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Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary
layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step
function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only
the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency
of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall
oscillation parameters is numerically simulated to study its effect on the power budget.

1. Introduction

Turbulent drag reduction is one of the active areas of research
in fluid mechanics especially due to its global impact on
sustainability challengeswe are facing today. One of the active
techniques for reducing drag is through spanwise oscillation
of the wall which reduces the skin friction and promises to
have large potential for energy savings.

This curious phenomenon was first observed by Jung
et al. [1] through direct numerical simulations (DNS) in a
channel flow. Since then, a lot of research efforts have been
made in this direction for different flow configurations like
channel flow [2–9], pipe flow [10, 11], and boundary layer
flows [12–14]. These investigations have been made either
through experiments or using DNS.

Most of these studies have dealt with temporal form of
wall oscillations which are specified as

𝑤 (𝑡)𝑦=0 = 𝑊𝑚 sin (𝜔𝑡) , (1)

where 𝑊𝑚 is the amplitude and 𝜔 is the frequency of the
imposed oscillations.

A few studies have been devoted to explore the spatial
oscillations and its impact on reducing skin friction has been
found to be greater than for temporal oscillations [15–19].

Spatial oscillations can be realized by enforcing the following
boundary condition:

𝑤 (𝑥)𝑦=0 = 𝑊𝑚 sin (𝑘𝑥) , (2)

where 𝑘 is the spatial frequency of oscillation and is related to
the wavelength (𝜆) as 𝑘 = 2𝜋/𝜆.

Spatial wall oscillation technique has its advantages and
disadvantages. It can have greater drag reduction as compared
to temporal oscillations and, hence, there are higher net
energy savings. It is an open-loop method so we do not
require an array of distributed sensors on the surface. How-
ever, the implementation remains a challenge as it requires
numerous moving parts which makes it impractical.
Although there have been advances in the field of material
science research to realize such waveforms in practical sit-
uations, the physical realization still remains elusive with the
current technology.

Almost all of the previous works have implemented oscil-
lation waveforms using sinusoidal functions. A recent study
by Cimarelli et al. [20] explored different temporal wave-
forms. In this work, we would like to explore the possibility
of using spatial square waves for drag reduction. In order to
reduce the power required to incorporate these oscillations,
we consider only the positive cycles of these oscillations. One
of the ways to realize spatial oscillations can be via pulsed jets
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Figure 1: Computational box as seen from the negative 𝑧-direction with the growth of boundary layer illustrated. Fringe region forces the
solution back to the prescribed laminar inflow thus enforcing periodic boundary condition. The lower part illustrates the spanwise velocity
forcing which is applied in a part of the wall under the turbulent boundary layer. Half square waves are used in the present study as shown in
the bottom figure.

in the spanwise direction for the near wall region. Another
possibility is to actively manipulate wall roughness optimally
distributed along the surface. The main contribution of the
present work is to illustrate the use of smooth step functions
to approximate the square waves which otherwise may give
rise to Gibbs phenomenon when using spectral methods.

2. Methodology

2.1. Governing Equations. The governing equations which
are used for the simulations here are the Navier-Stokes
equations which are formulated in terms of velocity-vorticity
and written in tensor notation as

𝜕𝑢𝑖

𝜕𝑡

= −

𝜕𝑝

𝜕𝑥𝑖

+ 𝜖𝑖𝑗𝑘𝑢𝑗𝜔𝑘 −

𝜕

𝜕𝑥𝑖

(

1

2

𝑢𝑗𝑢𝑗) +

1

Re
∇
2
𝑢𝑖 + 𝐹𝑖, (3)

𝜕𝑢𝑖

𝜕𝑥𝑖

= 0, (4)

where 𝑢𝑖 are the velocity components, 𝜔𝑖 are the vorticity
components, 𝑝 denotes pressure, and 𝐹𝑖 is the body force.
The nondimensional constant Re = 𝑈∞𝛿

∗
/] is the Reynolds

numberwith𝑈∞ being the streamwise freestream velocity, 𝛿∗
is the displacement thickness at 𝑥 = 0, and ] is the kinematic
viscosity. 𝑥𝑖 represents the coordinate system with (𝑥, 𝑦, 𝑧)

as streamwise, wall-normal, and spanwise coordinates and 𝑡
denotes time.

These equations are solved using a pseudospectral
method with appropriate boundary conditions. The basic

idea with spectral methods is to express the solution as a sum
of basis functions and then compute their coefficients such
that they satisfy the governing partial differential equations
and the boundary conditions.

A third-order Runge-Kutta-scheme is used to perform
time integration for the nonlinear terms. A second-order
Crank-Nicolson method is used for the linear terms. For
removing aliasing errors, a 3/2-rule is applied to the eval-
uation of the nonlinear terms when calculating Fourier
transforms in the wall parallel (𝑥-𝑧) plane. The numerical
code (SIMSON [21]) used for the simulations in this work
has been developed at KTH, Stockholm. Earlier simulations
of both temporal [12, 13] and spatial [15, 16] wall forcing have
been performed with the code.

2.2. Numerical Setup. Since we are trying to simulate a
turbulent boundary layer with a spatially growing boundary
layer, we need to choose our basis functions accordingly.
A basic sketch for the computational setup is shown in
Figure 1. For the discretization in the streamwise-spanwise
plane, Fourier basis is chosen assuming the solutions are
periodic in these directions. However, for the wall normal
direction, periodicity does not apply and Chebyshev poly-
nomials are instead used as basis functions for the 𝑦 (wall-
normal) direction. The technique is similar to other spectral
codes used for channel flows [5–8, 17, 18], and the spectral
accuracy is a considerable advantage as compared to other
discretizations, such as the finite volumemethods used in, for
example, [9, 14].
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Figure 2: Schematic picture of the fringe region.

For initializing the simulations, a laminar base flow is
required and is given as the Blasius similarity solution [22]. A
trip forcing using a randomvolume force is then incorporated
at 𝑥 = 5 for the flow to undergo transition and thereafter we
have turbulent flow regime. Figure 1 depicts this scheme.

Particular attention must be given to the streamwise
direction since the boundary layer is growing downstream
and hence no natural periodicity exists in that direction.
Therefore, for the purpose of artificially creating a periodic
computational domain, a fringe region is introduced at the
end to achieve this. The purpose of this fringe region is
to dampen the velocity fluctuations to zero and bring the
velocity field back to the laminar Blasius solution such that
there are minimum upstream effects [23]. This is achieved by
introducing the volume forcing 𝐹𝑖 in (3):

𝐹𝑖 = 𝜆 (𝑥) (𝑢̃𝑖 − 𝑢𝑖) , (5)

where 𝜆(𝑥) is the strength of the forcing and 𝑢̃𝑖 is the laminar
inflow velocity profile. The function 𝜆 is defined as

𝜆 (𝑥) = 𝜆max𝑓 (𝑥) (6)

with

𝑓 (𝑥) = 𝑆 (

𝑥 − 𝑥start
Δ𝑥rise

) − 𝑆(

𝑥 − 𝑥end
Δ𝑥fall

+ 1) . (7)

Here 𝜆max is the maximum strength of the fringe, 𝑥start and
𝑥end denote the spatial extent of the region where the fringe is
nonzero, and Δ𝑥rise and Δ𝑥fall are the rise and fall distance of
the fringe function, respectively. Figure 2 shows a schematic
of how the fringe function varies. 𝑆(𝜂) is a continuous step
function that varies from zero for 𝜂 ≤ 0 to unity for 𝜂 ≥ 1 and
is given by

𝑆 (𝜂) =

{
{
{
{

{
{
{
{

{

0, 𝜂 ≤ 0,

1

(1 + 𝑒
(1/(𝜂−1)+1/𝜂)

)

, 0 < 𝜂 < 1,

1, 𝜂 ≥ 1.

(8)

2.3. Wall Oscillation Implementation. The form of wall oscil-
lation implemented here is a spatial square wave with only
positive forcing to reduce power consumption. However,
there are numerical challenges in implementing this using
pseudospectral method. A square wave when represented
using Fourier basis gives rise to Gibbs phenomenon which

Table 1: Oscillation parameters for the simulations presented.

Parameter set (PS) 𝑊
𝑚

𝑘

PS1 (0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 1) 0.0628
PS2 (0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 1) 0.1256
PS3 (0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 1) 0.2512

is shown in Figure 3(a). When we try to approximate the
strong discontinuity in the square wave, it results in strong
oscillations at the edges. These result in spurious values
causing numerical instability and large computational errors.
Increasing the number of terms in the Fourier series approx-
imation does reduce the oscillation but it does not eliminate
it completely.

In order to avoid Gibbs phenomenon, we utilize the same
step function as we used for fringe region (8). Using the
step function is advantageous as it has continuous derivatives
at all points and does not exhibit the spurious ringing phe-
nomenon. Figure 3(b) shows the use of𝑓(𝑥) in implementing
the wall boundary condition for the present simulations. By
including only a few Fourier coefficients, we can approximate
the function quite accurately and eliminate Gibbs rings.

Spatial wall oscillation can be incorporated with the fol-
lowing boundary condition:

𝑤 (𝑥)𝑦=0 = 𝑊𝑚𝑓 (𝑥) , (9)

where 𝑓(𝑥) is the same profile function as used for fringe
region (see equation (7)) and 𝑊𝑚 is the amplitude of the
spatial oscillations.

2.4. Numerical Parameters. All quantities are nondimension-
alized by the free-stream velocity (𝑈∞) and the displacement
thickness (𝛿∗) at the starting position of the simulation (𝑥 =
0), where the flow is laminar. The Reynolds number is set
by specifying Re𝛿∗ = 𝑈∞𝛿

∗
/] at the laminar inlet (𝑥 = 0).

Note that, unless otherwise stated, the + superscript indicates
that the quantity is made nondimensional with the friction
velocity of the unmanipulated boundary layer (the reference
case), denoted by 𝑢0

𝜏
, and the kinematic viscosity (]).

A computational domain with 𝐿𝑥 = 600, 𝐿𝑦 = 30, and
𝐿𝑧 = 34 is chosen with a mesh resolution of 800 × 201 × 144,
respectively. The resolution of these simulations in wall units
is Δ𝑥+ = 16, Δ𝑦+min = 0.04, and Δ𝑧

+
= 5.1. All scalings

are done based on 𝑢
0

𝜏
from reference case at the starting

position of wall forcing (𝑥 = 200). Wall oscillation boundary
conditions are employed between 𝑥start = 200 and 𝑥end = 450
once it is ascertained that the flow has become fully turbulent.
The Reynolds number based on momentum thickness varies
between 450 < ReΘ < 715 in the control region.

Table 1 summarizes the parameters chosen for the steady
spatial oscillation in the present work. Only the positive forc-
ing has been employed for these simulation setups as shown
in Figure 3(b). The spatial frequencies have been doubled
and halved with respect to PS2 to see its impact on drag
reduction performance. Also, the amplitude of oscillations is
varied to understand its impact on drag reduction.The aim is
to observe the effect of removing the negative forcing of the
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Figure 3: Function approximations using finite Fourier series terms.
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Figure 4: Wall boundary condition set for spanwise velocity
component for PS1, PS2, and PS3 at𝑊

𝑚
= 0.5.

wall boundary and its effects on power budget and net energy
savings. Figure 4 shows the wall boundary condition for the
three parameter sets at𝑊𝑚 = 0.5.

3. Results and Discussion

In this section, we look into two aspects of the results
obtained from our numerical simulations. First, we look into
attenuation of 𝑐𝑓 values with respect to the reference case.

Subsequently, we present the power budget based on the
different forcings.

3.1. Skin Friction Attenuation. Wecompare skin friction from
the unoscillated or the reference casewith the oscillated cases.
Skin friction coefficient for turbulent flows is defined as

𝑐𝑓 = 2(

𝑢𝜏

𝑈∞

)

2

, (10)

where 𝑢𝜏 is the friction velocity and is computed based on
mean streamwise velocity gradient at the wall:

𝑢𝜏 = √]
𝜕𝑢

𝜕𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑦=0

. (11)

The resulting drag reduction (DR) is then calculated from

DR (%) = 100
𝑐
0

𝑓
− 𝑐𝑓

𝑐
0

𝑓

, (12)

where 𝑐0
𝑓
is the skin friction of the reference case. In contrast

to internal flows [1–11], the DR is varying in the downstream
direction for the present case of boundary layer flow. Figure 5
shows the results for the skin friction variation along stream-
wise direction. All three cases show skin friction attenuation.
As soon as wall oscillation is applied at 𝑥start = 200, we see a
strong gradient which marks the spatial transient for 𝑐𝑓. For
PS1, we have a longer wavelength and, due to discontinuous
half waves, we observe recovery of 𝑐𝑓 back towards the
reference case. However, for PS2 and PS3, due to smaller
wavelength, this recovery process is weaker. This is a crucial
observation as it indicates that, with positive forcing itself, we
can get drag reduction of a similar order ofmagnitude as with



Mathematical Problems in Engineering 5

150 200 250 300 350 400 450 500

1

2

3

4

5

6

0

No oscillation
PS1

PS2
PS3

×10−3

c f

x

Figure 5: Spatial development of skin friction along streamwise
direction at𝑊

𝑚
= 1.

a full cycle of wall oscillation. This would reduce the power
required for forcing the wall oscillation and this increases
our net power saving as will be presented in the next section.
At 𝑥end = 450, the oscillations are stopped and skin friction
attains the reference case values.

3.2. Power Budget. To compute the net energy savings, we
need to take into account the energy required for wall
oscillation as compared to the savings due to drag reduction.
The derivation of these terms was given for channel flow by
Quadrio and Ricco [6] which was extended to the boundary
layer case by Skote [13].

In order to compute the saved power 𝑃sav(%), DR (as
percentage of ratio of skin-friction coefficients from reference
and oscillated cases; see (12)) is integrated for the region with
wall oscillation. The total saved power can be written as

𝑃sav (%) =
1

𝐿

∫

𝑥end

𝑥start

DR (%) d𝑥, (13)

where 𝑥start denotes the position at which the wall oscillation
is started, 𝑥end denotes the endpoint for oscillation, and 𝐿 =

𝑥start − 𝑥end.
Similarly, the wall oscillation requires power input which

can also be defined in terms of the friction power of the
reference flow [13] and can be written as

𝑃req (%) =
∫

𝑥end

𝑥start
] (𝜕𝑤/𝜕𝑦)󵄨󵄨󵄨

󵄨𝑦=0
𝑊 d𝑥

∫

𝑥end

𝑥start
(𝑢
0
𝜏
)
2
𝑈∞ d𝑥

. (14)

The net saved power is then defined as 𝑃net = 𝑃sav − 𝑃req.
If 𝑃net is negative it indicates that the input power required
to oscillate the wall is greater than the saved power due to
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streamwise drag reduction. However, it is possible that, for
an optimized set of oscillation parameters, one may achieve
positive energy budget. As reported by other researchers
[15, 18, 19], a positive net energy is more attainable for spatial
forcing than for temporal forcing.

Power required for the three oscillation cases is shown in
Figure 6. For lower amplitudes of forcing, we require lesser
power and it grows exponentially for larger amplitudes. For
different spatial frequencies, there is not much difference
in input power required. Figure 7 shows the power saved
based on (13). Here, we see that with increasing amplitude,
the power saving saturates after a limit. The effect of spatial



6 Mathematical Problems in Engineering

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

N
et

 p
ow

er
 sa

vi
ng

s
−10

−5

−15

−20

PS1
PS2

PS3

Wm

Figure 8: Net power savings for the three chosen parameter sets together with a quadratic curve fit.

frequency is rather interesting as we see that the power
saved for PS2 and PS3 is almost the same. PS1 has a lower
power saving and that can be attributed to the recovery
to unoscillated skin friction values discussed previously in
Section 3.1.

Figure 8 shows the net power savings for the different
parameter sets. PS2 with 𝑊𝑚 = 0.5 gives us the maximum
net power saving (∼18%) amidst our chosen parameter space.
Performance quickly deteriorates for larger amplitudes
which show negative net power savings indicating that we
spend more power in oscillating the wall as compared to the
power savings. No complete description of the drag reduc-
tion mechanism exists to date. Thus, the influence of the
parameters on the drag reduction remains largely unex-
plained. The parameter space explored in the current work is
definitely not exhaustive. Viotti et al. [17] show power budget
statistics for a wide parameter space using sinusoidal wall
oscillation. The maximum net power savings achieved is
reported as 23% which was found at 𝑊+

𝑚
= 6. On the other

hand, they showed maximum net power savings of 6% at
𝑊
+

𝑚
= 12, which is the amplitude comparable to the present

case. They concluded that lower amplitudes give higher net
power savings, even though the drag reduction values are
lower. The simulation cases in the present study are not as
exhaustive due to the computational demands for spatially
developing boundary layers. Nevertheless, for the current
study we obtain the maximum savings of 18% at 𝑊+

𝑚
= 10.

The current suboptimal results may very well be further
improved by increasing the parametric space.

Although the results look promising in terms of the net
power savings, one of the drawbacks of the proposedmethod-
ology is that it induces crossflow which might be undesirable
in certain situations. In order to illustrate the phenomena,

a horizontal plane at 𝑦+ = 10 is shown in Figure 9. The
figure has been compressed by a factor 4 in the stream-
wise direction for better visualization. From the figure it is
observed that, after the first oscillation stops, the streaks
reorient themselves to the streamwise direction. However,
a spanwise crossflow manifests itself as can be seen by the
oblique streaks in the regions after the second and third
periods of forcing.

Note that this phenomena would not occur if a periodic
functionwith equal amount of positive and negative spanwise
wall velocity is used, as in the study of temporal nonsinusoidal
wall forcing by Cimarelli et al. [20].

4. Conclusion

A new form of steady spatial wall oscillation technique in
the form of square waves with positive forcing has been
presented with promising results for developing an active
drag reduction technique. Spectral methods were used to
solve the governing equations and the use of a smooth step
has been demonstrated to approximate a square wave to over-
come Gibbs phenomenon and avoid sharp discontinuities.
Downstream development of skin friction and power budget
for different oscillation parameters have been presented. An
optimal set of wall oscillation parameters for the current
parameter space was found to have ∼18% net energy savings.
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