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Abstract. Reynolds stress budgets for both Couette and boundary layer flows
are evaluated and presented. Data are taken from direct numerical simulations of
rotating and non-rotating plane turbulent Couette flow and turbulent boundary
layer with and without adverse pressure gradient. Comparison of the total shear
stress for the two types of flows suggests that the Couette case may be regarded
as the high Reynolds number limit for the boundary layer flow close to the wall.
The limit values of turbulence statistics close to the wall for the boundary layer for
increasing Reynolds number approach the corresponding Couette flow values. The
direction of rotation is chosen so that it has a stabilizing effect, whereas the adverse
pressure gradient is destabilizing. The pressure-strain rate tensor in the Couette flow
case is presented for a split into slow, rapid and Stokes terms. Most of the influence
from rotation is located to the region close to the wall, and both the slow and
rapid parts are affected. The anisotropy for the boundary layer decreases for higher
Reynolds number, reflecting the larger separation of scales, and becomes close to
that for Couette flow. The adverse pressure gradient has a strong weakening effect
on the anisotropy. All of the data presented here are available on the web [36].

1. Introduction

The development of cheap, powerful, computers has lead to wide use
of CFD codes for the prediction of turbulent flows. These codes almost
always use turbulence models to try to capture the characteristics of
the turbulent flow, and the prediction is no better than the weakest link
in the computational chain. Often the weakest link is the turbulence
model. But to develop better turbulence models one must have data
to compare them against. In the early days of turbulence modelling
one had to rely on indirect methods to test the various closure mod-
els. Experimental difficulties in measuring pressure and velocity with
sufficient resolution did not make direct comparisons possible.

With the development of high-speed supercomputers, and new al-
gorithms, [28, 29, 19, 4], it became possible to simulate turbulent flows
directly without resorting to large eddy simulations or turbulence mod-
els. Now it became possible to evaluate any desirable quantity and
use them to test turbulence models. The channel flow simulation by
Kim et al. [16] was the first fully resolved simulation of a pressure-
driven channel flow, and the database from the simulation has been
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used extensively to evaluate various turbulence models, see Mansour et
al. [23].

There are few experimental studies of Couette flow with reports
of turbulence statistics. In their study of Couette flow at a Reynolds
number of 1300, Bech et al. [8] report both second and higher order
statistics from both experiments and simulations. The agreement be-
tween the experiments and the simulation is good for the statistics, but
their simulations do not fully capture the very large scale structures of
the experiments. This is e.g. seen from the two-point correlations which
are lower in the simulation than in the experiment. In the study by Bech
and Andersson [7] they used three different sizes of their computational
domain and observed large structures in one box, but not in the other
two. The reason behind this is unclear.

Bech [6] presented Reynolds stress budgets from the simulation of
Bech et al. [8], and they look very similar to the ones presented here,
despite the higher Reynolds number in their simulation.

Bech and Andersson [5] made simulations with both positive and
negative rotation with the same magnitude as in the present study,
(Ro = ±0.01). For the positive rotation they decomposed the flow into
secondary and turbulent flow and analyzed them. Their main conclu-
sion was that the turbulence was damped for negative rotation. This
was also found in the investigation by Komminaho et al. [17].

In the present paper the budget data for the Reynolds stresses in the
Couette flow case are evaluated from flow fields of the plane Couette
flow simulation by Komminaho et al. [17].

Data are also presented from three different turbulent boundary
layers. One is a zero pressure gradient (ZPG) boundary layer, and two
are boundary layers subject to an adverse pressure gradient (APG).
Data from the ZPG boundary layer have not previously been presented.
The simulation with a moderate APG (APG1) has been analyzed in
Skote et al. [33], while the strong APG case (APG2) has been presented
in Skote and Henningson [35].

The ZPG turbulent boundary layer flow has been studied in a large
number of investigations, see e.g. the assessment of data by Fernholz
[10]. Turbulent statistics close to the wall were obtained through DNS
by Spalart [37], and were confirmed later in the experiment of a low
Reynolds number ZPG turbulent boundary layer by Ching et al. [9].
Various Reynolds stress budgets from DNS of both ZPG and APG
boundary layers were presented by Na and Moin [26]. Near-wall limit
values of an APG boundary layer were also investigated in the DNS of
Spalart and Watmuff [38] and in the experiment of Nagano et al. [27].

The results from the simulations of [17], [33] and [35] are documented
here for future use in turbulence model development, in particular
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for near-wall modelling. The present plane Couette flow data are well
suited for this purpose since the condition of a constant total shear
is, unlike the situation in the boundary layer, fulfilled for all Reynolds
numbers. The boundary layer data can be used for the development of
low Reynolds number turbulence models.

2. Data analysis

One can write (see e.g. [12]) the Navier–Stokes and continuity equations
in a rotating reference frame as,

∂u′i
∂t

+
∂

∂xj
(u′iu

′

j) = −
1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

+ 2ǫijku
′

jΩk (1)

∂u′i
∂xi

= 0. (2)

The effect of the system rotation can be seen as a volume force in the
fluid, also known as the Coriolis force and the centrifugal force. The
Coriolis force is the last term in the momentum equation (1), and the
centrifugal force has been included in the pressure. In the following we
will use u, v, w for u1, u2, u3, and x, y, z for the downstream, wall
normal and spanwise directions.

Divide the flow into a mean and a fluctuating part, u′i = Ui + ui,
where the mean part is defined as an ensemble average over N different
times, and also an average over the homogeneous directions (x and z
in the Couette flow and z in the boundary layer)

u′i ≡ Ui(y, t) =
1

NLxLz

N
∑

i=1

∫ Lx

0

∫ Lz

0
u′i(x, y, z, t)dxdz. (3)

The Reynolds-average Navier–Stokes equation is now obtained as

∂Ui

∂t
+

∂

∂xj
(UiUj) = −

1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj
−

∂

∂xj
Rij + 2ǫijkUjΩk (4)

where Rij = uiuj is the velocity correlation tensor, and will here be
referred to as the ’Reynolds stress tensor’.

The first term in the equation above is zero for time-independent
flows. The statistics from our simulations were carefully shown to be
stationary. The resolution of the simulations were checked by repeating
the simulation on a finer grid in some cases. For all simulations the size
of the computational box were shown to be sufficient. The velocity spec-
tra showed that the resolution was adequate. For further information
about the simulations see [17, 33, 35].
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2.1. Couette data

Plane Couette flow is the flow between two parallel planes, moving in
opposite directions with velocity ±Uw in the x-direction, at a distance
2h. The system rotation Ω3 applied in the present work is around the
z axis. The non-dimensional rotation number is defined as,

Ro ≡
2Ω3h

Uw
. (5)

The various statistical quantities have been evaluated and averaged
from 12 different velocity fields, and the average was taken in both x and
z direction. The time between the samples was T = 40, where T is based
on the wall velocity Uw and half channel height h. They are statistically
independent for all but the very largest scales, see [17] where the time
scale for the integral length scale (Λuux defined as

∫

Ruu(∆x)dx, Ruu

being the two-point velocity correlation) was found to be more than
50.

2.2. Boundary layer data

The statistics have been produced in the same manner as in the Couette
case, except for the important difference that the flow is not homoge-
neous in the streamwise (x) direction. The boundary layer is growing
and developing in the x−direction due to the increasing Reynolds
number. Thus, the statistics are unique for each streamwise position.
However, here we are only dealing with the near-wall statistics, which in
the viscous scaling should be independent of the Reynolds number. But
in the low Reynolds number flows simulated with DNS, there is a small
influence of the increasing Reynolds number. This effect is confined to
the part very close to the wall (y+ < 3). In the ZPG simulation e.g.,
the boundary layer undergoes a doubling of the Reynolds number, but
the budgets fall on top of each other for different streamwise positions,
except for the small increase of the values at the wall. The statistics
are therefore shown for one streamwise position in all three cases.

The simulations APG1 and APG2 were performed with a pressure
distribution leading to a self-similar boundary layer at high Reynolds
numbers. The pressure gradient parameter β,

β ≡
δ∗
τw

dP

dx
, (6)

defines the APG in these two simulations.
The Reynolds number at the position where the budgets have been

evaluated is shown in table I, together with the local value of the friction
velocity, freestream velocity and pressure gradient parameter.
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Table I. Reynolds number, friction velocity,
freestream velocity and pressure gradient at the
streamwise position where the Reynolds stress
budgets have been evaluated.

Case Reδ∗ ReΘ uτ U∞ β

ZPG 920 606 0.048 1.0 0.0

APG1 1064 655 0.036 0.76 0.65

APG2 2573 1309 0.020 0.60 5.0

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

τ+

y+

Figure 1. Total shear stress. Couette (· · ·). Boundary layer: (- -) Reδ∗ = 539,
(—) Reδ∗ = 920.

Another effect of the Reynolds number is the increasing length of
the region with constant shear stress (τ+). This is illustrated in figure
1, which shows the total shear stress at two Reynolds numbers for the
ZPG case, as well as for Couette flow. From figure 1 it is clear that the
total shear stress for the boundary layer becomes more constant when
the Reynolds number is increased. Since τ+ is constant for the Couette
flow, it might be argued that this flow approximates a high Reynolds
number boundary layer close to the wall.

2.3. Reynolds stress budget

The transport equations for the Reynolds stress tensor are obtained
by multiplying (1) (after subtracting the mean equation (4)) with uj ,
adding the corresponding equation with switched indices i, j and en-
semble averaging. The resulting equations read

DRij

Dt
≡

(

∂

∂t
+ Uj

∂

∂xj

)

Rij = Pij−εij+Dij+Πij+Gij+Tij+Cij (7)
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where

Pij ≡ −uiuk
∂Uj

∂xk
− ujuk

∂Ui

∂xk
, (8)

εij ≡ 2νui,kuj,k, (9)

Dij ≡
∂

∂xk
(νRij,k) , (10)

Πij ≡
1

ρ

(

p
∂ui
∂xj

+ p
∂uj
∂xi

)

, (11)

Gij ≡ −
∂

∂xk

(

1

ρ
ujpδik +

1

ρ
uipδjk

)

, (12)

Tij ≡ −
∂

∂xk
uiujuk, (13)

Cij ≡ −2Ωk (Rljǫikl +Rilǫjkl) . (14)

Here Pij is the production due to mean field gradients, whose trace
(Pii) represents twice the production of turbulent energy, the transfer
of energy from the mean flow to the turbulent fluctuations.

εij is the dissipation rate tensor, andDij is the diffusion tensor. They
both represent viscous effects, but whereas Dij is a molecular diffusion
term acting to even out the turbulent stresses by spatial redistribution,
εij act as a destruction term of turbulent energy (and stresses).

Πij is the pressure-strain rate correlation tensor, which is trace-
less and represents inter-component transfer between Reynolds stress
terms. Gij is the divergence of the pressure-velocity correlation, and
represents transport driven by pressure fluctuations. This split in the
above two terms is not unique, there are several different ways in
which one may separate the pressure-velocity term when deriving the
RST equations, but as the investigation by Groth [13] shows the above
separation seems to make most physical sense.

Tij is the divergence of the triple correlation tensor, acting as a
spatial redistribution term.

Cij is the traceless Coriolis tensor, which acts as a redistributive
term among the stress components.

The transport equation for the kinetic energy, K ≡
1
2Rii is

DK

Dt
= P − ε+D, (15)

where P = 1
2Pii is the turbulent energy production, ε = 1

2εii is the

viscous dissipation, and D = 1
2 (Tii +Gii +Dii) is the sum of the

molecular and turbulent diffusion of K. This term acts as a spatial
redistribution of K.
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Figure 2. Reynolds longitudal and shear stress. Couette: (—) and (−−). Boundary
layer: (− · −) and (· · ·).

In a fully developed plane Couette flow, the flow is homogeneous
in the x and z directions, and the relevant non-zero stresses are R11,
R12, R22 and R33. The simulation flow fields represent a plane Couette
flow at a Reynolds number Reτ = uτh/ν = 52 (Reτ = 48 for the
rotating case) based on friction velocity uτ and channel half-height
h. This corresponds to a Reynolds number 750 based on wall-velocity
and h. Despite this very low Reynolds number it is twice that of the
transition Reynolds number of 360, see [22, 39, 18]. For the rotating
case the rotation is as low as Ro = −0.01.

The budgets for the Reynolds stresses in the ZPG case are essentially
the same as in the simulation by Spalart [37]. The moderate APG case,
APG1, show very similar profiles in the Reynolds stress budgets as the
APG simulation of Na and Moin [26]. The effects of the APG is stronger
in the APG2 case, which has a skin friction approximately 60% of that
in APG1. In this work, in contrast to the budgets in [37] and [26], the
pressure term is divided into pressure-strain rate and pressure-velocity
diffusion, for comparison with the Couette data.

The Reynolds stresses R11 and R12 are shown in figure 2 for the non-
rotating Couette flow and the ZPG boundary layer flow. The maximum
of R11 is larger in the Couette flow, otherwise the profiles are similar.
In figure 3, the streamwise velocity profiles for the same two flows are
shown in a semilogarithmic plot. Here one can see that the Couette
flow has a very small logarithmic region, while the boundary layer has
developed such a region. Both flows obey the linear profile in the viscous
sub-layer.

In figures 4 and 5 the budgets for the longitudal Reynolds stress
are shown. The figures include both non-rotating and rotating Couette
flow as well as all three boundary layer cases and the profiles from the
ZPG case can be compared with the Couette case with zero rotation.
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Figure 3. Mean streamwise velocity profiles. Couette: (—). Boundary layer: (- -).
The dotted lines are the profiles U+ = y+ and U+ = 2.5 ln y+ + 5.1.

In figures 6 to 8 the budgets for the rest of the Reynolds stresses
are shown for the non-rotating Couette flow and ZPG boundary layer
flow. The rotating and APG flows are just briefly discussed for these
Reynolds stresses, and pictures of the budgets can be viewed on the
web, see [36].

The terms in the budgets are shown as functions of the wall-normal
distance y+ = yuτ/ν, where uτ =

√

τw/ρ is the friction velocity.
Note that in the non-rotating case the Coriolis term, Cij , is zero. All
quantities are shown in +-units, non-dimensionalized with u4τ/ν.

2.3.1. Longitudal Reynolds stress

One may note that the maximum of the production term P11 is 0.5. This
is easily obtained by integrating the stream-wise momentum equation

once, and multiplying with dU+

dy+
. The advection term is zero in the

Couette flow case and negligible in the near-wall region for boundary
layers. By neglecting the advection term and assuming wall similarity,
we obtain the following relation for the turbulence production:

P11 ≡ −2
uv

u2τ

dU+

dy+
= 2

dU+

dy+

(

1−
dU+

dy+
+

ν

ρu3τ

dP

dx
y+

)

, (16)

where the pressure gradient term is non-zero only in the adverse pres-
sure gradient (APG) cases. The last term within the parenthesis can
be rewritten as βy+/δ+

∗
. From the above relation it follows that the

maximum of P11 is 0.5 occurring at a position where dU+/dy+ = 0.5
for Couette flow and ZPG boundary layer. This holds irrespective of the
value of the Reynolds number and the system rotation and was shown
to accurately describe also the low-Reynolds number plane Couette
flow simulation of Komminaho et al. [18] where the Reynolds number
was as low as 375.
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Figure 4. Terms in the Couette flow R11-budget for (a) the non-rotating case and
(b) the rotating case, Ro = −0.01. The different terms are: (· · ·) P11, (- -) −ε11,
(- · -) D11, (- · · -) Π11, (—) T11, (+) C11.

The overall character of the different terms in the Reynolds stress
budget for Rij is the same as for the channel flow in [23]. Figure 4
shows that the production term P11 is the dominant positive term in
the range y+ > 5, and has a maximum of 0.5 in the buffer region, at
y+ = 11, falling to 0.10 in the centre of the channel. The location of
the peak production can be found to be y+ ≈ 11 also in channel and
pipe flow, see [31]. The non-zero production in the central region is a
consequence of the non-zero mean shear in this region.

Π11 is negative throughout the channel, thereby transferring energy
from R11 to R22 and R33. We will in section 2.3.2 see that R22 receives
energy only in a region away from the wall.

Despite the very low rotation rate for the Couette flow case the
effects on some terms in the budgets are significant, away from the wall.
The production P11 is about 60% larger in the centre of the channel for
the rotating case. The dissipation ε11 and the pressure-strain rate Π11

are both 30% larger for the rotating case, whereas the redistributive
term T11 is about 20% smaller. Near the walls the non-rotating and
rotating cases are very similar, as can be expected since the maximum
production is 0.5 in both cases.
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Figure 5. Terms in the R11-budget for boundary layer flow (a) ZPG. (b) APG1.
(c) APG2. The different terms are: (· · ·) P11, (- -) −ε11, (- · -) D11, (- · · -) Π11,
(- - · ·) G11, (—) T11.

In figure 5a the budget for the longitudal Reynolds stress is shown
for the ZPG case. The maximum of the production term P11 is 0.5 as
in the Couette case. The other terms in the budget for R11 corresponds
very closely to those in the Couette case. The adverse pressure gradient
increases the production P11 as seen in figures 5b and c. For APG1 it
is 0.6 and APG2 0.9. The increase of the maximum is not explained by
the contribution from the streamwise velocity gradient since that part
of the production term is negligible close to the wall.

The increased value of P11 is thus explained from the contribution
from the pressure gradient in equation (16). For the case APG2 we have
a δ+

∗
of 86 so that the last term within the parenthesis in equation (16)
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βy+/δ+
∗
is about 0.58 at y+ = 10, i.e. near the maximum in production.

It can, hence, be seen to be of the order one influence. Since βy+/δ+
∗
=

βy+U∞

uτ
/Reδ∗ we can see that the effect of the pressure gradient term

decreases with increasing Reynolds number.
The position of the maximum of the production is shifted towards

the wall, most notably in the APG2 case (figure 5c).
Also the rest of terms show more extreme values in the APG cases,

even though the shape of the profiles remain roughly the same. The
enhanced values in the near-wall region are partly due to the decrease
in the friction velocity (which all the terms in the budget are scaled
with). The lower value of uτ is a consequence of the adverse pressure
gradient. One might argue that uτ is not the correct scaling in an
APG flow, since the total shear stress is not constant in this scaling.
Alternative scalings, including a velocity scale dependent on the wall
normal distance that produce a constant shear stress, are discussed by
Skote and Henningson [34, 35].

Note that the term G11, which is identically zero in the Couette
case due to the homogeneous streamwise (x) direction, is zero also in
the ZPG boundary layer. In the APG1 case the pressure gradient is
not strong enough to affect this transport term. However, in the APG2
case a clear difference can be seen. Here G11 contributes to the budget
significantly. Another observation is that the collective contribution
from G11 and Π11 to the budget remains constant since Π11 decreases
the same amount as G11 increases. The two terms are parts of the
original term including the pressure fluctuations in the budget, but have
two different physical interpretations, which makes it difficult to draw
conclusions from this observation. However, the split of the original
pressure fluctuations term is important since the effects of the pressure
gradient otherwise may not be observed.

2.3.2. Normal Reynolds stress

In figure 6a the budget for R22 in the Couette flow case is shown. Π22

is negative close to the wall, and positive towards the centre. Thus
it transfers energy from the wall-normal component to the spanwise
component (Π33 is positive everywhere) near the wall, and receives
energy from the longitudal component (Π11 is negative everywhere)
away from the wall. This reversal of the sign in Π22 was attributed
to the splatting effect in the LES study of turbulent channel flow by
Moin and Kim [24] (see also the work by Hunt and Graham [15]). In
the turbulence modelling context this effect is normally referred to as
the wall-reflection contribution to the pressure strain. The attempts
to model this (see [11]) typically assumes a variation on a length-
scale of the order of the macro-scale. The present results and those
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Figure 6. Terms in the R22-budget for (a) the non-rotating Couette flow and (b) the
ZPG boundary layer flow. The different terms are: (· · ·) P22, (- -) −ε22, (- · -) D22,
(- · · -) Π22, (- - · ·) G22, (—) T22.

of Aronson et al. [3] and Perot and Moin [30] however show that the
effect is confined to a thin region near the wall. In some recent model
development (see e.g.[32]) this effect is only indirectly accounted for
through realizable models.

In figure 6b the budget for R22 in the ZPG case is shown. All the
terms show slightly lower values than in the Couette case, while the
shapes of the profiles are similar.

For a figure of the rotating and APG flows, the reader is referred
to [36]. There is only a small effect on the budget from the C22 term
in the rotating Couette flow, while all terms are increased in the APG
boundary layer flow, particularly the pressure-strain rate (Π22). The
production term P22 is identically zero in the Couette flow due to the
homogeneous streamwise direction. It is essentially zero also in the non-
homogeneous boundary layer flow, even in the strong APG flow case,
see figure of R22 budget for APG2 in [36].

2.3.3. Spanwise Reynolds stress

In the ZPG budget for the spanwise Reynolds stress, shown in figure
7b, the values of the different terms are, as in the R22 budget, lower
than in the Couette flow shown in figure 7a. The shapes of the profiles
are similar to those in the Couette case.
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Figure 7. Terms in the R33-budget for (a) the non-rotating Couette flow and (b) the
ZPG boundary layer flow. The different terms are: (- -) −ε33, (- · -) D33, (- · · -) Π33,
(—) T33.

No effect of the rotation could be seen close to the wall. The pressure
gradient enhances the values (see [36]), but nothing else seems to be
affected in the APG1 case. In APG2 however, the turbulent transport
is of the same magnitude as the pressure-strain rate.

2.3.4. Reynolds shear stress

The budget for the Reynolds shear stress in Couette flow is presented
in figure 8a. The pressure-strain rate (Π12) and pressure diffusion (G12)
balance each other at the wall. This was also the case in channel flow
simulation of Mansour et al. [23]. The value of Π12 at the wall in Couette
flow is more than twice the value found in [23].

The budget for the Reynolds shear stress in boundary layer flow
is presented in figure 8b. The profiles are approximately the same as
in the Couette case, except for the pressure-strain rate and pressure
diffusion at the wall which shows larger values in the Couette case.
The outer (y+ > 5) values are however the same in the two flows.

The effect of rotation is to reduce the values of Π12 and G12 at the
wall, and the budget resembles more the ZPG flow budget, see [36].
The term C12 is small and has a limited effect on the budget.
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Figure 8. Terms in the R12-budget for (a) the non-rotating Couette flow and (b) the
ZPG boundary layer flow. The different terms are: (· · ·) P12, (- -) −ε12, (- · -) D12,
(- · · -) Π12, (- - · ·) G12, (—) T12.

The values at the wall in the boundary layer flow are increased by
the APG. In the stronger APG2 case, also the region away from the
wall is affected, [36].

2.4. Near-wall behavior

There is a balance between dissipation and viscous diffusion on the
wall. From the data in figures 4–7 we may also compute the dissipa-
tion rate anisotropies, eij = εij/ε −

2
3δij . The limiting values of these

(along with the stress anisotropies aij = Rij/K −
2
3δij) are given in

table II and compared with the predictions obtained by the algebraic
dissipation rate anisotropy models of Hallbäck et al. [14] and Sjögren
and Johansson [32].

The agreement is quite satisfactory for both models in the Couette
case, while the Sjögren and Johansson model is in better agreement
with DNS data for the ZPG boundary layer. In the Hallbäck et al.
model eij is given by

eij =

[

1 + α(
1

2
IIa −

2

3
)

]

aij − α(aikakj −
1

3
IIaδij), α =

3

4
, (17)
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Table II. Couette data: Limiting val-
ues for the stress anisotropies aij and
dissipation rate anisotropies eij , and
comparison with models.

component 1,1 2,2 3,3

aij 0.72 − 2
3

−0.05

eij 0.73 − 2
3

−0.06

(eij)Hallbäck 0.67 − 2
3

0.00

(eij)Sjögren 0.72 − 2
3

−0.05

Table III. Boundary layer data: Limit-
ing values for the stress anisotropies aij

and dissipation rate anisotropies eij , and
comparison with models.

component 1,1 2,2 3,3

aij 0.76 − 2
3

−0.09

eij 0.76 − 2
3

−0.09

(eij)Hallbäck 0.50 − 2
3

0.17

(eij)Sjögren 0.76 − 2
3

−0.09

whereas in the Sjögren and Johansson model we have

eij = (1−
1

2
F )aij , F = 1−

9

8
(IIa − IIIa). (18)

In the above expressions we have introduced the two nonzero invariants
of the anisotropy tensor,

IIa = aijaji, (19)

IIIa = aijajkaki. (20)

The latter model gives eij = aij as limiting value in the two-component
limit, such as on a solid wall. This describes the situation very accu-
rately in both flow cases. Note that the Sjögren and Johansson model
is a higher order model than the Hallbäck et al. model, and both satisfy
the rapid distortion theory (RDT) limit of eij = aij/2, whereas only
the former model satisfy the near-wall limit of eij = aij .

For this extremely low Reynolds number the dissipation rate is
highly anisotropic also at the centreline in the Couette case.
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Table IV. Limit values for y+ → 0.

Case Reδ∗ u+
rms/y

+ v+rms/y
+2

w+
rms/y

+ −uv+/y+3
ε+

ZPG 539 0.385 0.0112 0.232 0.00099 0.203

ZPG 920 0.398 0.0119 0.252 0.00102 0.223

Couette 0.414 0.0135 0.268 0.00121 0.246

Channel [25] 0.397 0.0113 0.250 0.00095 0.221

Channel [1] 0.409 0.012 0.261 0.0011 0.227

Table V. Limit values for y+ → 0.

Case u+
rms/y

+ v+rms/y
+2

w+
rms/y

+ −uv+/y+3
ε+

APG1 β = 0.65 0.476 0.0177 0.344 0.00181 0.346

APG2 β = 5.0 0.728 0.0470 0.764 0.00598 1.35

Couette Ro = −0.01 0.387 0.0124 0.243 0.00093 0.238

Some important limiting values at the wall are given in table IV and
V. The dependence of the Reynolds number in the boundary layer is
strong as seen in table IV. All the values increase for higher Reynolds
number, but they do not reach the values of the Couette flow. Hence,
one might argue that the Couette data constitute a high Reynolds
number limit for the boundary layer. The channel flow data is taken
from a recent DNS at Reτ = 590 by Moser et al. [25], and at Reτ = 640
by Abe et al. [1]. All the limiting values for these quite high Reynolds
number channel flows are lower than the ones from the Couette data,
and close to the values for the boundary layer at Reδ∗ = 920.

We have here shown that the boundary layer limiting values ap-
proach the Couette data when the Reynolds number increases. How-
ever, the limiting values in the Couette data may be Reynolds num-
ber dependent and increase with Reynolds number. Higher Reynolds
number Couette flow simulations are needed to clarify this issue.

The effect of the APG on the boundary layer is quite severe as seen
from table V. All limit values are increased when the boundary layer is
subject to an APG. The rotation in the Couette case has the opposite
effect; all limit values decreases.
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Figure 9. The anisotropy invariant map. a) AIM paths for the non-rotating (+) and
rotating (·) case. b) AIM paths for ZPG (+) ; APG1 (·); APG2 (�).

2.5. Anisotropy tensor

The Reynolds stress anisotropy tensor aij has, as already mentioned
above, two nonzero invariants, IIa and IIIa. All anisotropic states can
be represented in the anisotropy invariant map (see [21]) which are
bounded by the lines 8/9 + IIIa = IIa and 6III2a = II3a. They represent
two-component and axisymmetric turbulence, respectively.

In figure 9a the AIM paths for both the non-rotating and rotating
Couette cases are shown. Their main characteristics are the same as for
the channel flow simulations of Moser et al. [25] and the Couette flow
simulation with Ro = −0.01 of Bech and Andersson [5]. Close to the
wall the turbulence is very near the two-component limit, approaching
the one-component limit near the edge of the viscous sub-layer. At
y+ ≈ 8 the AIM path turns towards the isotropic state. For the present
cases the Reτ is so low that there is nearly no real log-layer in the
profiles with corresponding agglomeration of points in the AIM, as
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18 J. Komminaho & M. Skote

Table VI. Maximum val-
ues for IIa.

Case Reδ∗ max IIa

ZPG 539 1.77

ZPG 920 1.70

APG1 1.51

APG2 0.80

Couette 1.71

Channel [25] 1.72

Channel [1] 1.69

observed in the higher-Re channel flow simulations. One may note that
this absence of a developed log-layer is also clear from the mean velocity
profile in figure 3.

The AIM paths for the boundary layer flows are shown in figure
9b. The ZPG case is very similar to the Couette flow. There is some
agglomeration of points at the end of the path which is y+ ≈ 150
(for ZPG). The path for APG1 starts at a lower value of IIIa and
represents a lower degree of anisotropy than in the ZPG case. The end
of the APG1-path is at y+ ≈ 100. The differences between ZPG and
APG1 are not so large in comparison with the APG2 case, where the
path starts in the lower left corner and represents much lower degrees
of anisotropy than in the other cases. This is explained by the less
structured turbulence in a strong APG boundary layer. The path for
APG3 was terminated at y+ ≈ 50, and is similar to the anisotropy
states from a backward-facing step, see the investigation by Sjögren
and Johansson [32] of the data from a backward-facing step simulation
by Le and Moin [20].

The maximum anisotropy occurs at y+ ∼ 8 (IIa and IIIa reach max-
ima at this point). The maximum decreases with increasing Reynolds
number, see table VI for values of IIa. This reflects the increasing scale
separation for higher Reynolds numbers, which leads to a more isotropic
state. The same effect was reported by in the investigation of turbulent
boundary layer and channel flow by Antonia et al. [2].

A similar scenario can be seen when the APG is increasing, the
pressure gradient seems to have a large effect on the magnitude of the
anisotropy. The location of the maximum of IIa moves slightly towards
the wall with increasing APG.
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Figure 10. The Π11-split for (a) the non-rotating case and (b) the rotating case,

Ro = −0.01. The different terms are: (+) Π
(tot)
11 , (♦) Π
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Figure 11. The Π22-split for (a) the non-rotating case and (b) the rotating case,

Ro = −0.01. The different terms are: (+) Π
(tot)
22 , (♦) Π

(s)
22 , (2) Π

(r)
22 , (△) Π

(St)
22 .

The maximum IIa for the Couette flow is close to the ZPG boundary
value at the higher Reynolds number. The value is the same for the
rotating and non-rotating cases.

For comparison we also show the maximum IIa for the highest
Reynolds number (Reτ = 590) channel flow of Moser et al. [25] and
(Reτ = 640) by Abe et al. [1]. The value for the latter case is a little
lower, but still close to the Couette flow value.

2.6. Pressure-strain rate split

The results from a split of the pressure-strain rate is here presented for
the Couette flow. The result from taking the divergence of the Navier–
Stokes equation is a Poisson equation for the pressure,

∂2p

∂xi∂xi
= −

∂

∂xi

∂

∂xj
(u′iu

′

j)− 2ǫijkΩj

∂u′k
∂xi

(21)

with the wall boundary condition,

∂p

∂y
=

1

Re

∂2v′

∂y2
− 2UΩ3. (22)
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Figure 12. The Π33-split for (a) the non-rotating case and (b) the rotating case,

Ro = −0.01. The different terms are: (+) Π
(tot)
33 , (♦) Π

(s)
33 , (2) Π

(r)
33 , (△) Π
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By splitting the source term in the Poisson equation into one part
containing the mean velocity gradient and one part containing only
gradients of the fluctuating part, we may derive equations for the rapid,
slow and Stokes pressure, respectively.

∇
2p(r) = −2

(

∂Ui

∂xk
+ ǫijkΩj

)

∂uk
∂xi

,
∂p(r)

∂y
= 0 (23)

∇
2p(s) = −

∂ui
∂xj

∂uj
∂xi

,
∂p(s)

∂y
= 0 (24)

∇
2p(St) = 0,

∂p(St)

∂y
=

1

Re

∂2v

∂y2
− 2UΩ3. (25)

The Stokes pressure is solely due to the inhomogeneous boundary con-
dition, and may be added to either the rapid or the slow pressure. Note
that the last term in the boundary condition for the Stokes pressure is
non-zero only for a moving wall, e.g. Couette flow. Restricting ourself
to the present case of a channel with two homogeneous directions the
rapid part simplifies further,

∇
2p(r) = −2

dU

dy

∂v

∂x
− 2Ω3ω3. (26)

The split into rapid, slow and Stokes pressure-strain rate can be seen
in figure 10–13 for Π11–Π12. The slow part of Π11 is larger than the
rapid except near the wall, y+ < 10, where the mean velocity gradient
is large. The rapid part is more affected by the rotation than the slow
part.

Also for the Π22-term the slow part is larger than the rapid part,
and contribute most to the pressure-strain rate. Here the slow part is
more affected by the rotation.

For the Π33-term the rapid part contributes most, except for y+ <
10, and is also most affected by the rotation.
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Figure 13. The Π12-split for (a) the non-rotating case and (b) the rotating case,

Ro = −0.01. The different terms are: (+) Π
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Both the slow and rapid parts are significantly affected by the ro-
tation for the Π12-term in the region close to the wall. The total effect
on the Π12-term is not as great as on the individual terms, but results
in lower values of Π12 close to the wall.

The Stokes part for Π22, Π33 and Π12 is significant only in the region
y+ < 10, and for Π11 it is negligible throughout the channel.

The general character and amplitude of the various pressure-strain
rate terms are almost identical even for Re = 375, despite the low
Reynolds number.

3. Summary

We have used the Couette flow simulation data of Komminaho et al.
[17] and the boundary layer data of Skote et al. [33] and Skote and
Henningson [35] to compute terms in the transport equation for the
Reynolds stresses. For the Couette flow we have also presented data
for a split of the pressure-strain rate term in rapid, slow and Stokes.
Data were presented for both rotating (slow stabilizing rotation) and
non-rotating Couette flow. One can see a small effect of the rotation
on the limiting values at the wall in the Couette flow, but it is small as
could be expected, since it is a very slow rotation. In the centre of the
channel the budgets were strongly influenced by the rotation.

Boundary layer data were presented for one zero pressure gradient
flow and two adverse pressure gradient flows. Strong influence on the
budgets from the adverse pressure gradient were detected.

The Couette data we have presented here fulfill some important
characteristics of high Reynolds number flow close to the wall. These are
constant shear stress and a maximum production of turbulent kinetic
energy of 1/4. However, other important properties of turbulence, such
as scale separation, are not fulfilled.
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The near-wall limits of turbulence statistics were shown to increase
with Reynolds number in the zero pressure gradient boundary layer, but
they did not reach the values obtained from the Couette flow. The hy-
pothesis that the Couette flow is the high Reynolds number limit close
to the wall cannot be verified with the present data. Also, the limiting
values in the Couette data may be Reynolds number dependent and
increase with Reynolds number. Higher Reynolds number Couette flow
simulations are needed to clarify this issue. With the super-computers
available in the near future, simulations of higher Reynolds number
flows in simple geometries will be a feasible task. It would be interesting
to compare the limit values presented here with a simulation for higher
Reynolds number.

Two algebraic models of the dissipation rate anisotropies were in-
vestigated. For the Couette and ZPG boundary layer flows, the higher
order model showed better agreement with DNS data. More challeng-
ing cases for models are the rotating Couette and APG boundary
layer flows. With the data presented here, one can compare turbulence
models which include rotation or APG.

The maximum anisotropy was shown to decrease with increasing
Reynolds number for the ZPG flow. The APG has a strong dampening
effect on the anisotropy, both regarding the maximum value and in the
anisotropy invariant map. The maximum anisotropy in the Couette flow
has approximately the same value as in the ZPG flow at the highest
Reynolds number.

The pressure-strain rate split in the Couette case showed that both
the slow and rapid parts are affected by the rotation, while the Stokes
part remained unaffected. The strongest influence of the rotation could
be detected for the non-diagonal term (Π12).
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