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Direct numerical simulation of two turbulent boundary layer flows has been per-
formed. The boundary layers are both subject to a strong adverse pressure gradient.
In one case a separation bubble is created while in the other the boundary layer is
everywhere attached. The data from the simulations are used to investigate scaling
laws near the wall, a crucial concept in turbulence models. Theoretical work con-
cerning the inner region in a boundary layer under an adverse pressure gradient is
reviewed and extended to the case of separation. Excellent agreement between theory
and data from the direct numerical simulation is found in the viscous sub-layer, while
a qualitative agreement is obtained for the overlap region.

1. Introduction
The separation of boundary layer flow is of crucial importance in many applications,

including airfoils, road vehicles and turbine blades, to cite but three. Separation is
difficult to predict with current turbulence models, and the design of devices that
either lose their functionality or have their optimum performance close to the onset
of separation is an engineering difficulty.

A vast amount of theoretical and/or experimental work has been presented
throughout the past few decades, and lately direct numerical simulations (DNS) have
become an important tool for further investigation of this type of flow. Although
laboratory experimental techniques have improved and the reliability of results from
experiments has increased, there is still need for DNS for improving the results in the
near-wall region. Also, turbulent structures and the instantaneous flow fields can be
more extensively analysed using DNS results.

1.1. Theoretical investigations

In most theoretical investigations of boundary layers it is of crucial importance to
determine the relevant velocity scale. For a zero-pressure-gradient (ZPG) boundary
layer such a velocity scale is naturally chosen as the friction velocity,

uτ ≡
√
ν
∂u

∂y

∣∣∣∣
y=0

. (1.1)

However, in the case of a boundary layer under an adverse pressure gradient (APG),
uτ is not the relevant velocity scale. This is true especially for strong APGs and low
Reynolds numbers. For a separating boundary layer this is clear since uτ becomes
zero in this case. In a number of studies the case of a strong APG and separation
has been investigated theoretically. In many such studies a velocity scale based on the
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pressure gradient is defined,

up ≡
(
ν

1

ρ

dP

dx

)1/3

. (1.2)

In an analysis based on up, Stratford (1959) obtained a square-root law for the
velocity profile from the assumption of zero wall stress and mixing length theory.
Townsend (1961) refined the theory based on mixing length to the case of non-
zero (but positive) wall shear stress and obtained a law with both square-root and
logarithmic parts based on uτ as a velocity scale. Kader & Yaglom (1978) extended
the Stratford velocity profile to the case of positive wall stress. However, they kept
the square-root law based on up, and accounted for the influence of a non-zero wall
shear stress by varying the constants. Mellor (1966) arrived at a similar expression
as Townsend. The work of Townsend was later reviewed by McDonald (1969) who
included nonlinear inertia effects in the expression for the velocity profile.

Afzal (1996) obtained similar expressions for the velocity profile as Townsend by
using asymptotic matching. Durbin & Belcher (1992) also used asymptotic theory for
the analysis of velocity profiles. They obtained a three-layer structure of the turbulent
boundary layer under an APG. Melnik (1989) also obtained a three-layer structure
by extending the asymptotic analysis of Yajnik (1970) and Mellor (1972) with an
algebraic turbulence model. Skote & Henningson (1999) simplified the formulation of
Townsend and showed that the analysis could be valuable for turbulence modelling
purposes.

Instead of using uτ or up as the velocity scale and letting the velocity profile depend
on the pressure gradient and Reynolds number, some investigators have tried to make
the profiles collapse onto a single curve in an outer scaling. This seems to be possible
only if a velocity scale is determined a posteriori, with the objective of making the
profiles collapse. Coles (1956) proposed a wake function to account for the variation
of the velocity profile in the outer (or wake) region of the boundary layer. The form
of the wake function was later modified in a number of ways, see e.g. Musker (1979)
for further references. Perry & Schofield (1973) and Schofield (1981) used a scaling
for the outer part of the velocity profile designed to match the profiles to a half-power
law close to the wall. They claimed that the velocity scale is related to the maximum
shear stress.

Thus, there are two fundamentally different theoretical approaches to the velocity
profile in a turbulent boundary layer under a strong APG. One is focusing on the local
pressure gradient as the important parameter determining the shape of the velocity
profile, the other is focusing on a velocity scale, defined through a fitting procedure,
that will make the velocity profiles collapse onto a single curve. In this work we will
develop further the analysis where the local pressure gradient is the key factor.

The dynamics of a separation bubble can depend on many parameters, such as
the state of the upstream boundary layer and the strength of the APG. Thus, it
is important to carefully consider the conditions under which the scaling laws are
applicable.

1.2. Experiments

Many experiments have been performed on separated flows, although most of them
consider separation caused by a sharp edge, or an obstacle. See, for example, the
review of Simpson (1996) for a collection of references, and the work of Hancock
(2000) for references to the latest experiments.

The experiments on separation of a flat-plate turbulent boundary layer include the
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works of Perry & Fairlie (1975), Simpson, Strickland & Barr (1977), Simpson, Chew
& Shivaprasad (1981a, b), Dengel & Fernholz (1990), Driver (1991) and Alving &
Fernholz (1995, 1996). Some of these investigators have also tried to develop different
scalings of the velocity profile in both outer and inner variables.

Simpson et al. (1977) showed that the Perry–Schofield scaling is supported upstream
of separation, but with the streamwise derivative of the longitudal and normal
Reynolds stresses included in the estimation of the maximum shear stress. They
concluded that the shear stress gradient is less than the streamwise pressure gradient
due to the Reynolds stresses and the convective terms in the momentum equation.

Simpson et al. (1981a, b) developed a scaling based on the maximum back-flow
velocity and its distance from the wall for the back-flow profile, which was shown
to consist of three layers: the layer closest to the wall which is governed by viscous
forces, a relatively flat intermediate layer and the outer back-flow which is dominated
by the large-scale outer region flow. No universal ‘back-flow function’ could be found.
Sufficiently far upstream of separation the logarithmic law was valid, as well as the
Perry–Schofield scaling for the outer part. As separation is approached the scalings
are not satisfied. Furthermore, they concluded that the velocity profile in the outer
part is not described by a universal wake function. The normal and streamwise
Reynolds stresses contribute to the turbulence energy production at separation, and
the enhanced turbulence energy production in the outer region supplies turbulence
energy to the back-flow region by turbulent diffusion.

Dengel & Fernholz (1990) performed measurements in an axisymmetric turbulent
boundary layer. Three cases were investigated with skin friction zero, slightly negative
and slightly positive. They concluded that the logarithmic law is not valid when the
first reverse-flow events occur. Furthermore, the velocity profile does not confirm the
Perry–Schofield scaling. Instead they represented an asymptotic velocity profile close
to separation by a seventh-order polynomial. However, Dengel & Fernholz did not
base the velocity scale on the maximum stress. Instead, they obtained the velocity
scale by fitting the velocity profiles to a half-power law, as suggested by Schofield
(1981). Reynolds stresses increased downstream in all three cases and the turbulence
production maximum was far out in the boundary layer.

Driver (1991) performed measurements on two boundary layers on an axisymmetric
body with similar pressure distributions but very different flows. One is attached and
the other is separated. He concluded that above a certain value of the pressure
gradient (in viscous scaling) the mean flow profile does not obey the law of the
wall. The attached boundary layer was found to be in equilibrium and the Clauser
parameter was nearly constant.

Alving & Fernholz (1996) performed an experiment on an axisymmetric body with
a turbulent boundary layer that separates in a short region. They reported decreased
Reynolds stresses in the inner region and large peaks away from the wall. After
reattachment, the inner region is slower in its recovery than the outer part and the
recovery does not start at the wall. Hence, the large-scale structures are intact over the
separation bubble and then interact with near-wall flow after reattachment. Alving &
Fernholz (1995) investigated the scaling of the velocity profiles from their experiment.
They compared the Durbin–Belcher and Perry–Schofield scalings, with the conclusion
that the latter performs better than the former. However, they did not use the velocity
scale proposed by Perry & Schofield (1973), but rather determined their velocity scale
so that the velocity profiles close to separation collapse with the profile given by
Dengel & Fernholz (1990).

The consensus from the experiments mentioned above is that the turbulence is
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intensified above a separated region while it is decreased in the back-flow region,
compared to turbulence without separation. Velocity profiles at streamwise positions
close to the separation point can only be made to collapse in the outer part by a
fitting procedure of the velocity scale. Upstream of separation the experiments give
no evidence on how the velocity profiles should be scaled. No universal profile for
the back-flow seems to exist and the proper scaling is still an open question.

1.3. Direct numerical simulations

A few direct numerical simulations (DNS) of separated turbulent boundary layer
flows have been performed earlier.

Na & Moin (1998a, b, hereafter abbreviated as NM), used a second-order finite
difference method to simulate a turbulent separation bubble. The computational box
was 350 × 64 × 50 based on the displacement thickness δ∗ at the turbulent inflow.
The number of points was 513 × 193 × 129. The inflow condition was taken from
Spalart’s (1988) temporal ZPG simulation. The velocity profiles were neither linear in
the viscous sub-layer nor logarithmic further from the wall at all streamwise positions.
The location of maximum turbulence intensity occurred above the separation bubble.

The near-wall flow from the simulation by NM has previously been investigated by
Skote & Henningson (1999). Good agreement between theory regarding the viscous
sub-layer (recapitulated here in § 2.1.1) and DNS data was found in the region just
upstream of separation.

Spalart & Coleman (1997, hereafter abbreviated as SC), performed DNS of a
separation bubble with heat transfer. They used a spectral code with 640× 200× 256
modes. Their inflow-outflow boundary condition was based on the fringe region
technique with a turbulent inflow. Their results showed that separation has a large
effect on the boundary layer, and that many assumptions which are valid for an
attached layer cannot be applied to the separated boundary layer. The Reynolds
shear stress increased dramatically over the separation bubble as did the turbulent
kinetic energy. This is explained by a lift-up of turbulent fluid from the wall region
that weakens the blocking effect of the wall. The increased turbulent energy can also
be explained by a contribution from the normal and streamwise Reynolds stresses as
argued by SC. Negative production of turbulent kinetic energy was observed in the
later part of the separation bubble. This was not further explained by SC but was
probably due to a positive Reynolds shear stress in that part of the flow. However,
SC recognized that the effect of the rapid distortion on the boundary layer might
lead to results which are not valid for turbulent separation bubbles in general.

In both of these simulations the boundary condition on the upper boundary was set
by imposing a normal velocity that varies downstream and thus controls the separation
bubble. Many results are hence similar for both simulations. The streamwise velocity
profiles have a gradient at the upper boundary due to the boundary condition, thus
the velocity profiles constitute a boundary layer with no free-stream edge, i.e. a
location above which the normal gradient of the streamwise velocity and the normal
velocity are small.

Both NM and SC noted that the streaks near the wall are eliminated by an APG.
In NM they concluded that the vortical structures are lifted above the bubble and
impinge on the wall in the reattachment region.

The simulations performed here are different from the ones by NM and SC in
some important aspects. First, the separated region is longer than in NM and SC,
hence the local distortion of the boundary layer is less severe. Second, the strength of
the back-flow is stronger, which reveals new phenomena.
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In this work we start with a review and extension of the theory concerning velocity
profiles in an attached and separated turbulent boundary layer in § 2. The results from
the simulations are presented in § 3. A presentation of the numerical methodology,
including a resolution check, is given in § 3.1. This is followed by a general description
of the flow in § 3.2, including both the instantaneous flow and turbulence statistics.
The theoretical results from § 2 are compared with DNS data in § 3.3. The results are
further discussed in § 4, and comparison with NM and SC will be made, as well as
with some experimental data.

In the present work we focus on the near-wall flow since few results from the
near-wall region in a separated flow have previously been reported. The flow close to
the wall is scrutinized by comparing results from theoretical considerations with data
obtained from the DNS.

2. The turbulent boundary layer equations
In the past, much effort has been put into obtaining numerically solvable ordinary

differential equations for the parameters quantifying the turbulent boundary layer. See
e.g. Schlichting (1979), Rotta (1962) and Cebeci & Smith (1974) for references. Using
such methods, separation and reattachment can be predicted in some cases. However,
no general formula to predict separation has been offered. The emphasis today is
shifted towards more general closures of the Navier–Stokes equations, based on
turbulence models. Therefore, no attempts to analyse or improve the methods based
on simplified versions of the turbulent boundary layer equation (TBLE) are conducted
here. The TBLE is used to extend and improve the theoretical understanding of the
streamwise velocity profile in the inner region of the turbulent boundary layer.

The near-wall behaviour of a turbulent boundary layer close to separation, or fully
separated, is difficult to analyse with the TBLE, since a separated flow does not permit
the simplifications of the Navier–Stokes equations leading to the TBLE. However,
even if the TBLE is not valid when the downstream development of a separating
boundary layer is to be calculated, it can still be used to understand what happens
locally in the boundary layer.

Results from a straightforward analysis of the TBLE is of importance for the
development and calibration of turbulence models. The near-wall laws derived for
ZPG boundary layers have been used extensively for obtaining boundary conditions
in calculations of boundary layer flow with turbulence models. Thus, better near-wall
laws for turbulent boundary layers would improve the predictions made of APG
flows using turbulence models. The near-wall laws presented here can be used for
such purposes.

In § 2.1 the analysis of the TBLE will be presented for two reasons. First we
wish to strengthen the arguments and results from some previous authors. The
analysis reported here clarifies how and under what circumstances previous results
are applicable. Second, the modified analysis can be repeated for the separated case.
This analysis is presented in § 2.2. The theoretical results for the separated case are
derived from the same arguments as for the attached case. It is only the changed
boundary condition at the wall that make the resulting expressions for the velocity
profile different from the ones describing an attached boundary layer.

2.1. The attached boundary layer

The analysis of the TBLE will be divided into three parts. The first part deals with
the total shear stress in the inner region of the boundary layer, where the advective
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terms in the TBLE are neglected. The overlap region is investigated in the second
part. In the third part, we will briefly discuss the outer part of the boundary layer.

2.1.1. The inner region

When neglecting the nonlinear advective terms in the equations describing the
mean flow, the equation governing the inner part of the boundary layer is obtained.
Using the inner length and velocity scales ν/uτ and uτ, the following equation can be
written:

0 = − ν

u3
τ

1

ρ

dP

dx
+

d2u+

dy+2 − d

dy+
〈u′v′〉+, (2.1)

where 〈u′v′〉 is the Reynolds shear stress. If the term involving the pressure gradient
is negligibly small compared to the other terms, the equation reduces to the equation
governing the inner part of a ZPG boundary layer. However, for strong APG cases
at finite Reynolds numbers, this term cannot be neglected. Equation (2.1) can be
integrated to give an expression for the total shear stress,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1

ρ

dP

dx
y+. (2.2)

For a ZPG case, equation (2.2) predicts a constant shear stress of unity in the inner
region.

The pressure gradient term in equation (2.2) is evidently important for the shear
stress distribution in the inner part of the boundary layer. This was observed in, among
others, the experiments by Bradshaw (1967), Samuel & Joubert (1974) and Sk̊are &
Krogstad (1994), and the DNS by Spalart & Watmuff (1993) and Skote, Henkes &
Henningson (1998). It can be shown that the pressure gradient term decreases with
increasing Reynolds number, and thus is important only for low Reynolds numbers.
However, close to separation, where uτ approaches zero, it is clear that the pressure
gradient term becomes infinite, even for large Reynolds numbers.

When considering a strong APG or separation, the singularity mentioned above
can be avoided by introducing the velocity scale up, defined in equation (1.2). To see
this, we first formulate equation (2.2) as

τ+ = 1 +

(
up

uτ

)3

y+. (2.3)

The velocity scale up should be used instead of uτ if the last term in equation (2.3)
becomes very large, which happens if uτ � up, i.e. the boundary layer is close to
separation. This was noted by Stratford (1959), Townsend (1961) and Tennekes &
Lumley (1972). By multiplying equation (2.3) by (uτ/up)

2, the following expression for
τp ≡ τ/(ρu2

p) as a function of yp ≡ yup/ν is obtained:

τp = yp +

(
uτ

up

)2

. (2.4)

Equation (2.4) has the asymptotic form τp = yp when separation is approached. Thus,
in this rescaled form, the singularity is avoided.

There are three possible complications in the above analysis. First, the pressure
gradient (dP/dx) may depend on the normal coordinate (y). This proved to be
important when the analysis was compared with the data from the simulation of
NM, see Skote & Henningson (1999). However, due to the boundary conditions used
in the present simulation, the pressure gradient is constant throughout the boundary
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layer. The second complication is that the TBLE contains the streamwise derivative of
longitudal and normal Reynolds stresses. These terms may be important in a strong
APG flow as was noted by Rotta (1962). A third complication is the nonlinear inertia
terms, which can influence the total shear stress as argued by McDonald (1969).
However, in the present simulations these two terms are not important and will be
disregarded in the following.

Now, in the viscous sub-layer the Reynolds shear stress approaches zero and
equation (2.4) can be integrated to give

up ≡ u

up
= 1

2
(yp)2 +

(
uτ

up

)2

yp. (2.5)

In the limit of separation, when uτ/up → 0, equation (2.5) reduces to

up = 1
2
(yp)2. (2.6)

In viscous units, equation (2.5) becomes

u+ = y+ +
1

2

(
up

uτ

)3

(y+)2. (2.7)

This equation reduces to the usual linear profile in the ZPG case, when up/uτ → 0.
The two expressions (2.5) and (2.7) depend on the Reynolds number and the

pressure gradient and are equivalent. It is in the limits of uτ/up → 0 and up/uτ → 0
respectively that self-similarity is obtained and the choice of velocity scale becomes
crucial.

2.1.2. The overlap region

We now proceed with the analysis by first considering the total shear stress. For
the ZPG case, the scaling of the total shear stress with uτ gives a self-similar profile
(τ+ = 1). From equations (2.3) and (2.4) it is observed that neither uτ nor up as velocity
scale results in a self-similar expression. However, equation (2.2) can be formulated
as

τ∗ ≡ 1

u2∗

(
ν
∂u

∂y
− 〈u′v′〉

)
= 1, (2.8)

where u∗ is a velocity scale that depends on y and can be expressed in either viscous
or pressure gradient units,

u2
∗ = u2

τ +
u3
p

uτ
y+ = u2

τ + u2
py

p. (2.9)

Thus, by scaling the total shear stress with u∗, a self-similar expression is obtained
(τ∗ = 1). The velocity scale u∗ reduces to uτ if up becomes zero, i.e. for a ZPG boundary
layer. If instead uτ becomes zero, i.e. for a boundary layer at separation, the velocity
scale becomes u∗ = up

√
yp. However, when u∗ = up

√
yp is inserted in equation (2.8)

we can write the equation as τp = yp, i.e. we use up as the velocity scale. Note that for
the special case with uτ = 0, the velocity scale u∗ is zero at the wall. This is consistent
since the velocity gradient is zero at the wall.

The logarithmic behaviour of the turbulent boundary layer is obtained from the
matching of the velocity gradient, or equivalently the shear stress, in the inner and
outer regions of the boundary layer.

For the matching of the inner and outer equations, it is enough to observe that the
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total shear stress can be written in the form (2.8) in the inner part. In the outer part
it is assumed that the velocity gradient can be written

∂u

∂y
= F ′u∗/∆, (2.10)

where F ′ is a function of a similarity variable (η ≡ y/∆) and ∆ is the outer length
scale. Equation (2.10) should be considered as the scaled formulation of the velocity
gradient for the outer part, corresponding to the scaled velocity gradient for the inner
part, which can be written as

∂u

∂y
= f′u2

∗/ν, (2.11)

where f′ is a function of a similarity variable (y∗ ≡ yu∗/ν).
If the total shear stress is scaled with u∗ in the outer and inner parts, and assump-

tions (2.10) and (2.11) are valid, then the matching of the total shear stress gives the
equation

f′y∗ = F ′η. (2.12)

Noting that the two sides of the equation depend on different variables, we set the
first part equal to a constant and formulate it as

y∗
(
∂u

∂y

)∗
=

1

κ
, (2.13)

where a short-hand notation is used for the scaled velocity derivative,(
∂u

∂y

)∗
≡ ν ∂u

∂y

1

u2∗
. (2.14)

The scaled normal coordinate can be written

y∗ =
√

(y+)2 + (yp)3. (2.15)

For the ZPG case, for which up = 0, equation (2.13) is reduced to

y+ du+

dy+
=

1

κ
. (2.16)

When integrated, equation (2.16) gives the logarithmic velocity profile.
In the same way as equation (2.16) can be integrated to give the logarithmic law

for the ZPG case, equation (2.13) can be integrated to give a velocity profile in either
viscous scaling (u+ ≡ u/uτ = f(y+)) or pressure gradient scaling (up ≡ u/up = g(yp)).
Both of these expressions will depend on the ratio between uτ and up, and are thus
not self-similar. A self-similar profile of the form u∗ ≡ u/u∗ = h(y∗) is not consistent
with equation (2.8). This is further discussed at the end of this section.

If uτ is chosen as velocity scale, the integration of equation (2.13) yields

u+ =
1

κ

(
ln y+ − 2 ln

√
1 + λy+ + 1

2
+ 2(

√
1 + λy+ − 1)

)
+ B, (2.17)

with

λ =

(
up

uτ

)3

.

Expression (2.17) is not self-similar due to the term λ which is Reynolds-number
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dependent. Equation (2.17) is the same expression as obtained by Afzal (1996). It
is also similar to the equation which Townsend (1961) derived from mixing length
arguments.

If up is chosen as velocity scale, then (2.17) can be written

up =
1

κ

(
2
√
γ2 + yp + γ ln yp − 2γ ln(

√
γ2 + yp + γ)

)
+ C (2.18)

where

γ =
uτ

up
.

For a ZPG boundary layer, for which λ = 0, equation (2.17) reduces to the logarith-
mic profile. In the other limit, at separation, when γ is zero, equation (2.18) reduces
to the half-power law

up =
1

κ
2
√
yp + C, (2.19)

which was first derived by Stratford (1959). Note that equation (2.19) can be rewritten
such that it is independent of the viscosity, as in the formulation by Stratford.

As mentioned earlier, it is not possible to solve equation (2.13) directly to obtain
an expression for u∗ as a function of only y∗. This is due to the scaled (with
u∗) velocity gradient, which cannot be formulated independently of uτ and up. The
velocity gradient scaled with a constant velocity scale uτ or up is, on the other hand,
straightforward to express independently of the Reynolds number:

ν
∂u

∂y

1

u2
τ

=

(
∂u

∂y

)+

=
du+

dy+
. (2.20)

Thus, in the ZPG case the equation permits a self-similar velocity profile (the loga-
rithmic function). The same is true for the zero wall stress case (the half-power law).
In all flows between these two asymptotic states, the velocity profile depends on the
Reynolds number and the pressure gradient.

2.1.3. The outer part

There have been many attempts to properly describe the velocity profile in the
outer part of the boundary layer, both for ZPG and APG flows. Coles (1956)
proposed a wake function for the description of the velocity profile. Since then a
number of changes and refinements have been presented. Musker (1979), among
others, proposed a velocity profile that is valid from the wall to the free stream,
consisting of a logarithmic function and a wake function of the polynomial form.
Dengel & Fernholz (1990) disregarded the form of the original wake function, and
proposed a polynomial fit to the velocity profile. A different approach was chosen
by Perry & Schofield (1973), who found their velocity scale by a fitting procedure
similar to the Clauser plot in the ZPG case. They also related the velocity scale to
the maximum shear stress, but no experimental data have confirmed this relation.
Durbin & Belcher (1992) derived a three-layered structure of the turbulent boundary
layer under a strong adverse pressure gradient. No experimental data have verified
their scalings.

With this abundance of theories and proposed functions for the description of the
velocity profile in the outer part, it is difficult to extract the ‘best’ theory, especially
with those containing a large number of constants to be adjusted to obtain the best
fit with DNS data.
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The difficulties in finding an appropriate description of the velocity profile in the
outer part of the boundary layer in strong APG flows with or without separation
may be attributed to ‘historical effects’, i.e. the flow is not determined by local
parameters (except for equilibrium layers), but is influenced by downstream and
upstream conditions. This is consistent with the arguments of Perry (1966), who
divided the boundary layer into a wall region, where the flow is determined by local
parameters, and a ‘historical region’ where this local or ‘regional similarity’ does not
apply.

No investigation of the outer part is presented in this work. However, Skote (2001)
includes a study of the outer part of the boundary layer.

2.2. The separated boundary layer

In this section the case of separation will be discussed. The limit of zero shear stress
(uτ/up → 0) was approached in the analysis above, and the asymptotic version of
the expression for the velocity in the viscous sub-layer was equation (2.6), and in the
overlap region it was equation (2.19). These two expressions were obtained by setting
uτ = 0 in equation (2.5) and (2.18) respectively. Now, if a separated flow is considered,
the definition of uτ has to be reconsidered. In the separated region, ∂u/∂y is negative,
and the definition of uτ in equation (1.1) involves a square root of a negative number.
The definition will be changed so that the square root of a positive number will be
taken. Thus, the definition of the friction velocity needs to be changed to

uτ ≡
√
−ν ∂u

∂y

∣∣∣∣
y=0

. (2.21)

This change will affect the analysis outlined in the previous section. It is the boundary
condition at the wall used when integrating the TBLE that will be different from the
attached case.

The equation for the inner part (2.1) will not be changed since the scaling is not
affected by the change of definition of uτ. However, in the integration leading to
equation (2.2), the boundary condition at the wall is used and will now, with the
definition (2.21), change sign. Thus, the analysis is the same as in § 2.1. It is only the
boundary condition that changes equation (2.4) to

τp = yp −
(
uτ

up

)2

. (2.22)

For the velocity in the viscous sub-layer the expression becomes

up = 1
2
(yp)2 −

(
uτ

up

)2

yp, (2.23)

instead of equation (2.5). Due to the changed boundary condition, the corresponding
equation in viscous scaling, equation (2.7), is

u+ = −y+ +
1

2

(
up

uτ

)3

(y+)2. (2.24)

Note that the equations (2.5) (attached boundary layer) and (2.23) (separated bound-
ary layer) take the same form,

up = 1
2
(yp)2, (2.25)

when uτ/up → 0. This asymptotic form is equal for the two cases since the asymptotic
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state is the onset of separation. On the other hand, the corresponding equations in
the viscous scaling, equations (2.7) and (2.24), have the asymptotic forms u+ = y+ and
u+ = −y+ respectively. Thus, the assumption that viscous forces are stronger than
the pressure gradient gives different profiles in the attached and separated region.

From equation (2.5) or (2.24) it is possible to extract the maximum negative velocity
and the position where it occurs. In pressure gradient scaling the maximum back-flow
is − 1

2
(uτ/up)

4 at yp = (uτ/up)
2. These results are valid if the back-flow maximum is

located in the viscous sub-layer.
Now the logarithmic part of the boundary layer will be discussed. According to

equation (2.22), the velocity scale that produce a self-similar shear stress (τ∗ = 1) is

u2
∗ = −u2

τ +
u3
p

uτ
y+ = −u2

τ + u2
py

p. (2.26)

By inserting either form of u∗ into equation (2.13), two different expressions for the
velocity profile are obtained. Using the viscous scaling yields

u+ =
1

κ
[2
√
λy+ − 1− 2 arctan(

√
λy+ − 1)] + B, (2.27)

with

λ =

(
up

uτ

)3

.

By using the pressure gradient scaling we obtain

up =
1

κ

[
2
√
yp − γ2 − 2γ arctan

(√
yp

γ2
− 1

)]
+ C, (2.28)

where

γ =
uτ

up
.

The logarithmic dependence has been replaced by the arctan function. However,
the asymptotic function (2.19) is recovered from equation (2.28) when uτ/up → 0.

Equation (2.27) was actually derived by McDonald (1969) from Townsend’s ex-
tended log law, but with the velocity scale up replaced by the shear stress gradient.
McDonald argues that the shear stress gradient is different from the streamwise
pressure gradient, and that the deviation originates from inertia effects.

3. Direct numerical simulations
3.1. Numerical considerations

3.1.1. Numerical method and parallelization

The code used for the direct numerical simulations (DNS) was developed at KTH
and FFA (Lundbladh et al. 1999). The numerical approximation consists of spectral
methods with Fourier discretization in the horizontal directions and Chebyshev
discretization in the normal direction. Since the boundary layer is developing in the
downstream direction, it is necessary to use non-periodic boundary conditions in
the streamwise direction. This is possible while retaining the Fourier discretization
if a fringe region is added downstream of the physical domain. In the fringe region
the flow is forced from the outflow of the physical domain to the inflow. In this
way the physical domain and the fringe region together satisfy periodic boundary
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Figure 1. SEP: Contours of mean velocity. Positive values shown as solid lines, negative as
dashed. Note that the vertical scale is twice the horizontal.

conditions. The fringe region is implemented by the addition of a volume force F to
the Navier–Stokes equations:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj2
+ Fi. (3.1)

The force

Fi = λ(x)(ũi − ui) (3.2)

is non-zero only in the fringe region; ũi is the laminar inflow velocity profile to which
the solution ui is forced and λ(x) is the strength of the forcing. The form of λ(x)
is designed to minimize the upstream influence. For an analysis of the fringe region
technique, the reader is referred to Nordström, Nordin & Henningson (1999). The
whole computational box is shown in figure 1 to illustrate the fringe region technique.
The flow is laminar at x = 0 and the transition takes place up to approximately
x = 65 (cf. figure 4). The reverse flow in the separation bubble is indicated with the
dashed contours. From x = 550 to x = 700 is the fringe region where the turbulence
is damped and the laminar profile at x = 0 is restored.

Time integration is performed using a third-order Runge–Kutta method for the
advective and forcing terms and a Crank–Nicolson method for the viscous terms. A
2/3-dealiasing rule is used in the streamwise and spanwise directions.

The simulations were performed to a large extent on computers with distributed
memory. The parallelization and optimization of the code for this type of computer
were performed by Alvelius & Skote (2000).

The boundary conditions are no-slip at the wall and at the free stream (y = 65)
the normal derivative of the streamwise and spanwise velocity components are set to
zero, while for the normal component the prescribed value of the APG is used,

∂v

∂y
=
∂VAPG

∂y
= −∂UAPG

∂x
. (3.3)

These boundary conditions ensure that the prescribed APG is obtained.

3.1.2. Numerical parameters

The simulations were performed on various computers. The tuning of the pressure
gradient for the desired flow situation was performed on a Cray T3E at NSC in
Linköping, using 32 processors. After the design of the pressure gradient, a simulation
with 20 million modes was performed on an IBM SP2 at PDC, KTH in Stockholm,
using 32 processors. The results presented here are mainly from a second simulation
with 40 million modes performed at the National Aerospace Laboratory (NAL),
Tokyo. The computer used at NAL was the Numerical Wind Tunnel (NWT), a
parallel computer that consists of 166 vector processors from Fujitsu.

The simulations start with a laminar boundary layer at the inflow which is triggered
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Figure 2. SEP: Velocity profile in the separated region at x = 350 and in the attached region at
x = 500. ——, 720× 217× 256 modes; - - - -, 512× 193× 192 modes.

to transition by a random volume force near the wall. All the quantities are non-
dimensionalized by the free-stream velocity (U) and the displacement thickness (δ∗)
at the starting position of the simulation (x = 0), where the flow is laminar. At that
position Reδ∗ = Uδ∗/ν = 400. The length (including the fringe), height and width of
the computation box were 700× 65× 80 in these units. The fringe region has a length
of 100 and the trip is located at x = 10.

Results from two simulations are presented. One, which is called APG1, is a
boundary layer subject to a strong APG. The flow in APG1 is everywhere attached.
The second, which is called SEP, is a boundary layer under an even stronger APG,
and a large portion of the flow is separated.

Two different resolutions were used for the simulations. For APG1 the number of
modes was 512 × 193 × 192. After a simulation of SEP with the same resolution,
a larger simulation was performed using the NWT. The number of modes in this
simulation was 720× 217× 256, which gives a total of 40 million modes or 90 million
collocation points.

The lateral domain size was chosen based on earlier DNSs of APG boundary layers.
The simulations were run for a total of 7500 time units (δ∗/U), and the sampling for
the turbulent statistics was performed during the last 2500 time units. The statistics
were collected during the simulations and averaged in the spanwise direction. No
filtering of the statistics has been used.

3.1.3. Resolution check

The simulation of a separated boundary layer was performed with two different
resolutions which could be compared with each other. The turbulent statistics for both
resolutions were computed from the same amount of simulation time. The general
behaviour in the streamwise direction is the same for the two resolution, i.e. there are
no large differences in parameters such as friction velocity, shape factor etc. There
were some differences in the region where the back-flow has its largest magnitude,
which is now further investigated. Velocity profiles from two downstream positions
are shown in figure 2, one at x = 350 where the back-flow is strongest, and one at
x = 500, where the boundary layer is attached. A large part of the profile from the
less resolved simulation at the point of maximum back-flow (x = 350) is below the
profile from the well-resolved simulation. However, close to the wall they collapse. In
the attached region, the two profiles are essentially similar. Thus, the region where
strong back-flow occurs is sensitive to the resolution, which means that caution is
needed when simulating this type of flow. Also, in the Reynolds shear stress some
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Present NM SC

∆x 0.65 0.85 0.57
∆y 0.30 0.41 0.27
∆z 0.21 0.48 0.21

Table 1. Comparison of resolution between the present simulation
and the simulations by SC and NM.
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Figure 3. SEP: Energy contained in modes in ——, x; - - - -, y; · · · ·, z. Thick lines:
720× 217× 256; Thin lines: 512× 193× 192.

differences could be detected, most notably in the outer region, near the free stream.
In the attached region there were no differences between the two resolutions for
the Reynolds stresses. It should be noted that even though the history effects can
influence the boundary layer downstream of reattachment (see e.g. the investigations
of Alving & Fernholz 1996), the differences upstream of reattachment in the the two
resolutions do not influence the boundary layer in the attached region.

This investigation shows that the lower resolution is sufficient for the attached
region, while in the separated region, the high resolution is crucial for capturing the
correct behaviour.

Comparison with the resolution in the simulations by NM and SC is possible by
rescaling the size of the box of their simulations in the coordinates of the present
simulation and dividing with number of collocation points. The result is shown in
table 1. The resolution is better for the present simulation than in NM in all three
directions, even though their method has second-order accuracy while our method,
as in SC, is spectral.

To further confirm the resolution we show the energy in the flow as function of
the spectral modes for the two resolutions in figure 3. The thick lines are from the
well-resolved case. Note that the two velocity fields are for different times, thus the
curves from the two cases do not collapse. The energy decays consistently in the three
directions when the resolution is refined. The small contamination in the highest
modes moves to higher wavenumbers as resolution is increased.

Since the simulation starts with a laminar boundary layer, the transition to turbu-
lence is an important part of the flow, even though we are only interested in the fully
turbulent region of the flow. The evolution of the turbulence might be influenced if
the transition is poorly resolved. The turbulence may also contain memory effects of
the transition if the triggering of the laminar flow is not performed carefully.
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3.2. General description of the flow

3.2.1. Mean flow parameters

In earlier simulations of APG turbulent boundary layers by the authors of the
present work, Skote et al. (1998), the free-stream velocity varied according to a power
law in the downstream coordinate, U ∼ xm. The motivation for this was that a self-
similar profile in the outer part could be developed. In the simulations presented here,
the aim was to obtain a boundary layer as close to a separated state as possible. The
tuning of the pressure gradient is extremely time consuming since the boundary layer
has a slow response to any change in the pressure distribution. The value of m was
−0.23 in APG1 and −0.35 in SEP.

The free-stream velocity (U) for the two simulations, APG1 and SEP, is shown in
figure 4, together with the skin friction (Cf). As seen from the figure, a small change
in the free-stream velocity has a great impact on the skin friction. A number of
simulations were performed to obtain a boundary layer with a wall shear stress as
close to zero as possible. These two simulations are the ones where we obtained uτ
closest to zero, and were therefore continued for a long time to obtain good statistics.

Even if the boundary condition (U) is almost the same for the two simulations, the
resulting boundary layers contain very different flows. In APG1 the boundary layer
is subject to a strong APG, but is everywhere attached. In SEP the boundary layer
is separated for a large portion of the computational domain. The resulting normal
velocity at the free-stream boundary (V ) is shown for the two cases in figure 5.

The ratio between the two velocity scales (uτ/up) is shown in figure 6 for the two
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Figure 6. uτ/up: ——, APG1; - - - -, SEP.

cases. The ratio is fairly constant for APG1, and for SEP the variation is not large
except close to the separation and reattachment points. This is in strong contrast to
the rapid separation and attachment simulated by SC and NM. The almost constant
ratio will have some consequences for the scaling of the velocity profiles shown in
§ 3.3.

The strong decrease in the skin friction before the reattachment cannot be explained
by the mean momentum equation alone. The point of reattachment cannot be
predicted either, but can be detected from the behaviour of the normal velocity
at the free-stream boundary (figure 5). At the beginning of the computational domain
the flow out of the box is generated by the strong decrease in the streamwise velocity.
Later, the flow is inward, due to the fringe region, where the original, laminar boundary
layer is restored. With a longer computational box, the point of reattachment would
move downstream. The influence of the fringe is however not unphysical, since it only
determines the boundary condition at the outflow. The boundary layer has to end
somewhere, and this scenario is just one example.

3.2.2. Instantaneous flow

To illustrate some features of the instantaneous flow in the separated case, contour
plots of constant streamwise and normal total velocities are plotted in a part of the
computational box in figure 7. The streamwise velocity, plotted in dark grey, shows
a less ordered structure than in a ZPG boundary layer. The sheet formed by the
constant value is bent upward over the recirculation region and comes down again
when approaching reattachment. This is in agreement with various experimental
observations, see the introduction.

The normal velocity is shown in light grey and has a positive value. Thus, the fluid
is flowing out of the computational box due to the APG. The normal velocity is of
the same disorganized form as the streamwise velocity. Note that the figure does not
show the entire computational box in the normal (y) and streamwise (x) directions.

The streamwise velocity fluctuations for APG1 and SEP are shown in figure 8 which
shows the whole computational box in the spanwise direction but the transitional
part and fringe region are excluded in the streamwise direction.

The streamwise velocity fluctuations form elongated structures (streaks) near the
wall in a ZPG boundary layer, spaced 100 viscous units in the spanwise direction.

It is generally thought that the structures are weakened in an APG flow. This is
illustrated in figure 8(a), where shades of positive and negative fluctuations are shown
for the APG1 case. The normal position is y+ = 11.8 at the beginning and y+ = 9.2
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Figure 7. The separated boundary layer. Only a part of the computational box is shown. The light
grey structures represent positive normal velocity and the darker ones represent positive streamwise
velocity.

at the end. The length in the streamwise direction is about 3400 viscous units based
on uτ at x = 350. The structures are weakened at the end of the domain compared
with those in the beginning, showing the damping effect of the APG on the structures.
The spacing between the structures increases from 100 (the same as for a ZPG layer)
at the beginning to about 130 at the end, based on the local uτ.

The SEP case is shown in figure 8(b). The normal position is also in this case
around y+ = 10 and the length of the region shown is about 2400 (based on uτ at
x = 350). There are still some structures in the separated flow, though not as long
and frequent as in APG1. Before separation, which occurs at approximately x = 140,
the streaks are visible, but are rapidly vanishing in the beginning of the separated
region. There is a notable increase in the streak formation around x = 350, where the
friction coefficient is at its lowest values, cf. figure 4. Thus, there are indications that
streaks may reappear in a separated region if the back-flow is strong enough. After
the reattachment at x = 412 the streaks do not immediately appear, but are clearly
visible after x = 450.

3.2.3. Turbulence statistics

The turbulent kinetic energy and its production presented in this section are scaled
with the inlet free-stream velocity and displacement thickness. For the APG1 case the
development of the turbulent kinetic energy is typical for an APG turbulent boundary
layer. In figure 9 contours of constant levels of turbulent kinetic energy from 0.0005
to 0.006 are shown. The peak value is around 0.006 at all streamwise positions. It is
slightly larger at the beginning and decreases slowly downstream, while the position
of the peak is shifted outward from y = 4 at x = 150 to y = 18 at x = 550.

The turbulent kinetic energy development in SEP is more complicated and will be
discussed with the aid of figure 10, where contours of constant levels of turbulent
kinetic energy from 0.005 to 0.025 are shown. At x = 150 the boundary layer has
barely separated and the energy has one maximum of 0.0016 located far out in the
boundary layer (approximately at y = 18). Further downstream, at position x = 250,
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Figure 8. Streamwise velocity fluctuations in a horizontal plane at approximately y+ = 10 (at
x = 350). The dark area represents low-speed fluid. (a) APG1, (b) SEP. The points denoted S and
R represent separation and reattachment respectively.
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Figure 10. SEP: Contours of turbulent kinetic energy. Values from 0.005 to 0.025.
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Figure 11. SEP: Contours of shear production (−〈u′v′〉∂u/∂y) of turbulent kinetic energy. Positive
values shown as solid lines, negative as dashed. Values from −3.5 to 8.5.

the energy maximum has shifted outward to y = 30 with the larger value 0.025. The
profile then stays approximately the same until the maximum starts to decrease and
is moving towards the wall after x = 330. When comparing with the mean streamwise
velocity in figure 1, it is noted that the peak in turbulent kinetic energy is located
outside the recirculation zone. This was also noted by SC and Alving & Fernholz
(1996) among others (see the introduction). At x = 350 the profile of the energy is
almost identical with the one at x = 150, but the maximum continues to decrease
downstream, even though the location (y = 18) of the maximum is constant. The
boundary layer is still subjected to an adverse pressure gradient, and the peak located
far out in the boundary layer is a consequence of this. Nothing unusual occurs at the
point of reattachment (x = 412). The peak value is stabilized after x = 450 at a value
of 0.006, which is the same value as observed in the APG1 case. That the maximum
value, and even the profile, of turbulent kinetic energy after reattachment resembles
the corresponding profile in the APG1 case, points to the local pressure gradient
being a very important factor. Thus, this observation strengthens the argument that
the local parameters are of importance for describing the flow, at least close to the
wall, and that the history of the boundary layer is less significant there.

The shear stress contribution to the production is shown in figure 11 for SEP.
Approximately the same behaviour as for the energy itself is observed up to x = 330.
The maximum occurs closer to the wall, but still above the recirculation region.
Between x = 350 and x = 400 is a region of negative production (destruction) above
the wall which originates from positive values of the Reynolds shear stress in that
region. The maximum value of the Reynolds shear stress, at the same position as
where the maximum destruction occurs, is 0.0036. This should be compared with the
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Figure 12. SEP: Contours of normal production ((〈v′v′〉 − 〈u′u′〉)∂u/∂x) of turbulent kinetic
energy. Positive values shown as solid lines, negative as dashed. Values from −3.5 to 8.5.

minimum value of −0.0057. It seems that even though the area of positive Reynolds
shear stress is small, the magnitude is of the same order as the (usual) negative values.

The streamwise and normal Reynolds stresses contribute to the production as shown
in figure 12, where this part of the production (by the term (〈v′v′〉 − 〈u′u′〉)∂u/∂x) is
shown. We denote it the normal production, and it is fluctuating more rapidly over
the boundary layer than the production originating from the shear stress. To obtain
a clear picture the data has been low-pass filtered in x with a filter width of 5. The
normal production has its maximum at increasing y-positions until x = 300 where
the negative (destruction) values appear.

From figures 11 and 12 one can also conclude that the total production is negative
in a region upstream of reattachment. This was also observed in the DNS of SC.

In the DNS of NM no negative total production in the middle of the layer occurred,
even though the production of Reynolds shear stress showed negative values both
close to the wall and in the middle of the boundary layer.

3.3. Comparison with analysis

To compare the DNS data with the results from § 2, the mean flow profiles will be
presented in different scalings and from different parts of the boundary layer. From
figure 2 it is observed that the back-flow is very weak compared to the free-stream
velocity. The portion of the boundary layer where back-flow exists is small compared
to the portion with positive streamwise velocity. But, the flow close to the wall is
important because it determines many of the features of the flow that are crucial
from an engineering aspect.

From APG1 the data are compared with the results from the analysis of the TBLE
for an attached boundary layer (§ 2.1). From SEP the data are compared with the
results from the analysis of the TBLE for a separated boundary layer (§ 2.2).

3.3.1. Velocity scales

To give some idea what the different scalings of the normal coordinate presented
in § 2 mean, we show the three different scalings for one streamwise position in
figure 13(a). The y+ and yp depend linearly on y since the velocity scales uτ and up
are independent of y. The difference in the slope of y+ and yp versus y is determined
by the ratio of uτ and up. Note that y∗ approaches y+ close to the wall.

The analysis of the overlap region in § 2.1.2 depended on the velocity gradient being
written as equation (2.11). In figure 13(b) the function f′ = (∂u/∂y)∗ is shown for
three different streamwise positions. The function has approximately the same shape,
which is consistent with equation (2.11). There is however no perfect self-similarity,
which is not surprising at the low Reynolds number we are considering here.
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Figure 14. Velocity profiles at x = 150 to x = 500. (a) APG1: ——, DNS; - - - -, u+ = y+.
(b) SEP: ——, DNS; - - - -, u+ = y+; − · −, u+ = −y+.

3.3.2. The viscous sub-layer

The near wall profiles are plotted in the viscous scaling in figure 14 and are
compared with the profiles given by the asymptotic versions of equations (2.7) and
(2.24). For APG1 the collapse is good as seen in figure 14(a). For the case SEP, shown
in figure 14(b), the profiles close to the u+ = y+ profile are the two in the attached
region at positions x = 450 and x = 500. The profiles furthest from both asymptotes
are taken from the positions closest to separation and reattachment, while the lowest
(closest to u+ = −y+) is from the position with strongest back-flow.

In figure 15 the same profiles are shown in pressure gradient scaling and are
compared with the profiles given by the asymptotic expression (2.25), which is the
same for the attached and separated case. The profiles are spread equally in the
viscous scaling and in the pressure gradient scaling due to the ratio uτ/up being
nearly constant, see figure 6. This is in strong contrast to the simulation of NM,
where the variation in uτ was enhanced by the rapidly growing pressure gradient. In
their simulation, the velocity profiles collapsed much better when scaled with up than
uτ (see Skote & Henningson 1999). Figure 15 shows that the profiles are further from
the asymptotic state (separation) than in the viscous scaling (figure 14), where the
profiles showed some similarity with the asymptotic (ZPG) profile.

Velocity profiles in the pressure gradient scaling at two downstream positions are
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shown in figure 16, together with the theoretical expressions for the velocity profile in
the viscous sub-layer. For APG1 (figure 16a) the positions are x = 200 and x = 450,
and for SEP (figure 16b) they are x = 200 and x = 300. Here the asymptotic curve
is not shown, but the pressure-gradient-dependent curves from equation (2.23) are
shown. The DNS profiles and the corresponding curves given by equation (2.23)
follow each other and show that even if the profiles are far from the asymptotic
state (as shown in figure 15), the inclusion of the pressure gradient term gives a good
agreement.

In summary, figure 14 shows that the scaling with uτ works for APG1 but not for
SEP. Figure 15 shows that the scaling with up does not work for APG1, nor for SEP,
while figure 16 shows that with the inclusion of the pressure gradient term, the scaling
with up works well in both cases.

3.3.3. The overlap region

The laws presented in § 2.1.2 are compared with data from the simulations in
figure 17, and the results from § 2.2 regarding the overlap region are presented in
figure 18.

For APG1 the extended logarithmic law (2.17) gives profiles that are more in
agreement than the usual ZPG logarithmic law, see figure 17(a). However, the value
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√
yp − 7 (equation (2.28) with γ = 0 and C = −7).

of the additive constant B in equation (2.17), which has a value of −2 close to
separation in both DNS and experiments, had to be set to +1.5 to fit the DNS data
in APG1. This is true for all streamwise positions, and hence the value of the additive
constant seems to depend on the pressure gradient, and not the Reynolds number.
In the attached region of the separating boundary layer, the profile from equation
(2.17) with B = −2 gives the best approximation, shown in figure 17(b). This is in
agreement with the earlier investigation of the flow just upstream of separation in the
simulation of NM, see Skote & Henningson (1999).

The profiles in the separated region, figure 18(a), are compared with the arctan
law derived in § 2.2. The profile given by equation (2.27) is in much better agreement
with DNS than the corresponding ZPG law, also shown in the figure. The additive
constant is −7 for the separated case. It should also be noted that the extended
logarithmic law derived for an attached layer under a strong APG, equation (2.17),
gives a poor agreement with DNS data in the separated region (not shown in the
figure). At the point of reattachment (x = 412) the profile is given in pressure gradient
scaling in figure 18(b). The asymptotic version of equation (2.28) is in good agreement
with DNS data since uτ is close to zero.

Thus, the conclusion is that the equations describing the overlap region derived
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Figure 19. V and U: ——, SEP; – – –, NM. The profile starting from unity is U.

in § 2 are in qualitative agreement with DNS data, and are far more consistent with
DNS data than the corresponding ZPG laws.

However, due to the low Reynolds numbers, it is not possible to draw any definite
conclusions regarding the overlap region. To properly clarify these matters, high-
Reynolds-number data are required, and the experiments of Alving & Fernholz
(1996) are therefore analysed in § 4.

4. Discussion
In this section a discussion of the relation between our results and others is

presented.

4.1. Comparison with earlier DNS

The separated turbulent boundary layer simulated by DNS presented here has dif-
ferent characteristics than earlier DNS of a separation bubble. Efforts have earlier
been made to create a bubble that starts and ends with a ZPG turbulent boundary
layer. In the simulation presented here, the boundary layer is everywhere subject to
an APG. To obtain a bubble with such a small extent in the streamwise direction,
as in the simulations of NM and SC, requires a strongly varying pressure gradient
in order to force the boundary layer to separate and then reattach. The pressure
gradient in those simulations was imposed by a strongly varying normal velocity
at the free-stream edge. This, in turn, creates a large normal gradient in the mean
flow at the upper boundary. Here, the streamwise pressure gradient does not vary as
rapidly as in the earlier DNS. However, the boundary layer reattaches upstream of the
fringe region even if no favourable pressure gradient is applied. The variation of the
normal velocity is much weaker than in NM, see figure 19. The free-stream V varies
approximately in the same way in SC as in NM. Here their x and y values have been
recalculated in our simulation coordinates. However, the relative starting positions
of the boundary layers cannot be calculated because the NM and SC simulations
started with a turbulent boundary layer while our simulation starts with a laminar
one that undergoes transition. In the comparison here, we simply present the results
from the starting point (x = 0) of each simulation.

The integrated quantities, such as the shape factor and momentum thickness, cannot
be compared with data from earlier DNS of separated flow by SC and NM. This is
due to the behaviour of the velocity profiles in the free stream in those simulations.
At some streamwise position the maximum value of u is located in the middle of the
boundary layer, and the value at the upper boundary is three times lower. Figure 20
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Figure 21. Cf: ——, SEP; - - - -, NM; · · · ·, SC.

shows velocity profiles at the position of maximum back-flow from the three different
simulations. The profiles from NM and SC show a considerable velocity gradient at
the upper boundary, and the value at the upper boundary of U varies strongly in
NM, as seen from figure 19.

The strong gradient in the free stream in the NM and SC simulations makes it
difficult to define a boundary layer edge. From figure 20 it is also clear that the
back-flow is stronger in the present simulation than in NM and SC.

Since there was no real free stream in SC and NM, the friction coefficient, Cf , was
calculated with the value of unity for the free-stream velocity U at all streamwise
positions. Comparison of the Cf from NM and SC with our simulation is made in
figure 21. It is clear from figure 21 that our separation bubble is longer than the
other two. In figure 21 the Cf from our simulation has been calculated using the same
technique as in NM and SC, i.e. with a value of unity for the free-stream velocity.

A possible criticism of our simulation technique is the inflow condition. The laminar
boundary layer undergoes transition and becomes turbulent under the influence of the
APG. This raises the question of whether the turbulence downstream is in equilibrium
or is influenced by the transitional region. Our results point towards the turbulence
having no memory of the transition and there being no dependence on the trip at
the beginning of the flow. The argument is simply that the theoretical profiles (which
have no memory of transition) coincide with the DNS results. This is also connected
to another issue: the importance of local parameters. The profiles (close to the wall)
are determined by local parameters and do not strongly depend on the history of the
turbulence. This is also evident in the profiles after reattachment which still depend
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Figure 22. Experimental data from Alving & Fernholz (1995). (a) Velocity profiles upstream of
separation: - - - -, equation (2.17) with κ = 0.41 and B = −2. (b) Velocity profiles in the separated
region: - - - -, equation (2.17) with κ = 0.41 and B = −2; · · · ·, equation (2.27) with κ = 0.41 and
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only on local parameters even though the boundary layer has been seriously distorted
by separation upstream.

We do not present any RANS calculation of the present cases. However, the data
from both APG1 and SEP have been used for the development of new and successful
turbulence models, see Skote & Wallin (2000) or Skote (2001).

4.2. The overlap region in experiments

To further investigate the theoretical expressions from § 2.1.2, but at a larger Reynolds
number than is possible to reach with DNS, the experimental data from Alving &
Fernholz (1995, 1996) are investigated.

In the work of Alving & Fernholz (1995) the velocity profiles showed considerable
departure from the law of the wall valid for ZPG flow. By using the Perry–Schofield
coordinates, modified by Dengel & Fernholz (1990), the curves were forced to collapse.
However, the procedure of determining the velocity scale a posteriori, from the
collapsed velocity profiles, make the analysis less valuable. The measured profiles are
here examined from the other standpoint, the extended law of the wall. In figure 22
the profiles before separation and in the separated region are shown. Upstream of
separation the extended logarithmic law (2.17) with the standard value of −2 for the
additive constant predicts the profiles well. In the separated region (only one profile
available) the profile given by equation (2.27) gives a better prediction than equation
(2.17). However, a change in the additive constant in equation (2.17) can make the
agreement with the experimental profile equally good.

Thus, the experimental data of Alving & Fernholz confirm and strengthen the
conclusion drawn from our DNS data in § 3.3.3.

4.3. Comparison with other theories for the overlap region

A number of investigators have, with different methods, tried to obtain the theoretical
velocity profile in APG flows, corresponding to the logarithmic profile in a ZPG flow.

According to Tennekes & Lumley (1972), the scaling with the pressure-gradient
velocity up (with uτ = 0) should lead to the same form of matching as in the zero
pressure gradient case. From this assumption a logarithmic law is obtained in the
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equation (4.4).

same manner as the usual procedure of matching the outer and inner solutions. The
log law becomes

up =
1

κ
ln(yp) + B. (4.1)

Our analysis has shown that the change of velocity scale from uτ to up does not
permit the analysis leading to equation (4.1), but instead yields the half-power law,
equation (2.19).

According to Stratford (1959), the velocity profile should be a half-power law
close to separation. Also Yaglom (1979) showed that a dimensional analysis gives the
following expression for the velocity profile close to separation:

u+ = K+
√
λy+ +K+

1 , (4.2)

which can be expressed in pressure gradient scaling as

up = K
√
yp +K1. (4.3)

Yaglom (1979) also proposed a fairly complicated dependence of K and K1 on up
and uτ. This dependence was introduced to extend the theory valid at separation to
the region upstream of detachment. It may not be regarded as a sound procedure,
however, to incorporate a functional behaviour in constants of an expression valid
only in an asymptotic state.

4.4. Alternative scaling of the back-flow

As suggested by Simpson (1983), the back-flow mean profiles may be scaled by the
maximum mean back-flow velocity (uN), together with the normal coordinate scaled
with the distance from the wall to the maximum (N). The profiles scaled in this way
are plotted in figure 23. Simpson (1983) also gives a logarithmic profile valid for
0.02 < y/N < 1.0 with a constant A involved:

u

uN
= A

[ y
N
− ln

( y
N

)
− 1
]
− 1. (4.4)

The constant A has been given a number of different values in numerous experimental
investigations by e.g. Dianat & Castro (1989) and Devenport & Sutton (1991). Thus,
the law seems to be of limited value. For comparison, the profile given by equation
(4.4) is also shown in figure 23 with A = 0.3 as suggested by Simpson (1983). The



134 M. Skote and D. S. Henningson

collapse of the profiles is poor, and the agreement with equation (4.4) is as bad as in
the DNS of a backward-facing step by Le, Moin & Kim (1997).

5. Conclusion
Direct numerical simulations of two turbulent boundary layers have been per-

formed. The flows are subject to slightly different adverse pressure gradients, resulting
in two very different flows. One is attached everywhere while the other is separ-
ated. Comparison with the earlier simulations shows that the present simulation is
well-resolved and has a stronger and larger recirculation region.

In addition to the simulations, a theoretical study was made where the turbulent
boundary layer equations are applied to adverse-pressure-gradient (including separ-
ated) flows. The theoretical study showed that universal self-similar velocity profiles
are possible only in the two extreme cases of zero pressure gradient and zero wall
shear stress respectively.

The main conclusions from the theoretical part of the study are as follows:
(i) The near-wall flow can be analysed using the turbulent boundary layer equa-

tions even beyond the point of separation. The theory is based on two different
velocity scales easily extracted from the parameters of the flow, and thus applicable
to turbulence modelling.

(ii) The two velocity scales yield two different velocity profiles, valid in the limits
of ZPG and separation respectively. In flows between these asymptotic states, the
velocity profiles depend on the Reynolds number and the pressure gradient, both in
the viscous sub-layer and the overlap region. In the limit of separation the quadratic
and square-root profiles are recovered.

The main conclusions from the analysis of the direct numerical simulations are:
(i) Near-wall scaling. The scaling with the local friction velocity close to the wall

does not work in the vicinity of separation. By using the pressure-gradient scaling and
keeping higher-order terms, the prediction of the velocity profile works surprisingly
well far out from the wall, even in the separated region. The agreement between the
local analysis and DNS data shows that the flow close to the wall depends primarily
on local parameters and not on ‘history effects’. Thus, the main physical reason for
the success of the velocity scaling is the dominating dependence of the turbulence on
local parameters.

Further out in the boundary layer, in the overlap region, the low Reynolds number
makes the comparison with DNS data less valuable. Nevertheless, the DNS data show
much better agreement with the overlap profiles derived in the present work than
with corresponding law of the wall for a zero-pressure-gradient boundary layer. The
comparison was strengthened by using experimental high-Reynolds-number data.

(ii) Near-wall streaks. The near-wall streaks are weakened by the adverse pressure
gradient, and the spacing in viscous units is increased. In the separated case the
streaks vanish at separation. However, the streaks reappear in the region with strong
back-flow. Before reattachment the reappearing streaks vanish and after reattachment
the streaks start building up again further downstream.

(iii) Turbulence energy. The turbulence energy production originating from shear
and normal Reynolds stresses are equal in strength. Both contributions are negative at
positions upstream of reattachment, which results in destruction of turbulence energy.
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