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Abstract Direct numerical simulation (DNS) is performed to study the ef-
fect of steady streamwise oscillations of the spanwise wall velocity on a single
low-speed streak in a laminar boundary layer. The low-speed streak is nu-
merically generated by simulating a screen which creates a momentum loss.
The wall oscillations are shown to reduce the skin friction which drops below
the laminar Blasius flow value (without the presence of streaks) for certain
cases of wall oscillations. In addition, the peak streamwise velocity fluctuation
of the streaks are reduced drastically by up to 90%, the trend in reduction
being monotonic with respect to higher amplitude oscillations. The effect of
oscillation is also studied during transition (breakdown of the streak) and it is
found that the optimum wavenumber of the oscillation changes by nearly an
order of magnitude during transition. The reduction of peak streamwise veloc-
ity fluctuations shows a phase dependent behaviour which is explained based
on the regeneration of turbulence in the absence of a streamwise gradient of
the spanwise velocity. The general trend of reduction in streamwise fluctua-
tions across different wavenumbers does not correlate well with the decrease in
skin friction. A much better qualitative correlation is found when comparing
the relative trends for skin friction and wall-normal velocity fluctuations for
different oscillation wavenumbers.
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1 Introduction

Drag reduction is an important goal in many engineering applications. Strate-
gies for achieving drag reduction are broadly classified as either active or pas-
sive. Active mechanisms are further classified as closed loop or open loop type.
Spanwise wall oscillation is one such active mechanism for achieving high drag
reductions. The mechanism has an attractive property of being open loop, i.e.
not requiring a feedback law, and thus lends itself suitable for practical imple-
mentation without the need for complicated sensors to detect the flow state.
In recent years the spanwise wall oscillation mechanism has gathered much at-
tention due to very high drag reductions that are achievable. The phenomenon
of drag reduction using spanwise wall oscillations was first reported by Jung
et al.[19] and Akhavan et al.[1]. It had already been shown previously that
the introduction of a sudden spanwise pressure gradient in a two-dimensional
turbulent flow temporarily suppresses the production of turbulence. The sup-
pression, however, was temporary since the flow eventually adjusted to the
new state and the turbulence suppression was lost. Jung et al.[19] used this
idea to create a sustained suppression of turbulence. They performed direct
numerical simulation (DNS) of channel flow subjected to oscillatory spanwise
crossflow or spanwise oscillation of one of the channel walls and reported a
40% attenuation in wall shear stress and also a significant reduction in other
turbulent quantities. The wall oscillations were implemented by prescribing a
spanwise velocity at one of the walls of the type:

Wwall = Wm sin(ωt). (1)

where ω is the frequency of spanwise oscillations and Wm is the maximum
velocity of the wall. Additionally, the spanwise averaged component of the
flow was found to remain in agreement with the laminar flow solution [19].
This particular feature was consistently found in subsequent studies as well
[10,36], attributed to the small height of the Stokes layer for the optimal os-
cillation parameters, confining it primarily to the viscous sublayer. Ricco and
Quadrio [28] provide further explanations for this agreement based on the
vanishing ∂v′w′/∂y term in the spanwise momentum equation. Interest of the
community was piqued by Baron and Quadrio [5] when they reported a net
positive energy balance from their DNS study for this type of wall forcing.
The authors considered the energy loss to drive an idealized system against
the viscous forces of the flow and found that the net energy saved from the
wall oscillations was slightly positive for low amplitude oscillations. However,
the simulations were only done for one particular oscillation frequency. They
also reported an upward shift of the logarithmic layer. In addition, they noted
that the streamwise velocity fluctuations are only marginally reduced when
normalized by the frictional velocity of the perturbed case. Laadhari et al.
[20] conducted an experimental study for boundary layer flow in which they
confirmed the reduction of the gradient of the streamwise velocity near the os-
cillating wall. Yudhistira and Skote [39] performed the first DNS for boundary
layer flows over an oscillating wall and achieved about a 40% drag reduction.
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They also showed that the spatial development of drag reduction was similar
to that observed in the experiments [11,29,20]. An experimental study was
done by Choi et al. [11] for boundary layer flows where they realized a 45%
reduction in skin friction drag. The authors proposed a conceptual model for
the drag reduction based on the realignment of the streamwise streaks in the
spanwise direction. Choi [10] later built on this conceptual model of vorticity
realignment showing reduction in streamwise vorticity near the wall leading
to reduced burst activity and consequently lower turbulent drag.

Since then several studies have followed focusing on different aspects of the
phenomenon. For example, Quadrio and Ricco [23] studied the initial transient
response on suddenly imposed oscillations. The same authors also performed
a parametric study on the drag reduction in channel flow showing an optimum
oscillation period T+ lying between 100 and 125 [23], where + denotes scaling
using the frictional velocity u∗ and the kinematic viscosity ν. On the other
hand, at a constant T+ the drag reduction saw a logarithmic increase with
spanwise wall velocity W+

wall. The energy savings however remained positive
only for small W+

wall < 7 amplitude oscillations. Xu et al. [38] analyzed the
transient response of the Reynolds stress transport term and showed a hin-
drance to the inter-component turbulence kinetic energy transfer, leading to
turbulence suppression. Skote [32] pointed out several differences and similari-
ties between the temporal transients in channel flow and the spatial transients
in boundary layer flow.

As the temporal oscillations according to (1) lead to relatively small energy
gains when balanced by an idealized actuator [5], Viotti et al. [36] used the
convection velocity of the near wall turbulent structures to replace the tem-
poral oscillations with an equivalent steady spatial oscillation of the spanwise
velocity. Under space-time conversion the wall forcing took the form:

Wwall = Wm sin(kx). (2)

where k is the wavenumber of the wall forcing and x the streamwise coordinate.
They showed that the time harmonic and spatial cases to be analogous with
the optimum wavelength remaining the same under space time conversion. The
spatial oscillations however produced higher net energy savings. The spatial
forcing was also shown to yield similar positive net energy saving for boundary
layer flows as shown by Skote [31] who also demonstrated a phase dependence
of drag reduction on the spanwise wall velocity phase. Furthermore, Skote [33]
showed the improved energy budget for spatial oscillations can be explained by
the turbulence production term involving the streamwise gradient of the wall
forcing velocity. The same author [34] recently demonstrated that the scaling
of the velocity profile remains identical for the two different types of forcing.

More shape forms of the forcing have since been studied, some of which may
not strictly be considered as wall forcing [13] [14]. Travelling waves were used
by Quadrio et al.[25] as a form of wall forcing which exhibited an unexpectedly
rich behaviour showing both drag reduction as well as drag increase depending
on the parameters of the travelling wave. They also showed that the net energy
savings for travelling waves were higher than purely temporal as well as purely
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spatial oscillation of the wall which could go as high as 26% at low amplitude
oscillations. The form of wall forcing used by Quadrio et al. was:

Wwall = Wm sin(kx+ ωt). (3)

Touber et. al. [35] provide an excellent review of the past works and go
on to show turbulence suppression in different quadrants for phase averaged
statistics for temporal oscillations. They also show an effect of the outer layer
structures on the drag and thus point to possible degradation of the drag
reduction mechanism at higher Reynolds numbers.

More recently the idea of spanwise oscillation has been applied to the sup-
pression of growth of low-speed streaks in the laminar boundary layer. These
streaks occur due to the growth of disturbances in the laminar boundary layer
[2] which can become sufficiently strong to trigger transition to turbulence[8,
3,17,30], by-passing the classical route of exponentially growing unstable TS
waves. Some of the earlier work can be found in the PhD thesis of Berlin
[6] where temporal spanwise oscillations are used to delay transition due to
oblique waves. Ricco [27] studied the evolution of laminar streaks subjected to
steady spanwise wall oscillations using the linearized unsteady boundary re-
gion equations (LUBR). Under the linearized conditions he showed substantial
reduction of the velocity fluctuations. Hack and Zaki [16] studied the contin-
uous modes of the Orr-Sommerfeld spectrum in the laminar boundary layer
under time-harmonic shear at the lower wall, showing substantial reduction
of the free-stream disturbance entering the boundary layer. Dong and Wu
[12], however, question the physical meaning of the continuous modes and and
their use in modelling the free stream vortical disturbances penetrating the
boundary layer. The authors showed that at finite Reynolds number these dis-
turbances are characterized by a different type of continuous spectrum, whose
eigenfunctions exponentially increase away from the wall.

Jovanovic [18] used the linearized Navier-Stokes equations to show large re-
duction in the ensemble energy densities of transitional Couette and Poiseuille
flows under small amplitude transverse oscillations. Rabin et. al. [26] used a
newly developed non-linear variational method to show that the minimum ini-
tial disturbance to trigger transition to turbulence is substantially increased
in plane Couette flow in the presence of temporal spanwise wall oscillations.
Despite these studies, a fully non-linear simulation of transitional flows under
wall oscillation control remains lacking. Furthermore, the effectiveness of the
spanwise oscillations during the transition stage remains an open question. It
is yet unknown if the transition process can be suppressed with the oscillation
mechanism. Consistency of the parameters across different flow regimes (lam-
inar, transition and fully turbulent), is another question which yet remains to
be addressed.

In the current study, the effect of steady spanwise oscillations on laminar
streaks is studied using DNS. Asai et al. [4] in their experimental study gener-
ated a single low-speed streak to study its stability characteristics. The streak
is generated by the use of a small screen set normal to the wall around the
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middle (spanwise) of the boundary layer plate and downstream of the lead-
ing edge. The entire experimental setup was numerically replicated by Brandt
[7]. We have used a similar methodology to numerically generate the a low-
speed streak and study the effect of spatial wall oscillation on the generated
streak. The effect of oscillations is further studied during transition to turbu-
lence, which is artificially triggered using time periodic blowing and suction
at the wall, with the aim of investigating the possibility of stabilizing the
perturbed streak, or delaying the transition process, by using an open loop
control method (steady spanwise wall oscillations) which has proven efficient
for turbulence suppression. Phase relationship of fluctuating velocity compo-
nents with the spanwise flow are further explored. However, the scope of the
current paper is limited to exploring the differences in the spanwise forcing
effectiveness in laminar and transitional regimes, while the conceptual expla-
nations behind the drag mechanism itself has been left for a future study.

The remainder of the paper is organized as follows - section 2 describes
the numerical method used in the study. In section 3 the created low-speed
streak is validated by previous experimental data. Section 4 shows the results
of wall oscillation on the low-speed streak while section 5 presents the details of
oscillation in the transition region. The results are summarized and concluded
in section 6.

2 Numerical Setup

The DNS code used in this study was developed at KTH, Stockholm [9]. It
is based on spectral method to solve the three-dimensional, time dependent,
incompressible Navier-Stokes equations. The algorithm uses Fourier represen-
tation in the streamwise and the spanwise directions, and Chebyshev polyno-
mials in the wall-normal direction. The algorithm is based on a pseudo-spectral
treatment of the non-linear terms with multiplications of those terms calcu-
lated in physical space to avoid the sum of convolution terms. Fast Fourier
Transform (FFT) is used for the transformation between physical and spec-
tral space. For the time advancement of the nonlinear terms, a four-step, low
storage third order Runge-Kutta method is used while a second order Crank-
Nicolson method is used for the advancement of the linear terms. Aliasing
error from the evaluation of non-linear terms are removed by the 3/2 rule for
FFT calculations in wall-parallel planes while in the wall-normal direction, in-
creasing spatial resolution has been found to be more efficient than dealiasing.
In order to account for the downstream boundary layer growth, a spatial tech-
nique is found to be necessary. The requirement is combined with the periodic
boundary condition in the streamwise direction by the use of a fringe region.
This region is implemented at the downstream end of the computational do-
main, where a volume forcing is added to the flow using a function λ(x), which
is smoothly raised from zero such that the flow is forced to a desired solution
υ. The volume forcing term is:
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F = λ(x)(υ − u) (4)

where v is the laminar boundary layer to which the solution is forced to. The
forcing vector is smoothly changed from a laminar boundary layer profile at
the beginning of the fringe region to the desired outflow conditions at the end
of the fringe region. This laminar profile is identical to the inflow condition at
the beginning of the computational region, hence periodic boundary condition
in the streamwise direction applies. The fringe function used is of the kind:

λ(x) = λmax

[
S

(
x− xstart

�rise

)
− S

(
x− xend

�fall
+ 1

)]
(5)

where S(a) is a smooth step function defined as:
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⎧⎪⎨⎪⎩
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1/
[
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(
1

a−1 + 1
a

)]
, 0 < a < 1

1, a ≥ 1

(6)

The length scale used for the normalization is based on the inlet displace-
ment thickness, δ∗, the velocity scale used is the inlet free stream velocity, U∞,
and time is normalized using δ∗/U∞.

Asai et. al., in their experimental setup study the flow over a boundary layer
plate placed parallel to the oncoming flow of the wind tunnel test section. In
order to create a single low-speed streak, a 40-mesh wire-gauze screen is placed
500mm downstream of the elliptical leading edge of the plate. The wire-gauze
screen has a porosity of 0.7 is set normal to the plate. The height is kept
close to the displacement thickness of the laminar boundary layer without
the screen. Further details of the setup is given in [4]. In order to simulate
the screen in the current study a momentum loss is induced in the near wall
region of the Blasius boundary layer using a localized volume forcing, added
to the streamwise component of the momentum equation. The forcing of the
form:

F (x, y, z) = AxS

(
yloc + yscale − y

yscale

)(
y

yloc
− u

uf

)
ufS

(
t

tscale

)
g (x, z) ,

(7)
with

g(x, z) = exp

[
−
(
x− xloc

xscale

)2
]
×[

S

(
z + zloc + zscale/2

zscale

)
− S

(
z − zloc + zscale/2

zscale

)]
(8)

where S(a) is the same step function as defined for the fringe region. uf is the
value of u attained at a distance yloc from the wall where the forcing starts
decaying to zero in yscale. The forcing location is around xloc corresponding
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to the location of the screen in the experiment and has an extent of zloc. zscale
is used so as to smoothly raise or reduce the forcing so that a higher grid
resolution is not required to resolve the solution. Table 1 shows the values of
the parameters used to create the low-speed streak. In the numerical study by
Brandt [8], there are two values for zloc which correspond to the 7.5mm and
the 5mm wide screens. In our study we have only considered the case for the
7.5mm screen and hence only one value of zloc has been used.

Table 1: Parameter Values

Parameter value Parameter value Parameter value

yloc 1 zloc 1.82 xscale 1.4
yscale 0.4 zscale 0.35 uf 0.07
xloc 57.19 Ax 0.8 tscale 300

The displacement thickness based Reynolds number of 549.35 at the inlet
has been used so as to match the Reynolds number for the experimental study
[4] at the location of the screen (taking into account its downstream growth be-
tween the inlet and xloc). The computational domain for the simulation was set
at 450, 15 and 9 units in the streamwise, spanwise and wall-normal directions
based on the inlet displacement thickness δ∗. The fringe region was set to 50δ∗

units right before the end of the computational domain. The resolution of the
study was set to 512x73x96 (RES1), representing 512 streamwise and 96 span-
wise Fourier modes, and 73 Chebyshev modes in the wall-normal direction. The
simulation was checked against two more cases run with 612x73x128 (RES2)
and 800x91x128 (RES3) Fourier/Chebyshev modes. There was no appreciable
difference found in the statistics of the converged flow. All subsequent laminar
streak cases were run with RES1 as that proved to be sufficient to resolve the
flow. Flow convergence was carefully checked manually by comparing the aver-
aged statistics for different time intervals. Oscillations with higher amplitudes
were found to take longer for statistical convergence. For high amplitude cases
the flow was found to be statistically stable by 8000 time units. The simu-
lation was further translated to 10000 time units and all statistics from the
final 2000 time units are reported herein. All statistical quantities presented
are spanwise averages unless specifically mentioned otherwise.

The streak generated by the simulated screen represents a stable streak
which undergoes substantial viscous decay and thus no natural transition is
observed. In order to trigger a transition of the streak, secondary instabilities
are generated by localized time-periodic blowing and suction at the wall. The
blowing and suction are implemented by applying a time harmonic wall-normal
velocity at the wall, the extent of which has been localized to a small region
by using an exponential decay in the x and z directions for the amplitude of
the blowing and suction. The function for the wall-normal velocity is:
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Fig. 1: Spanwise modulation of
streamwise velocity at x = 81.
Lines represent the values ob-
tained in the current study and
the dots show the correspond-
ing experimental values in [4].
The curves from bottom to top
represent mean streamwise ve-
locity values at y = 0.5, 1, 1.5, 2
and 2.5 respectively.

υvar(x, 0, z) = υwall exp
[
− ((x − xsb)/xsc)

2
]
exp

[−(z/zsc)
2
]
sin(ωt), (9)

where υvar is the wall-normal velocity having a maximum amplitude of υwall =
0.035 at the wall at x = xsb = 110 and z = 0 (midpoint of the plane). xsc = 2.5
and zsc = 0.5 represent the extent of the wall-normal velocity region of blowing
and suction and ω = 0.36 is the frequency of the blowing and suction. All
transition cases were run at the highest resolution with 800x91x128 (RES3)
Fourier/Chebyshev modes.

In addition, the spanwise size of the computational box was doubled for one
simulation of a transition case, and no significant difference in the streamwise
development of the flow could be detected. The maximum deviation detected
in velocity fluctuations (rms−values) was 7%, while the wall-normal profiles
in all other aspects remained identical, for all streamwise positions. Hence, it
was concluded that the smaller computational box was wide enough to capture
the downstream development accurately.

3 Streak validation

The numerically generated streak has been compared with the experimental
values obtained by Asai et al. [4]. Figure 1 shows the spanwise distribution
of the streamwise velocity at x = 81 as obtained in the current study. The
dots represent experimental values obtained in [4]. The streamwise velocity
patterns shows the characteristic profile observed in laminar streaks where the
low-speed fluid is uplifted to the upper part of the boundary layer and high-
speed fluid is in turn displaced to the lower portion of the boundary layer.
Similar results were obtained by Brandt [7]. All features of the experimental
setup [4] and the numerical study [7] have been successfully reproduced in the
current simulation work.

The plot of urms/u
max
rms at different downstream locations against the wall-

normal coordinate normalized by the displacement thickness (Figure 2) shows
that the maxima of the streamwise velocity fluctuations lies very close to
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Fig. 2: Wall-normal profile of
streamwise fluctuations (nor-
malized by their peak values)
obtained which is characteristic
of streaks in a laminar bound-
ary layer

Fig. 3: Schematic of wall oscillation implementation

1.3δ∗ which is characteristic of streaks in a laminar boundary layer as shown
in earlier DNS [2,21] as well as in experiments [37,22]. Overall, the numerical
technique is successful in generating a low-speed streak which is similar to the
one generated by the penetration of free-stream disturbances into the laminar
boundary layer.

4 Streak response to wall oscillations

The oscillation at the wall assumes a simple trigonometric form for the span-
wise velocity according to equation (2).

The wall oscillations was implemented in the domain from x = 90 to x =
300. The region was selected such that the start of the oscillation is sufficiently
downstream of the simulated screen and the end point of the oscillations is
sufficiently upstream of fringe region. A schematic of the wall oscillation is
shown in Figure 3.

A parametric study of the effect of changing wavenumber (k) and maximum
spanwise velocity (Wm) has been performed. The parameters are varied from
0.03 < k < 0.75 and 0.16 < Wm < 0.6. The wall-normal Stokes layer profile at
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Fig. 4: Stokes profile for Wm =
0.16 and k = 0.12

Fig. 5: The reduction of Cf due
to spanwise wall oscillations

different locations is first depicted in Figure 4 forWm = 0.16 and k = 0.12. The
locations (x = 199.51, 208.30, 225.88, 234.67) correspond to the wall phase of
φ = π/6, π/2, 7π/6 and 3π/2 in the third wavelength of oscillation. The Stokes
layer stays confined within the laminar boundary layer which, at the start of
the oscillation rises to δ99 = 3.3. The Stokes layer height decreases with higher
wavenumbers and thus confining it closer to the wall region. Even for the lowest
wavenumber used in the parametric study, the Stokes layer remains confined
within the boundary layer. The Stokes layer was also investigated for the case
of flow without a streak and the profile remains nearly identical to the one
with the streak.

In previous studies [24,36,5] on turbulent flow under wall oscillation it was
observed that drag reduction followed a monotonic behaviour with the max-
imum oscillation amplitude. On the other hand, the frequency of temporal
oscillations had an optimum value beyond which the effectiveness of the mech-
anism diminished. The analogous case of spatial oscillations also displayed an
optimum wavenumber for peak drag reduction. Similar behavior was reported
by Ricco [27] in the linearized study of streaks under oscillation. In order to
find the optimum wavenumber in the current study, the oscillation amplitude
was kept constant at Wm = 0.16 and the wavenumber k of wall oscillation was
varied from 0.03 to 0.75.
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Fig. 6: Streamwise velocity
profile for Wm = 0.16 and
k = 0.03

For the case of laminar streaks, the effect of oscillation on the wall drag
remains small. Figure 5 shows the trend of the skin friction coefficient (Cf )
values under different oscillation cases. While there is a slight reduction of the
wall shear stress from the reference value (without oscillations), the difference
is small. A closer view (not shown) reveals that lower wavenumbers create
a relatively larger reduction in Cf . However, the relative difference between
different oscillation cases is small. Interestingly, for k = 0.03 and 0.12 the skin
friction coefficient drops below the two-dimensional laminar Blasius flow which
is given by Cf = 0.664/

√
Rex.

As can be expected from the results of the Cf curves, the effect of oscillation
on the base flow is extremely small. Figure 6 shows the mean streamwise
velocity profile for one of the cases at x = 195, which is within the control
region. The profiles of the controlled and the uncontrolled flows are almost
indistinguishable, even for the wavenumber that showed the most promising
Cf reduction. Only one position is shown in the figure for clarity, however
multiple positions and different wavenumber cases were investigated and for
all cases the change in the base flow was found to be minor as depicted by
Figure 6.

On the other hand, the peak values of streamwise velocity fluctuations are
substantially suppressed (Figure 7), reducing to about 25% of their original
values. The trend is monotonic with the lower wavenumbers showing greater
reduction in fluctuations. To make the comparison with the reference case
clearer, figure 8 shows the trend of ũmax, where we have defined ũmax as the
ratio of the peak streamwise velocity fluctuations for the oscillated and non-
oscillated cases. The reduction to 25% for k = 0.03 is clearly visible from the
graph. An optimum wavenumber was however not obtained within the current
range of wavenumbers. It was not possible to check for lower wavenumbers due
to the limitation of the computational box size. The lowest wavenumber with
k = 0.03 corresponds to a streamwise wavelength of 210 which covers nearly
50% of the computational domain.

Along with the reduction in fluctuations the locations of the peak fluc-
tuations are shifted away from the wall and the trend shows a monotonic
behaviour with the shift being the highest for the lowest wavenumber studied
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Fig. 7: Peak urms values along
the streamwise coordinate for
the reference case (without os-
cillation) and the oscillated
cases with k = 0.03, 0.12, 0.3
and 0.75

Fig. 8: ũmax for k = 0.03, 0.12,
0.30 and 0.75 at Wm = 0.16

Fig. 9: Outward shift in the
wall-normal location of peak
streamwise fluctuations

(Figure 9). The exception being for the highest wavenumber case (k = 0.75)
for which the shift of peak locations was higher than for the case of k = 0.30.
Jung et al. [19] had reported similar shift of peak values away from the wall
towards the center of the channel for turbulent channel flows. An upward shift
of the log-law layer has also been reported in turbulent flow cases attributed
to the thickening of the viscous sub-layer[5,36].

Higher amplitude oscillations were studied for k = 0.03 which showed
a trend of monotonic rise in velocity fluctuation reduction with peak wall
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Fig. 10: ũmax for differ-
ent forcing amplitudes:
Wm = 0.16, 0.3, 0.6 with
k = 0.03

Fig. 11: ũmax for differ-
ent forcing amplitudes:
Wm = 0.16, 0.3, 0.6 with
k = 0.12

velocity (Figure 10). The trend was confirmed for different forcing wavenumber
(k = 0.12) at multiple amplitudes (Figure 11), although the reduction is less
pronounced as compared to the case with k = 0.03. The highest reduction
in streamwise velocity fluctuations was expectedly seen for Wm = 0.6 and
k = 0.03 which reduced the fluctuations to nearly 10% of the reference values.

While an optimum value for oscillation wavelength was not reached a sub-
stantial reduction in fluctuations was achieved with k = 0.03 with fluctuations
reducing by 90% of their reference values. The turbulent kinetic energy within
the volumetric box bounded by the oscillation zone was reduced by around
80% for higher amplitude cases. At an amplitude of 0.36, Ricco [27] reports
total energy reduction of streamwise fluctuations of close to 80%. The energy
reduction in the current study for k = 0.03 and Wm = 0.36 is about 74%
suggesting that the lowest wavenumber in the study should be close to the
optimum wavenumber as seen in [27].

A special case of oscillation control was found to yield some curious re-
sults at first glance. The control was implemented for the case of Blasius flow
without the presence of the constant volume forcing and thereby without the
presence of the low-speed streak. As seen in Figure 12, there is no change in
the value of Cf between the Blasius flow case and the control case when the
streak is absent and the two Cf curves overlap. In the light of this observed
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Fig. 12: Wall control (k = 0.03)
with and without the streak.

Fig. 13: Spatial development of
Cf with Reδ∗ .

overlap, the results of Figure 5 become interesting, as the control appears to
reduce the skin friction below the 2D Blasius flow value in the presence of the
streak, but does not seem to do so when the streak is absent. These rather
contradictory results can be reconciled when the spatial development of Cf

is plotted against Reδ∗ as in Figure 13. The figure shows Cf values for two
types of flows - laminar flow with and without the streak, and also their corre-
sponding counterparts with spanwise flow control. The Reδ∗ values correspond
approximately to the start and end of control region. Cf for cases without the
streak expectedly overlap. The case of streak under wall control also converges
to these values. On hindsight this is expected as the laminar flow with control
remains largely two-dimensional. The coupling of the streamwise flow with
its spanwise counterpart occurs through the fluctuating terms, which remain
small for laminar cases.

5 Transition

It remains to be seen if the optimum wavenumber found for the streak contin-
ues to be effective for turbulence suppression should the flow undergo transi-
tion. In order to answer this question, time harmonic blowing and suction is
used to trigger the transition to turbulence. The blowing and suction is located
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Fig. 14: Cf during transition
under oscillation

within the oscillation zone to see if the oscillations are able to effectively damp
out the initial growth of disturbances and if the flow is able to maintain its lam-
inar state. The amplitude of wall oscillations was kept constant at Wm = 0.5
and the wavenumber was varied. In order to obtain a smoother discretization
of the oscillations, the highest wavenumber studied was reduced slightly to
k = 0.6. The wavenumber variation was thus from k = 0.03 to k = 0.6. We
looked at the sharp jump in Cf which is used as a standard indicator for flow
transition. Figure 14 shows the Cf values for different simulations. The dotted
line indicates the case for transition without any oscillations which exhibits
the sharp rise as expected.

For the case of oscillation during transition, the lowest wavenumber case
(k = 0.03) which exhibited the maximum reduction in Cf for the laminar
streak appeared to only marginally affect the wall shear stress. The friction
coefficient remained oscillatory for the lowest wavenumber with its mean being
close to the reference values (without oscillation). Thus, the wall oscillations
with k = 0.03 do not suppress the viscous wall friction despite being the
optimal wavenumber for diminishing the velocity fluctuations in the laminar
streak flow. On the other hand, considerable reduction in the peak streamwise
fluctuations was obtained as shown in Figure 15.

The parametric study of wavenumbers in the transition region reveals a
trend in Cf reduction, with higher wavenumbers (at least up k = 0.3 as indi-
cated in Figure 14) to causing a greater skin friction reduction. This is contrary
to what was noticed during simulations of laminar streaks under oscillation
where greater effectiveness appeared for lower wavenumbers. While we did not
achieve an optimum wavenumber for the laminar streak cases, there appears to
be a maxima reached with regards to skin friction reduction close to k = 0.3.
Further increase in wavenumber (k = 0.6) reduced the effectiveness of the
mechanism.

The streamwise velocity fluctuations (shown in Figure 15) were found to
reduce during the transition period, although unlike the laminar streak cases,
the reduction does not appear to follow a clear trend, with the reduction being
oscillatory for some cases and more sustained in others.
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Fig. 15: Peak streamwise fluc-
tuations during transition un-
der oscillation. Legend as in
Figure 14

The peak values for streamwise fluctuations exhibit oscillations in the
streamwise direction for k = 0.03, 0.12 and 0.30. The oscillations are most
distinctly visible for the case of k = 0.12. These oscillations can be explained
on the basis of the streamwise variation of the spanwise velocity gradient. The
maximum suppression of turbulence occurs at location with maximum span-
wise gradient. Due to the spatial oscillations of the spanwise velocity, there are
alternating regions of flow where the streamwise gradient of the spanwise veloc-
ity decreases to zero. In these regions the turbulence starts regenerating again
in accordance with the new flow conditions. However, the sinusoidal nature of
the wall forcing implies that the zero gradient region is flanked by regions of
rapidly changing spanwise velocity. These regions again create the spanwise
unsteadiness in the flow causing turbulence suppression. What emerges are
alternating regions of turbulence suppression and regeneration. This can be
verified by measuring the streamwise distance of the peaks observed in fig-
ure 16 which shows the oscillation region for transition flow under wall forcing
with k = 0.12. For this case the streamwise distance between the consecutive
peaks (marked by circles) is found to be equal to Δx = 27 which is very close
to the half wavelength of the forcing (λforcing/2 = 26.4) which corresponds
to the distance between two consecutive region of low streamwise gradient of
spanwise velocity.

For k = 0.30 the oscillation amplitude is small and visible only under a
magnified view (not shown). Again the streamwise separation of the peaks
(Δx = 10.6) matches with the half wavelength of forcing (λforcing/2 = 10.5).
This phase dependence of the streamwise fluctuations appears to reduce with
higher wavenumbers. There are two reasons for this apparent reduction. Firstly,
with higher wavenumbers, the streamwise distance between consecutive high
gradient regions is reduced. Hence there is lesser time for turbulence to regen-
erate. Secondly, as the wavenumber is increased the height of the Stokes layer
decreases. For all oscillation cases except k = 0.03, the location of the peak
fluctuations is near the edge of the Stokes layer height where the amplitude of
oscillations is highly diminished. The direct effect of reduced amplitude oscilla-
tions at these higher wall normal locations will be considerably small. Instead,
the reduced peak values reflect the lower intensity of turbulent fluctuations
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Fig. 16: Oscillatory nature of
peak streamwise fluctuations
for k = 0.12. Streamwise dis-
tance between the peaks (cir-
cles) matches the forcing wave-
length

Fig. 17: Streamwise velocity
fluctuations at y = 0.5. The
phase dependence of fluctua-
tions is more prominent at
lower wall-normal locations

which are being convected away from the near wall region, where the Stokes
layer has its maximum effect. This lower intensity in turn leads to a reduced
turbulent production, and thus lower peak values. This can be seen by look-
ing at the streamwise fluctuations close to the wall instead of focusing on the
peak values. Figure 17 shows the urms values at y = 0.5 for all the cases. The
phase dependence of the streamwise fluctuations is prominently evident even
for k = 0.30. Again for an even higher wavenumber case (k = 0.60), the phase
dependence is barely visible due to the reasons explained above, although the
short wavelength oscillations can actually be observed in Figure 17.

To explore this further, the urms oscillations at different wall-normal heights
are studied for their phase relationship with the spanwise velocity. Figure 18
shows the urms values at different y-locations within the control region for
the case of k = 0.3. A Savitzky-Golay spatial filter is used to obtain the fil-
tered signal free from the oscillations in the streamwise direction, which uses
a polynomial expression to fit successive subsets of the data with a linear least
square method. A polynomial of order one and with a smoothing window sub-
set of half the wavelength of wall oscillations was found sufficient to filter out
the oscillations present in the signal. The dotted lines in Figure 18 represent
the smoothened signal obtained from the filter. The oscillating part of the
signal, obtained from subtracting the the filtered signal from the original one,
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Fig. 18: Streamwise velocity
fluctuations at y = 0.1, 0.2, 0.3
(From bottom to top) for k =
0.3. The filtered signal is shown
with a dotted line.

Fig. 19: Wall phase rela-
tionship of urms for y =
0.1(blue), 0.2(red), 0.3(black).
Solid lines represent the pos-
itive values while dashed line
represents negative values.

is plotted against the wall-phase of the spanwise velocity as a polar plot in
Figure 19. The positive and negative values of the fluctuating part of the sig-
nal are represented by solid and dashed lines respectively. It is evident that
there is no unique relationship between the fluctuations and the wall phase
of the spanwise velocity. The phase relation appears to be rotating in the
counter clockwise direction as we move higher up in the wall-normal direction.
However, the phase plots nearly collapse when they are plotted with the local
phase of the spanwise velocity at their corresponding wall-normal locations
(Figure 20).

The peak wall-normal fluctuations (vmax
rms ) are shown in Figure 21 which

show substantial reduction as well. Comparing the wall-normal fluctuations for
the different oscillation cases with the Cf values in Figure 14, a striking quali-
tative correlation can be seen. The lowest wavenumber, k = 0.03, seems to only
marginally affect both the skin friction and the peak wall-normal fluctuations
with the values of both remaining close to the reference case (transition with-
out oscillation) values. The largest reduction in both is observed for k = 0.3.
Further increase in wavenumber (k = 0.60) yields rising values of both Cf and
vmax
rms (although still remaining below the reference case values). Furthermore,
both skin friction and peak wall-normal fluctuations for k = 0.60 are initially
lower than the corresponding values for k = 0.12. However this trend is re-
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Fig. 20: Local phase relation-
ship of urms.

Fig. 21: Peak wall-normal fluc-
tuations during transition un-
der oscillation

versed further downstream with the case having k = 0.12 experiencing greater
reductions downstream in both skin friction and peak wall-normal fluctua-
tions. The qualitative correlation between the two quantities (Cf and vmax

rms ) is
striking given the lack of similar qualitative correlation between skin friction
and the longitudinal velocity fluctuations.

The results of the current study can be seen in the light of a similar study
by Ricco [27] using linearized theory. The prediction from the linear theory
of the effect of wall oscillation is consistent with the non-linear results. This
was to an extent expected. The present study extends the control region to a
transitional flow case, and finds that the forcing effectiveness changes and the
optimum parameters for the two flow regions are an order of magnitude apart.
It becomes important to consider the results of the laminar and transition
regions together, as it reminds us of the obvious drawback of the linear theory
in its dependence of a fixed base state. In all scenarios where the flow undergoes
a change in the base state, as in by-pass transition to name one example, linear
theory ceases to be accurate and its predictions will likely fail to some degree.
A recent study [15] used the linear Navier-Stokes equations for the travelling
wave type wall forcing and created a phase space for the turbulent energy
in the domain. The results qualitatively match the drag reduction map from
DNS [25] with the same parameters. This is certainly an interesting result and
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points to the dominant role played by the linear equations even in some fully
turbulent flow cases. However, the linear study reported an explosive growth
of solutions in regions which correspond to drag increase in the DNS study.
While in this case, the growth of disturbances appears to be modelled to an
extent within the linear equations, predictions made solely on the basis of
linear theory would probably be highly off the mark due to the change of base
state that would follow. The order of magnitude difference in the optimum
parameters of the wall forcing in two different regimes presented here becomes
a case in point. While the current study confirms the results of linear theory
for laminar low-speed streak, the slight perturbation leads to a change in base
state, and completely alters the effectiveness of the forcing in this new base
state.

6 Conclusion

A parametric study of the effect of streamwise oscillations of spanwise wall
velocity on a single low-speed streak has been performed showing large sup-
pression in velocity fluctuations. The wall shear stress for the laminar streak
cases was reduced slightly for all wavenumbers simulated and in two of the
cases (k = 0.03 and k = 0.12) the value dropped below the laminar Bla-
sius flow without streaks. An optimum wavelength for suppression could not
be reached within the allowable oscillation parameters but the trend showed
higher reduction of velocity fluctuations at lower wavenumbers. A compari-
son with the energy suppression values obtained by Ricco [27] suggests that
the lowest wavenumber in the study (k = 0.03) should be very close to the
optimum wavenumber. Changing the amplitude of oscillations showed a mono-
tonic increase in velocity fluctuation reduction. The optimum wavenumber for
oscillation changes, however, as the flow undergoes transition, with the new
optimum wavenumber being approximately an order of magnitude larger (i.e.
k = 0.3) than the near optimum observed for laminar streak cases. The re-
sults therefore show consistency with linear theory but departure from the
linearized results once the streak is perturbed, which triggers the non-linear
effects leading to transition. This eventually leads to a drastic change in the
performance of the drag reducing mechanism. In the transitional region, low
wavenumber cases seemed to have only a marginal affect on the skin friction
for flow undergoing transition, even though the streamwise velocity fluctua-
tions are reduced for all cases. Oscillations are observed in the peak values of
streamwise fluctuations which are explained on the basis of spatially alternat-
ing regions of high turbulence suppression and turbulence regeneration in the
temporary absence of a the velocity gradient. The oscillations in the stream-
wise velocity fluctuations at different wall normal locations have a strong phase
relationship with the local phase of the spanwise velocity at the corresponding
wall-normal location. A striking qualitative correlation is seen between the
trends for skin friction and wall-normal fluctuations, one that merits further
studies. In the present investigation, the flow was artificially disturbed to trig-
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ger the transition to turbulence, hence it yet does not answer the question
whether the spanwise oscillations can prevent bypass transition. However, it
points towards a drastic change in efficiency of the mechanism (for the same
parameters) between the laminar and transition region which would be useful
to keep in mind for any practical implementation.
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