is
still at an advantage when compared with the state-of-the-art. Eliminating rings when performing
a multiscale decomposition is crucial since they can lead to spurious structures which may not
physically exist. Turbulent flows are highly fluctuating and it is difficult to distinguish the presence
of such rings from the true data.

B. Multi-scale diagnostics using KoSCO

In order to demonstrate the multi-scale decomposition capabilities of KoSCO, tests were con-
ducted on a fractal image. Fractals can provide a very good example for multi-scale phenomena
exhibiting the characteristic self-similarity. In Fig. 3, we show multi-scale decomposition results for
the same fractal image (512 × 512) used by Bermejo-Moreno and Pullin.10 Perfect BPF produces
spurious structures due to Gibbs ringing which makes the multi-scale decomposition contaminated
by artifacts as can be seen in the first row. Using curvelets, one can get a maximum of 6 scales.
The results by Bermejo-Moreno and Pullin10 can be seen in the second row of Fig. 3. We ignore the
largest and the smallest scales because they do not convey meaningful structures for comparison.
The largest scale is too coherent and shows almost the mean value, while the smallest scale is too
incoherent and shows only noise.

Based on the spectrum of the results from curvelets, we estimate their locations and bandwidths
and perform the decomposition again using KoSCO. Very similar decomposition results can be
obtained as shown in the third row of Fig. 3. Even though we rely on Fourier transform, we have
successfully suppressed Gibbs ringing artifacts. By observation, length scales from the decomposed
results are decreasing in geometrical size as one goes from larger to smaller scales. In comparison to
curvelets, our results show more continuous features and better preservation of original structures.
For scale 2 in Fig. 3, at the center of the fractal, we see intermittent features for curvelets results,
whereas for KoSCO, the features are smoother and therefore, constitute a better representation
of the structures in the original image. Each decomposed scale is represented in the spectrum
correspondingly as shown in Fig. 5(a). The results from KoSCO have sharper fall-offs than the results
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FIG. 3. Comparison of multiscale decomposition results using perfect BPF, curvelets and KoSCO for a Julia fractal. Second
row reprinted with permission from I. Bermejo-Moreno and D. I. Pullin, J. Fluid. Mech. 603, 101 (2008). Copyright 2008,
Cambridge University Press.

from curvelets and hence are better representations of the scales. With the help of optimization, we
obtain optimal selection of fall-offs with suppressed Gibbs rings. The reduction of fall-off ensures
that the decomposition results belong to an individual scale and reduce the inclusion of other scales.
This can be attributed to the monotonicity criterion used while designing our filter (see Sec. II A),
whereas in curvelets decomposition, the filter fall-offs tend to be fluctuating. Such fluctuating filters
may result in intermittent features and may not preserve the scale structures well. On the other
hand, our constraint on monotonicity helps to obtain more reliable results. Note that while curvelets
are capable of producing only 6 scales, KoSCO has the capability to yield infinite number of
scales.

C. Application to DNS data

We use forced isotropic turbulence data provided by John Hopkins University (JHU) turbulence
data cluster18 at Reλ = 433 to obtain scale decomposition results using KoSCO. The domain is a
cube of length 2π with periodic boundary conditions having 5123 grid points.

For the 2D case, we use a cross section of this data at the mid-point of the Z-plane. Results for
8 different scales of velocity magnitude are shown in Fig. 4, and their corresponding spectrums are
illustrated in Fig. 5(b). The different scales educe structures corresponding to different length scales.

Next, we decompose the 3D flow into 15 scales to demonstrate the ability to have continuous
scale decomposition using KoSCO. The corresponding energy spectrum can be seen in Fig. 5(c).
In order to visualize this volumetric data, iso-contouring technique is used. Iso-surfaces for this 3D
decomposition can be seen in Fig. 6 where we show odd numbered scales for the sake of clarity.
The iso-contour value used for visualizing the volumetric data has been chosen as the mean plus 1.5
times the standard deviation.10, 16 It can be clearly seen that structures with reduced sizes are educed
with increasing scale numbers.

Scales 1–3 are in the forcing range with the energy containing scales which comprise the large
scale structures. Ellipsoidal-shaped structures can be observed for this scale. Scales 4–8 correspond
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FIG. 4. 2D results for isotropic turbulence, (top left) Original flow, increasing scales from left to right and top to bottom
(Red shows higher values and blue shows smaller values of the normalized velocity magnitude).

to the inertial range where tube-like structures are pre-dominant. The tubes become thinner as we go
to smaller scales indicating a stretching process in the inertial region. For greater clarity of structures,
readers are kindly suggested to look at video in Fig. 7 (Multimedia view). The dissipative range of
scales can be seen in Scale 9–15 where structures are quite small and not visually recognizable.

The distribution of velocity magnitude at different scales normalized with its standard deviation
is shown in Fig. 8. We only show odd-numbered scales to avoid confusion. It gives us the insight about
the distribution for each of these scales in comparison to the original velocity field. Scales 4–8 lie in
the inertial range and collapse on top of each other. For the dissipative range, i.e., Scales 9–15, the
distribution function shows a reduced range. Hence, we can clearly distinguish between the inertial
and dissipative range and these observations are inline with those reported by Bermejo-Moreno and
Pullin.10 Note that curvelets can provide only 6 scales for this data size.

Some characteristic velocity and length scales for isotropic turbulence can be computed based
on the following:

u2
i = 2

3

∫ ∞

0
Ei (k)dk, (7)

Li = π

2u2

∫ ∞

0

Ei (k)

k
dk, (8)
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FIG. 5. Spectrum for decomposition results. Black solid: original. For (a), light grey: curvelets, dark grey: KoSCO; for (b)
and (c), grey dashed: odd scales using KoSCO; grey solid: even scales using KoSCO. (a) Julia fractal, (b) 2D isotropic flow,
(c) 3D isotropic flow.

L ′
i = π

2u2
i

∫ ∞

0

Ei (k)

k
dk, (9)

where Ei(k) and u2
i are energy spectrum and squared characteristic integral velocity, respectively,

for scale i, and η is the Kolmogorov length scale. Also, the following relations hold for the original
velocity field E(k) and u2,

E(k) =
∑

i

Ei (k), (10)

u2 =
∑

i

u2
i , (11)

which simply describes that after summing up the individual scales, we recover the original velocity
field. The corresponding values are shown in Table I for both the original velocity field and for
different scales. This breakdown of scales show reasonably correct trends with reducing length and
velocity scales as one goes from the mean and inertial to the dissipative ranges and how they are
compared with the original velocity field.

We also perform a study on the impact of different resolutions on the estimation of the filter
shape for 3D isotropic case.

We also perform a study on the influence of different resolutions on the estimation of the filter
shape for 3D isotropic case as shown in Table II. The start of the band and the bandwidth along with
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FIG. 6. Iso-contours for 3D isotropic case obtained using KoSCO.

FIG. 7. Video showing multi-scale turbulence structures for 3D isotropic case using KoSCO. (Multimedia view) [URL:
http://dx.doi.org/10.1063/1.4871106.1]

parameter σ used for filter design (see Eq. (1)) is enlisted. As can be seen, the optimal σ value does
not have any direct dependence on the resolution, scale location and scale bandwidth, and should be
computed independently given any dataset.

The complete solution process for each scale requires 10–20 iterations for the optimization
procedure. For a single scale decomposition of 5123 dataset, it takes about 20 min on a desktop PC
with Intel i7 processor. This is faster in comparison to curvelets with regards to the processing time.
In addition, curvelets require storage of extra dimensions such as direction and orientation which
can pose immense memory problems for high resolution DNS datasets. Hence, KoSCO performs
scale decompositions using lesser computational resources as compared to curvelets.
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FIG. 8. Probability distribution of velocity magnitude for different scales.

TABLE I. Characteristic integral velocity and length for different scales.

Scale u2
i /u2 Li/η L ′

i /η

Original 1 122.5405 122.5405
1 0.333676 56.9197 170.5839
2 0.251062 31.0462 123.6593
3 0.182859 15.5049 84.7914
4 0.140593 8.5200 60.6002
5 0.122404 5.3627 43.8115
6 0.105685 3.3913 32.0890
7 0.087093 2.0499 23.5373
8 0.067492 1.1749 17.4077
9 0.046771 0.6041 12.9155
10 0.028451 0.2734 9.6111
11 0.015230 0.1087 7.1350
12 0.007394 0.0388 5.2500
13 0.003910 0.0150 3.8262
14 0.002433 0.0068 2.7978
15 0.000918 0.0022 2.3794

TABLE II. Filter parameters for a 3D isotropic case with different resolutions.

Resolution 323 643 1283 2563 3843 5123

Scale Band-start Bandwidth σ σ σ σ σ σ

1 0.2 0.05 0.03463 0.0427 0.02801 0.02298 0.02409 0.02409
2 0.25 0.05 0.05149 0.02409 0.02409 0.03909 0.02298 0.02298
3 0.3 0.05 0.02409 0.02409 0.03075 0.03480 0.04270 0.02298
4 0.35 0.05 0.05149 0.02409 0.02967 0.02801 0.03084 0.03480
5 0.4 0.05 0.03123 0.02999 0.02801 0.02801 0.02801 0.02967
6 0.45 0.05 0.02801 0.03008 0.02801 0.02801 0.02801 0.02801
7 0.5 0.05 0.02801 0.02801 0.02965 0.02801 0.02801 0.02801
8 0.55 0.05 0.02801 0.02801 0.02964 0.02801 0.02801 0.02801
9 0.6 0.05 0.02801 0.02801 0.02801 0.02801 0.02801 0.02801
10 0.65 0.05 0.02539 0.02801 0.02801 0.02801 0.02801 0.02968
11 0.7 0.05 0.02801 0.02801 0.02801 0.02801 0.02801 0.02801
12 0.75 0.05 0.02801 0.02801 0.02801 0.02801 0.02801 0.02801
13 0.8 0.05 0.02801 0.02801 0.03490 0.02801 0.02801 0.02801
14 0.85 0.05 0.03007 0.03219 0.02409 0.04346 0.03293 0.03092
15 0.9 0.05 0.02801 0.02801 0.02409 0.02409 0.02409 0.02409
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IV. CONCLUSION

A methodology for multi-scale decomposition (KoSCO) of flow data is developed, which is
consistent with bandpass filtering in the Kolmogorov spectrum. It provides an alternative to curvelets
and tries to overcome some of their inherent disadvantages. Optimization methods have been used
for the first time to design such decomposition procedure. Unlike previous methods, the size and
location of the various scales can be easily controlled. The method has been proven to be capable
of adequately suppressing Gibbs ringing artifacts while preserving sharp bandpass filter properties.
The scale decomposition results for Julia fractal and turbulent flow fields have been presented
together with their spectrum and probability distribution functions for different scales. KoSCO can
provide a framework for multi-scale analysis for geometric structure identification with specific
applications to turbulent flows, atmospheric flows, multiphase flows, etc. It can be easily extended
to any N-dimensional data with multi-scale phenomena where scales are defined with respect to a
certain spectrum. In addition, KoSCO can also support scale decomposition for both isotropic and
anisotropic data since we operate in Fourier space rather than in the spatial domain.
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