
J. Fluid Mech. (2013), vol. 730, pp. 273–294. c© Cambridge University Press 2013 273
doi:10.1017/jfm.2013.344

Comparison between spatial and temporal wall
oscillations in turbulent boundary layer flows

Martin Skote†

School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore

(Received 27 December 2012; revised 25 June 2013; accepted 1 July 2013)

Direct numerical simulations have been performed to study the drag reduction
resulting from spatial oscillations of a segment of the wall under a turbulent boundary
layer. The oscillating motion is imposed by utilizing a streamwise modulated spanwise
wall forcing. The results are compared with earlier simulations using temporal
oscillations with an identical segment and forcing amplitudes, and with a frequency
related to the wavelength through a convective velocity. Two different oscillation
amplitudes with equal oscillation wavelength have been used, which allows for a direct
comparison between a relatively weak and strong forcing of the flow. The weaker
forcing results in 25 % drag reduction while the stronger forcing, with twice the
amplitude, yields 41 % drag reduction. Comparison with the temporal cases reveals
drastically improved energy savings for the spatial oscillation technique, in accordance
with earlier channel flow investigations. The streamwise variation of spanwise shear
is shown to follow the analytical solution to the laminar Navier–Stokes equations
derived under the assumption of constant friction velocity. Furthermore, the spanwise
velocity profiles at various phases are compared with the analytical solution, and
show very good agreement. The downstream development of the spatial Stokes
layer thickness is theoretically estimated to be ∼x1/15, in general agreement with the
simulation data. The spatial variation of the spanwise Reynolds stress is investigated
and compared with the variation in time for the temporal wall forcing cases. The
controversy regarding a zero or non-zero production of spanwise Reynolds stress in the
temporal case is elucidated. In addition, comparison with the spatial case reveals that
a second production term originating from the downstream variation of the spanwise
wall velocity has a negative contribution to the production, and hence relates to the
larger drag reduction in the case of spatial forcing.
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1. Introduction
Reducing drag forces would have an immense impact on the economy of many

engineering applications. However, although many control strategies have been
investigated in the past, both feedback-control techniques (Kasagi, Suzuki & Fukagata
2009) and open-loop techniques in the form of wall motion or body force (Karniadakis
& Choi 2003), no practical implementation has yet been realized successfully. One of
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the simplest methodologies involves spanwise oscillation (either temporal, spatial, or in
the form of travelling waves), which in reality is difficult to apply to an aircraft wing,
for example. Thus, before technologies can emerge for large-scale implementation
on real-life machinery, a better understanding of the underlying mechanisms behind
the drag reduction (DR) is desirable. The purpose of this paper is to advance this
understanding by comparing two different types of oscillation: temporal and spatial.

The temporal form of oscillation, which is the most straightforward to implement,
and therefore was the first technique to be utilized by researchers, can be applied via a
wall velocity (W) in the spanwise direction in the form of

W =Wm sin(ωt), (1.1)

where Wm is the maximum wall velocity and ω is the angular frequency of the wall
oscillation, which is related to the period (T) via ω = 2π/T .

The first studies of turbulent flows over an oscillating wall were performed
numerically using direct numerical simulation (DNS) of channel flow by Jung,
Mangiavacchi & Akhavan (1992). During the following 20 years a number of DNSs
of the channel flow with temporal spanwise oscillations have been conducted (Baron
& Quadrio 1996; Choi, Xu & Sung 2002; Quadrio & Ricco 2003, 2004; Xu & Huang
2005; Ricco & Quadrio 2008; Ricco et al. 2012; Touber & Leschziner 2012).

The first experimental evidence that confirmed Jung’s DNS results was provided
by Laadhari, Skandaji & Morel (1994) and Skandaji (1997), who applied the
oscillation technique to the boundary layer flow. Since then, most of the experimental
investigations have been focused on the boundary layer (Trujillo, Bogard & Ball 1997;
Choi & Clayton 2001; Choi 2002; Di Cicca et al. 2002; Ricco 2004; Ricco & Wu
2004).

Pipe flow also exhibits DR when the wall undergoes oscillations. Choi &
Graham (1998) were the first to experimentally investigate the oscillating pipe flow.
Subsequently, both DNS (Nikitin 2000; Quadrio & Sibilla 2000; Duggleby, Ball &
Paul 2007) and experiments (Auteri et al. 2010) have been conducted.

Yudhistira & Skote (2011) performed the first DNS of turbulent boundary layers
over an oscillating wall, and the DR development downstream followed that observed
from experiments by Ricco & Wu (2004). The sensitivity of the Reynolds shear
stress profiles to the turbulence statistics sampling time was investigated, and some
inconsistency in earlier experimental findings could be explained. Skote (2012) chose
lower oscillating amplitudes to demonstrate that a positive energy budget was possible,
and extensive comparisons with experimental data were performed. The simulations
investigated in the present work are conducted using the same numerical code, but
with a spatial wall forcing instead of a temporal one, as explained below.

Recently, some researchers have considered a steady variation in the streamwise
direction along the plate in the form of

W =Wm sin(κx), (1.2)

where κ is the wavenumber of the spatial oscillation, which is related to the
wavelength (λx) via κ = 2π/λx.

The investigations of spatial oscillation have so far only been performed using DNS
of channel flow by Viotti, Quadrio & Luchini (2009) and of boundary layer flow
by Skote (2011). An improved energy saving compared to temporal oscillations was
obtained in both of these studies.

The combination of spatial and temporal wall oscillation (streamwise travelling
waves) in a channel flow was studied (via DNS) by Quadrio, Ricco & Viotti (2009).
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However, only marginal improvement on the DR (compared to the stationary forcing)
was obtained. The theoretical and numerical studies were recently further developed
by Quadrio & Ricco (2011). The only experimental data so far for this type of wall
forcing are provided by Auteri et al. (2010), who applied the streamwise travelling
wave on the pipe flow.

In the present paper results are presented from DNS of boundary layer flow with a
steady spanwise wall velocity which is varying in the streamwise direction according
to (1.2), and are compared to the results (Skote 2012) from a temporally oscillating
spanwise wall velocity according to (1.1). Oscillation parameters have been chosen in
order to facilitate a direct comparison. Thus the values of Wm are kept identical to the
previous temporal oscillation cases, and the chosen wavenumber κ corresponds to the
angular frequency since they are related through a convection velocity Uw according to
κUw = ω.

Hence, in the present investigation, four simulations are compared: two cases with
the forcing according to (1.1) and two cases according to (1.2). For each forcing
type, two different wall velocities have been used. The results from the temporal
forcing were presented in Skote (2012) with extensive comparison to experimental
results. Thus, in the present paper we focus on the comparison between the two new
simulations using spatial forcing with the previously investigated temporal oscillating
cases.

Specific flow features of the spatial forcing case we consider in the present work,
which have not been investigated before, either by Viotti et al. (2009) for channel flow
or by Skote (2011) for boundary layer flow, are:

(i) spatial development of spanwise shear;
(ii) streamwise transients of spanwise velocity profiles;

(iii) downstream development of the spatial Stokes layer thickness;
(iv) comparison of Reynolds stresses for spatial and temporal forcing;
(v) phase-averaged spanwise Reynolds stress, and its transients;

(vi) production of the spanwise Reynolds stress, and its relation to DR.

The paper is organized as follows. In § 2 the numerical method and simulation
related issues are discussed. The analytical results considering the spanwise flow,
which is approximated with the laminar equations, are presented in § 3. The DR and
power budget are discussed in § 4, while turbulence statistics are presented in § 5.
Lastly, conclusions are drawn in § 6.

2. Numerical method and simulation parameters
The numerical code and grid are the same as in the previous simulations of a

spatially oscillating turbulent boundary layer reported by Skote (2011). Two new
simulations of turbulent boundary layers subjected to a steady spanwise wall velocity,
which is varying in the streamwise direction according to (1.2), have been performed
with different wall velocities. A third simulation uses the higher of the two wall
velocities, but with a larger grid resolution, to prove that the resolution is sufficient.
The code was developed at KTH, Stockholm (Chevalier et al. 2007). A simulation of a
turbulent boundary layer at ReΘ = 2500 was performed by Schlatter et al. (2009), with
results in excellent agreement with experimental data at the same Reynolds number.
An outline of the numerical scheme is presented in § 2.1, the various parameters used
and the resolution are presented next in § 2.2, where the implementation of the wall
motion is also presented.
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2.1. Numerical scheme
A pseudospectral method is employed, with Fourier discretization used in the
streamwise and spanwise directions and Chebyshev polynomials in the wall-normal
direction. The simulations start with a laminar boundary layer at the inflow which is
triggered to transition by a random volume force near the wall (referred to as the trip
in the following). Details can be found in Yudhistira & Skote (2011).

A fringe region is added at the end of the computational domain to enable
simulations of spatially developing flows (see figure 1). In this region the flow is
forced from the outflow of the physical domain to the inflow. In this way the
physical domain and the fringe region together satisfy periodic boundary conditions.
The implementation is done by adding a volume force

Fi = λ(x)(ûi − ũi) (2.1)

to the Navier–Stokes equations,

∂ ũi

∂t
+ ũj

∂ ũi

∂xj
=− 1

ρ

∂ p̃

∂xi
+ ν ∂

2ũi

∂x2
j

+ Fi. (2.2)

The force Fi acts only in the fringe region, ûi is the laminar inflow velocity profile
the solution ũi is forced to, and λ(x) is the strength of the forcing. The form of the
fringe function is designed to have minimal upstream influence and is given by

λ(x)= λmax f (x) (2.3)

with

f (x)= S

(
x− xstart

1xrise

)
− S

(
x− xend

1xfall
+ 1
)
. (2.4)

Here λmax is the maximum strength of the fringe, xstart and xend denote the spatial
extent of the region where the fringe is non-zero, and 1xrise and 1xfall are the rise and
fall distance of the fringe function respectively. S(x) is a continuous step function that
rises from zero for negative x to unity for x > 1. The expression for S(x), which has
the advantage of having continuous derivatives of all orders, is

S(x)=


0, x 6 0,
1/(1+ e(1/(x−1)+1/x)), 0< x< 1,
1, x > 1.

(2.5)

The function f (x) is also utilized in the implementation of the wall oscillation
described in § 2.2 below.

The time integration is performed using a third-order Runge–Kutta scheme for the
nonlinear terms and a second-order Crank–Nicolson method for the linear terms. A
3/2 rule is used to remove aliasing errors from the evaluation of the nonlinear terms
when calculating FFTs in the wall-parallel plane.

2.2. Numerical parameters
All quantities are non-dimensionalized by the free stream velocity (U) and the
displacement thickness (δ∗) at the starting position of the simulation (x = 0), where
the flow is laminar. The Reynolds number is set by specifying Reδ∗ = Uδ∗/ν at x = 0.
In all the simulations presented here, Reδ∗ = 450. The computational box is 600 in
simulation length units (δ∗) long (including 100 units for the fringe), 30 units high and
34 units wide.
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FIGURE 1. Horizontal plane (y = 0.5) in the computational box. The dark grey indicates
low-speed regions and lighter shades indicate high-speed patches. The laminar outflow is
equal to the inflow, so periodic boundary conditions are used in the horizontal plane. The size
of the computational box horizontally is 600 in x and 34 in z (in units of δ∗). The figure is
compressed by a factor of five in the downstream (x) direction.

As the fringe starts at x = 500, only results up to x = 470 will be utilized to avoid
any upstream influence of the fringe. The transition region is roughly between x = 5
(where the trip is located, see figure 1) and x = 150. Thus, the region of a fully
developed turbulent boundary layer, free from any influence of the numerical method,
is x = 150–470. The Reynolds number based on the momentum thickness (Reθ ) varies
between 418 and 750 in this region for the unmanipulated (reference) boundary layer.
In inner scaling (based on the friction velocity at x = 250), the region amounts to
∼7000 wall units.

The spatial wall oscillation in the present simulations is applied in the spanwise
direction at a particular region in the streamwise direction. Therefore, the form of this
boundary condition is given by

w|y=0 =Wmf (x) sin[κ(x− xstart)], (2.6)

where a profile function f (x) is utilized to select the domain where the oscillation
takes place, and is the same profile function as used for the fringe region (see (2.4)),
with xstart, xend, xrise and xfall set to 250.3, 483.0, 10.0 and 10.0 respectively.

A horizontal plane of the full computational box (stretched in the spanwise
direction) is shown in figure 1, where low-speed streaks near the wall are visualized.
The spatial oscillations are clearly revealed and are a direct result of the streamwise
modulated spanwise wall forcing. The figure illustrates how the periodic boundary
conditions can be utilized due to the numerical fringe region at the end of the
computational box, where the laminar flow is restored using the forcing provided
by (2.1).

In the simulation presented here the wavenumber (κ) is set to 0.108, which in
wall units corresponds to a wavelength of λ+x = 1320, while two different values for
the maximum wall velocity (Wm) were used, 0.3025 and 0.605 respectively, which in
wall units corresponds to W+m = 6 and W+m = 12, based on u0

τ where the wall forcing
starts (x = 250). In the following the lower amplitude case will be referred to as
case 1, while the higher amplitude case is denoted case 2. As described above, the
wall forcing is applied between x = 250.3 and x = 483.0 in simulation coordinates,
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FIGURE 2. Downstream variation of the wall velocity: —, at maximum positive wall
velocity; −−, at maximum negative wall velocity; · · · , constant (in time) wall velocity
varying downstream. The positions marked 0–11 will be used to compare various quantities at
different phases of the spatial wall oscillation in §§ 3 and 5.

which corresponds to four periods, or a total length of applied wall motion of 5000 in
wall units.

The results will be compared with temporal oscillation simulations taken from Skote
(2012). In that case the wall oscillation is described by (1.1) and the form of this
boundary condition is given by

w|y=0 =Wmf (x) sin[ω(t − tstart)]. (2.7)

The parameter ω is the angular frequency of the wall oscillation, which is related
to the period by ω = 2π/T . The angular frequency (ω) of the wall oscillation is set
to 0.0545, which in wall units corresponds to T+ = 132. The amplitudes were set
identically to cases 1 and 2 as described above. In the following the lower amplitude
case will be referred to as temp 1 while the higher amplitude case is called temp 2.
(These are the simulations referred to as cases 1 and 2 in Skote 2012.)

The wavelength (λx) in the simulations presented here was chosen so that
λ+x = U +

w T+. An estimated value of U +
w = 10 was shown to relate the temporal

and spatial transients in a temporally oscillating boundary layer by Skote (2012).
The streamwise modulation of the wall velocity is illustrated in figure 2 (dotted line)

together with the corresponding temporally oscillating wall velocity at the instant of
maximum positive and maximum negative wall velocity. The numbered positions in
the figure will be utilized later in the text.

Two different resolutions were used for the simulations to ensure that the results
would be completely grid-independent. The cases from Skote (2012) (temp 1 and temp
2) were simulated with a resolution of 800 modes in the streamwise direction, 201
modes in the wall-normal direction, and 144 modes in the spanwise direction.

The present DNS data (cases 1 and 2) were simulated using the same grid as above,
and case 2 was then simulated using a grid of size 1000 × 217 × 192, yielding a
resolution in wall units of 1X+ ×1Z+ ×1Y+min = 13.6× 4.0× 0.036. Note that unless
otherwise stated, the + superscript indicates that the quantity is made non-dimensional
with the friction velocity of the unmanipulated boundary layer (the reference case),
denoted u0

τ , and the kinematic viscosity (ν).
The velocity profile at the position x = 400, i.e. in the region of maximum DR, is

shown in figure 3(a) for the two grids. The difference is very small and is due to the
small variation (0.8 %) in friction velocity between the two resolutions. Indeed, if the
same uτ is used as the scaling velocity, the velocity profiles completely overlap.
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FIGURE 3. (Colour online) (a) Velocity profiles (case 2) at the position x = 400 for the two
resolutions. (b) Reynolds shear stress profiles (case 1) at x = 400. Lines: —, reference case;
−− (blue), statistics for t = 5000–13 000; · · · (red), statistics for t = 13 000–22 000.

The sampling time for the reference case was 12 000 in time units (δ∗/U),
corresponding to 13 700 in viscous units, started only after a stationary flow (in
the statistical sense) was reached. In the cases with wall forcing, the total sampling
time was 17 000 (19 400 in viscous units) after an initial simulation time of 5000 with
oscillations.

In the previous simulation by Yudhistira & Skote (2011) it was shown that the
most sensitive statistical quantity with respect to the length of sampling time is
the Reynolds shear stress. Thus, as a measure of the grade of convergence of the
turbulence statistics the Reynolds shear stresses from two different time intervals are
shown in figure 3(b). In this case, we chose the unscaled quantity and linear scaling of
the wall-normal coordinate (y) to demonstrate the sufficiently high computational box.
Only very small variations can be detected, in contrast to the large deviations found in
Yudhistira & Skote (2011) when shorter intervals were chosen. Hence, the turbulence
statistics can be considered stationary and will in the following be taken from the
interval t = 5000–22 000, which corresponds to 1t+ = 19 400 in wall units.

3. Analytical derivations
In this section the time-averaged Navier–Stokes equations will be used and we

denote the velocity components ui (or u, v,w), while the fluctuating part is denoted
with a prime so that ũi = ui + u′i. Furthermore, we will focus on the case with
streamwise modulated wall velocity since the case of temporal oscillations has been
analysed in Skote (2012).

Starting from the laminar (as an approximation for the turbulent flow) spanwise
momentum equation, and assuming parallel flow, an analytical expression for the
spanwise shear can be found (§ 3.1), and by neglecting the transient regions at
the beginning and end of the streamwise oscillation of wall velocity, the spanwise
velocity profile can be derived (§ 3.2). The analytical expressions are compared with
the (turbulent) DNS data.

3.1. Spanwise shear
Here, the analysis will follow Viotti et al. (2009) until (3.7). Thereafter, additional
issues need to be considered due to the spatially developing boundary layer.
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By taking into account spanwise invariance and stationary flow, the spanwise
momentum equation can be written as

u
∂w

∂x
+ v ∂w

∂y
= ν

(
∂2w

∂x2
+ ∂

2w

∂y2

)
. (3.1)

The Reynolds stress gradient terms in the spanwise momentum equation,

∂

∂x
u′w′ and

∂

∂y
v′w′, (3.2)

are several magnitudes lower than the rest of the terms, as shown by Ricco & Quadrio
(2008).

In the approximation of parallel flow (v = 0) and by assuming that the spatial Stokes
layer (SSL) is thin, the second-to-last term in (3.1) can be neglected, and (3.1) can be
simplified to (Viotti et al. 2009):

u
∂w

∂x
= ν ∂

2w

∂y2
. (3.3)

Furthermore, the streamwise velocity u can be removed by replacing u(y) in (3.3)
with the approximation

u≈ y
∂u

∂y

∣∣∣∣
y=0

, (3.4)

which is an accurate representation in this case since u+ = y+ near the wall.
For the channel flow case, Viotti et al. (2009) derived the solution to (3.3) using the

boundary condition

w(x, 0)=Wm cos(κx), (3.5)

and the solution may be written as

w(x, y)= Wm

Ai(0)
Re
[

exp(iκx)Ai
(
− iy
δx

e−i4/3π

)]
, (3.6)

where Ai is the Airy function and κ = 2π/λx is the forcing wavenumber. The thickness
of the SSL is described by

δx =
(
ν2

u2
τ

λx

2π

)1/3

. (3.7)

Expressed in wall units, (3.7) can be written as δ+x = (λ+x /2π)1/3. We also note in
(3.6) that the x-coordinate is scaled with κ , and the y-coordinate is scaled with δx and
hence we can form the non-dimensional vertical coordinate η = y/δx. By introducing
κ+ = κν/uτ , we can write δ+x = (κ+)−1/3, and hence η = y+(κ+)1/3.

Because we intend to retain the approximation of parallel flow for the present case,
we introduce an averaged friction velocity, denoted by ūτ , which is defined as

ūτ = 1
L

∫ xf

xi

(uτ ) dx, (3.8)

where L = xf − xi. The positions xi and xf are chosen so that uτ is relatively constant
in the region over which the integration is taken. They are also specified such that a
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full number of periods are covered. Hence, the positions numbered 0 and 8 in figure 2
are chosen, which in simulation coordinates correspond to xi = 395.4 and xf = 453.0,
respectively.

Thus, (3.3) can be formulated as

ȳ
∂w̄

∂ x̄
= ∂

2w̄

∂ ȳ2
, (3.9)

where the overbar (¯) denotes wall-scaling based on the constant (averaged) friction
velocity ūτ .

The boundary condition (BC) in this case is not a simple harmonic function. The
spanwise wall velocity is shown in figure 2 (as the dotted line) and described by
(2.6). However, as a analytical solution is sought, the BC must be expressed in cosine
functions. Noting that a sinusoidal variation with amplitude of unity in the positive
half-plane (of the x-axis) and zero value in the negative can be expressed as

1
2

cos
(
κx+ 3π

2

)
+ 1

2
cos
(
|κx| + 3π

2

)
, (3.10)

the full BC given by (2.6) may be written:

w(x, 0)= Wm

2

[
cos
(
|κ(x− xstart)| + 3π

2

)
− cos

(
|κ(x− xend)| + 3π

2

)]
, (3.11)

with xstart and xend specified as 250.3 and 483.0, respectively.
With this BC, the solution for the gradient of spanwise velocity at the wall becomes

∂w

∂y

∣∣∣∣
y=0

= Wm

2
Ai′(0)
Ai(0)

δ−1
x

×
[
sgn(xs) sin

(
κ|xs| + π2 −

π

3
sgn(xs)

)
− sgn(xe) sin

(
κ|xe| + π2 −

π

3
sgn(xe)

)]
,

(3.12)

where we have introduced the x-coordinates xs ≡ x − xstart and xe ≡ x − xend. The
function sgn is the signum function. Note that (3.12) is the solution to (3.9) but is
formulated in the unscaled variables. Hence, δx has been evaluated using ūτ and is thus
a constant in (3.12).

The analytical solution (3.12) is compared with DNS data for largest wall velocity
(case 2) in figure 4, where the solid line is DNS data and the dotted line represent
(3.12). The agreement is perfect except at the start of oscillation where the local uτ
is very different from ūτ (the DR is still developing in this region: see figure 7), and
at the end, where the sharp analytical solution is replaced by a gradual change due to
the second-to-last term in (3.1) (which is neglected in the derivation of the analytical
expression).

In the case of laminar boundary layers, the x-dependence of δx can be derived, as
was done by Ricco (2011), who found that δx ∼ x1/6. This estimation can be provided
because uτ ∼ x−1/4 in the laminar case and hence the relation above follows directly
from (3.7). On the other hand, in the present case, uτ can only be found as part of the
solution of the streamwise momentum equation (this is the reason for introducing ūτ in
the analysis above leading to the analytically solvable (3.9)), and will of course depend
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FIGURE 4. Downstream development of the spanwise velocity gradient from case 2: —,
DNS data; · · · , (3.12).
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FIGURE 5. Downstream development of δx compared with the estimation δx ∼ x1/15 indicated
by the dotted lines; —, case 1; −−, case 2.

on the resulting DR. However, a rough estimation can be found if it is assumed that
uτ varies (in x) in approximately a similar way as for the unperturbed boundary layer,
hence uτ ∼ x−1/10 (see e.g. Schlichting 1979). Then it follows from (3.7) that δx ∼ x1/15.
This estimation is illustrated in figure 5 together with the δx from cases 1 and 2.
Even though δx is oscillating in the downstream direction (which is a consequence
of the streamwise variation of the DR), the general trend follows the rough estimate
provided.

Note, however, that no enhancement of the accuracy of (3.12) is obtained by
incorporating δx ∼ x1/15 as a replacement for a constant δx based on ūτ , since (3.12) is
a solution to (3.9) which was derived under the assumption of a constant uτ = ūτ .

3.2. Spanwise velocity profile

When deriving the analytical expression for the full spanwise velocity profile, we focus
on the region over the oscillating part of the plate and do not consider either the
spatially developing flow near the start of oscillation or the region close to the end of
the oscillation. In this region, the spanwise velocity profile is derived from (3.9) with
the BC:

w(x, 0)=Wm cos
(
κxs + 3π

2

)
. (3.13)
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FIGURE 6. Spanwise velocity profiles for case 2: (a) at points labelled 0–7 in figure 2, (b)
at points directly downstream from the start of oscillation. Lines: —, DNS; −−, from (3.14).
Symbols: O, 1/8λx; ×, 3/8λx; �, 6/8λx; ©, 7/8λx.

The solution can be written as

w(x, y)= Wm

Ai(0)
Re
[

exp
(

iκxs + 3π
2

)
Ai
(−iη̄e−i4/3π

)]
, (3.14)

where η̄ = yκ1/3(ūτ/ν)
2/3.

The profiles from (3.14) are compared with the DNS data at eight points labelled as
0–7 in figure 2: thus, where the wall velocity is at its maximum and minimum levels,
zero (points 0 and 4), and four positions in between. As the results in figure 6(a)
indicate, the overlap is very good. Thus, even in the boundary layer flow, where the
flow is inhomogeneous in the downstream direction (and hence uτ is not constant in
contrast to channel flow), the spanwise velocity profile follows the prediction derived
from the laminar equations. Good agreement was also found by Viotti et al. (2009)
for channel flow where the theoretical profile is given by (3.6). For the temporal
oscillation cases, similarly good agreement between DNS data and the classical Stokes
solution was found (Skote 2012).

To investigate how soon downstream (3.14) is valid, the spanwise velocity profile
immediately after the onset of wall oscillation is shown in figure 6(b). The agreement
is not good until the end of the first wavelength of the forcing has been reached. Thus,
the spatial transient for the spanwise flow is around one wavelength of the forcing.
Remember that (3.14) is derived assuming constant uτ = ūτ , a condition which is
clearly not fulfilled close to the onset of the forcing. Note that this relatively short
spatial transient (one wavelength) only exists for the spanwise flow evolution. For the
streamwise flow, the region of spatial development is longer, e.g. the transients of
δx (figure 5) are around 100 in x, corresponding approximately to two wavelengths
of the forcing. Similar differences in the spanwise and streamwise flow development,
respectively, were also found to exist in the time-dependent forcing of channel flow
(Quadrio & Ricco 2003) and boundary layer flow (Skote 2012).

4. Drag reduction and power budget
This section starts with a presentation of the DR (4.1), which is followed by an

investigation of the energy saving budget (4.2).
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FIGURE 7. Downstream development of the DR. Present case 1 (—) and case 2 (−−);
temporal simulation results from Skote (2012) temp 1 (· · · ) and temp 2 (− · −).

4.1. Drag reduction
The friction coefficient is defined as

Cf = 2
(

uτ
U∞

)2

, (4.1)

where the friction velocity uτ is calculated from the mean streamwise velocity gradient
at the wall:

uτ ≡
√
ν
∂u

∂y

∣∣∣∣
y=0

. (4.2)

The resulting DR is calculated by

DR(%)= 100
C0

f − Cf

C0
f

, (4.3)

where C0
f is the skin friction of the reference case. The downstream development

of the DR is shown in figure 7, where case 1 is represented by the solid line and
case 2 by the dashed line. Also included in the figure are the DR from temp 1 and
2, illustrated by the dotted and dash-dotted lines respectively. As noted in the figure,
the DR for the spatial forcing is substantially larger than the corresponding temporal
oscillation cases. The (spatial) oscillations in the DR clearly seen in figure 7 are a
direct result of the downstream modulation of the wall velocity, and were investigated
by Skote (2011).

The results in figure 7 are summarized in table 1, where the DR is calculated
as a mean value over the portion of the flow where DR is constant (apart from
the harmonic oscillations). In the cases presented here, the portion is chosen to be
identical to the previous section, i.e. the region between x = 395.4 and x = 453.0.
For completeness we also include data from the two previous simulations performed
by Skote (2011) and Yudhistira & Skote (2011), even though the wavelength and
period, respectively, are slightly different in those cases (λ+x = 1300 and T+ = 118,
respectively).

4.2. Energy saving
The energy saving due to DR is compared to the energy required to move the wall
by estimating the idealized power consumption, following the derivation by Quadrio
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Spatial oscillation Temporal oscillation
W+m λ+x DR W+m T+ DR

6 1320 25.1 6a 132 18.0
12 1320 41.0 12a 132 29.4
17b 1300 46.0 17c 118 36.5

TABLE 1. Comparison of DR between spatial and temporal oscillations. a Data taken from
Skote (2012). b Data taken from Skote (2011). c Data taken from Yudhistira & Skote (2011).

et al. (2009) and extended to boundary layer flow. The percentage saved power Psav

is equal to the percentage of friction DR (equation (4.3)), and integrated over a
distance with approximately constant DR and integer number of periods (in this case
x = 395.4–453.0). The required percentage power Preq is similarly defined in terms of
the friction power of the reference flow and may be written as

Preq(%)= 100
∫ xf

xi

ν
∂w

∂y

∣∣∣∣
y=0

W dx

/∫ xf

xi

(u0
τ )

2
U dx. (4.4)

In addition, an integration in the spanwise direction (z) is required, but is omitted in
the formula above since the flow is homogeneous in that direction. In addition, a factor
equal to density (of the fluid) times area (of the oscillating part of the bottom wall) is
removed (cancelled out) in both numerator and denominator.

The net percentage power saving is defined as Pnet = Psav + Preq and is calculated
to be 16.3 and 7.2 % for the two cases presented here. The results presented by Viotti
et al. (2009) showed that Pnet becomes positive (up to 23 %) for lower amplitudes of
the forcing (W+m = 6). The larger value of Pnet in their case is probably due to the
lower Re; see the discussion of Reynolds number dependence in Skote (2012).

Thus, the power saving for the two present cases is positive, in contrast to the high
amplitude (W+m = 17) simulation by Skote (2011) which yielded Pnet = −19.5. If Pnet

is negative it means that the power needed to drive the wall in the spanwise direction
is greater than the power saved by streamwise DR.

For the temporally oscillating case, the percentage power Preq(%) required to
oscillate the wall may be written as (Skote 2012)

Preq(%)= 100
W2

m

2

√
νω/2

/
U

L

∫ xf

xi

(u0
τ )

2
dx, (4.5)

where L = xf − xi and the integration is over a distance with approximately constant
DR (in this case x= 366–468).

The required power for all four cases is compared with the energy saving in table 2,
together with the earlier simulations by Skote (2011) and Yudhistira & Skote (2011).
Observe that the Pnet is much lower for the temporal cases, in agreement with the
channel flow simulations by Viotti et al. (2009).

5. Turbulence statistics
Due to the streamwise modulated wall forcing (for cases 1 and 2), the flow field

is expected to be varying in the downstream direction. However, the streamwise
velocity profile (as shown in figure 3a) is almost invariant when comparing different
streamwise locations. A two-dimensional contour plot is shown in figure 8(a), where
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Spatial oscillation Temporal oscillation
W+m Psav Preq Pnet W+m Psav Preq Pnet

6 25.1 −8.8 16.3 6a 18.0 −15.2 2.85
12 41.0 −33.8 7.2 12a 29.4 −60.8 −31.5
17b 46.0 −65.5 −19.5 17c 36.5 −133 −96.5

TABLE 2. Comparison of percentage power saving and required power for the spatial and
temporal oscillations. The two first lines are the present data with λ+x = 1320 and T+ = 132
respectively, while slightly different values were used in the additional cases presented in
the last row. a Data taken from Skote (2012). b Data taken from Skote (2011) (λ+x = 1300).
c Data taken from Yudhistira & Skote (2011) (T+ = 118).
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FIGURE 8. Two-dimensional plot stretched in the wall-normal direction. Streamwise
dimension x = 230–468; wall-normal y = 0–5. (a) Time-averaged and spanwise averaged
streamwise velocity. Contour range from 0.025 to 0.0875 with spacing of 0.05. (b) Time-
averaged and spanwise averaged spanwise Reynolds stress (r.m.s. value), (w′w′)

1/2
. Contour

range from 0.0025 to 0.0725 with spacing of 0.005.

only a very weak streamwise oscillation can be detected. On the other hand, the
spanwise Reynolds stress, visualized for the same region in figure 8(b), exhibits a
wildly fluctuating pattern in the downstream direction. (All Reynolds stresses exhibit
harmonic oscillations downstream, but the spanwise component is by far the most
distinctly varying.) For this reason, the turbulence statistics is presented in two sections
below. First, the streamwise averaged profiles will be presented in § 5.1, where the
averaging is taken over one period in the downstream direction. The result will be
compared with the temporally oscillating case from which the profiles are averaged
over a region of constant DR. Thereafter, in § 5.2, the spanwise Reynolds stress
is investigated for various streamwise positions, and compared with the equivalent
positions in time (phases) from the temporally oscillating case.

5.1. Averaged profiles

The longitudinal (r.m.s. value), normal (r.m.s. value), and shear Reynolds stresses
respectively (averaged from x = 395.4 to x = 453.0) scaled with u0

τ are shown in
figure 9(a). Profiles from case 2 are shown, together with the reference profiles (the
thicker curves). For case 1 the profiles are located between the reference and case 2
curves (omitted in the figure for clarity).
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FIGURE 9. Reynolds stresses: —, u+rms; −−, v+rms; − · −, w+rms; · · · , u′v′
+

. The thicker curves
are the unmanipulated boundary layer; the thinner curves are for the spatially oscillating
wall (case 2). (a) Reynolds stresses from the oscillating boundary layer scaled with u0

τ . (b)
Reynolds stresses from the oscillating boundary layer scaled with ūτ .

The reductions in maximum u+rms, for cases 1 and 2, are 21 and 35 % respectively,
and 17 % for case 1 and 26 % for case 2 in maximum v+rms. For w+rms, the peak value
is reduced by 11 and 20 %, respectively. For the Reynolds shear stress u′v′

+
the

reductions are larger; 28 and 47 % for cases 1 and 2, respectively. The effect of the
spatial wall forcing on the Reynolds stresses follows that observed from the temporal
oscillations, although the reductions are augmented.

A line is added in figure 9(a) which corresponds to y+ = 24.2, which marks the
edge of the spatial Stokes layer (SSL), which is calculated from the velocity profile
(figure 6).

When comparing the position of the maxima of the Reynolds stresses for the
reference case, one may note that the peak of the longitudinal Reynolds stress (urms)
is located below the edge, while the normal, spanwise and shear stress peaks are
positioned above. Thus, it might be suspected that the maximum in urms is affected
more by the spatial Stokes layer than the other stresses. In order to investigate this,
the stresses in figure 9(a) are scaled with the actual friction velocity ūτ and plotted
in figure 9(b). In agreement with the reasoning above, the peak in urms is greatly
affected while normal and shear stress peaks exhibit much less reduction. Similar
features were found in the temporal case by Skote (2012). Note that there also exists
a strong similarity in the Reynolds stresses between the present boundary layer flow
and channel flow with temporal forcing; see e.g. the simulation results by Ricco et al.
(2012).

In figure 9 it is also noteworthy that the peak values of urms, vrms and u′v′ have
shifted further away from the wall in the wall forcing case, while on the other hand
the peak of wrms has moved closer to the wall.

Comparison of the longitudinal Reynolds stress for all four cases (we compare
case 1 with temp 1, and case 2 with temp 2) in figure 10(a) reveals that the reduction
(compared with the reference case) is similar for both types of wall oscillations even
though the DR is much higher for the spatial cases. Again, all the profiles in figure 10
have been averaged over x = 395.4–453.0 in the spatial cases, while the region
x = 366.0–468.0 is used for averaging in the temporal cases. For vrms and u′v′ (not
shown in figure 10a), the profiles from all four cases are very similar. The Reynolds
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FIGURE 10. (a) Longitudinal and normal Reynolds stresses scaled with ūτ . (b) Velocity
profile scaled with ūτ . Thick solid line, reference case; thin solid line, case 1; −−, case 2; · · · ,
temp 1; − · −, temp 2.

stress component that exhibits the most differences between spatial and temporal cases
(and thus accounts for the different DR) is wrms, which will be investigated in § 5.2
below.

In contrast to the Reynolds stresses, the velocity profiles exhibit more pronounced
differences, as seen in figure 10(b). The figure demonstrates that the DR is directly
related to the velocity profiles by the upward shifting of the logarithmic layer. Only
the inner part is shown in figure 10(b) for clarity; please refer to figure 3(b) for the
full profile. By comparing the velocity profiles from all four cases we note that the
viscous linear region is present in all cases while the shifting of the logarithmic region
is clearly correlated to the amount of DR. Thus, the response of the velocity profile
to the wall forcing is fundamentally different from the shear stress decreasing effect
from an adverse pressure gradient, which alters the scaling in the near-wall region by a
change of velocity scale: see Skote & Henningson (2002).

5.2. Spatially varying spanwise Reynolds stress

Although the streamwise modulated spanwise wall forcing results in a very weakly
oscillating streamwise velocity (see figure 8a), the spanwise Reynolds stress is strongly
varying (figure 8b). Hence, the streamwise averaged (over one wavelength) profiles of
the Reynolds stresses shown in figure 9 cannot provide the full detailed picture.

The wrms profiles at positions 1–8 (referring to figure 2) are investigated next in
order to elucidate the spatial variation. First, however, the wrms for case 2 and temp 2
are compared in figure 11(a). The solid line is the wrms from temp 2, which will
eventually reach a value of Wm/

√
2 at the wall due to the temporal wall forcing.

In order to remove this effect from the temporal Stokes layer, a phase averaging
over one period is done, as indicated by the dash-dotted line. As can be seen in
figure 11(a), above the Stokes layer, the two profiles coincide. The profile from the
spatial forcing (the dotted line) is located below the temporal one, and hence this
is the most significant difference between the two types of forcing. Remember that
the longitudinal and wall-normal stresses were almost identical for the temporal and
spatial cases (for the same set of oscillation parameters) even though the DR is
significantly different.
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FIGURE 11. (a) Spanwise Reynolds stress (wrms): −−, reference case; · · · , case 2; —, temp
2; − · −, temp 2, phase-averaged over one period. (b) Fully developed wrms profiles for case 2
at spatial positions indicated in the legend, which correspond to positions 1–8 in figure 2.

The simulation scaling has been retained in figures 11 and 12 (i.e. free stream
velocity U for wrms and inlet displacement thickness δ∗ for the vertical coordinate y).
The reference case is indicated by the dashed line in all the figures.

The comparison between different downstream positions is made in figure 11(b) in
the region after the spatial transients. Clearly the wrms is periodic with wavelength
λx/2. Thus, the detailed study of each position over one wavelength reveals a complex
pattern.

When comparing with some of the profiles at the corresponding spatial phase
in the region where the flow is still developing (figure 12a), it is noted that the
profile at 3/8λx has not yet developed its characteristic double peak feature that was
observed in the developed region. In addition, the peak is much larger here than
further downstream. On the other hand, the profile at 7/8λx does exhibit the double
peak feature and hence the flow is already maturing at this point, although the value
is larger than further downstream. To confirm this, the profile at the end of the first
full cycle (at λx) is plotted, and indeed it has the same shape as the profile at the
corresponding phase further downstream, but the value is still larger (around 20 %).
The three profiles in figure 12(a) are taken from positions 9–11 (referring to figure 2).

To be possible to compare with the temporal simulation, the profiles in this case
must be taken from corresponding phases in time. The profiles for some representative
phases are shown in figure 12(b) with the same symbols as in the two previous
illustrations. At t = 1/8T and t = 5/8T the peaks are stronger than in the spatial
simulation, which explains to a certain degree why the DR is weaker in this case. At
the phases t = 4/8T and t = T (corresponding to 4/8λx and λx in the spatial case),
there is a small indication of a double peak feature which was observed as much
stronger in a different phase (3/8λx and 7/8λx) in the spatial case. On the other
hand, the corresponding profiles in the temporal case at t = 3/8T and t = 7/8T do not
exhibit the double peak.

5.3. Spanwise Reynolds stress production

When seeking an explanation for the reduction in spanwise Reynolds stress for the
spatial case, it is natural to look at the production term in the transport equation for
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FIGURE 12. (a) Spatially developing wrms profiles for case 2 at spatial positions indicated in
the legend, which correspond to positions 9–11 in figure 2. (b) Fully developed wrms profiles
for temp 2 at time instances indicated in the legend.

this component:

P33 =Pvw +Puw =−2v′w′
∂w

∂y
− 2u′w′

∂w

∂x
. (5.1)

Both Pvw and Puw are zero for the unforced boundary layer, while the latter is
zero in the temporal forcing case. In contrast, both terms are non-zero for the
spatial forcing case. The two production terms in (5.1) are directly related to the
wall oscillation since ∂w/∂y and ∂w/∂x are involved in Pvw and Puw, respectively.
The streamwise derivative (∂w/∂x) is non-zero only for the spatially oscillating forcing.
The two parts are shown in figure 13 for case 2, and reveal that Puw actually has
a negative contribution to the production. Thus, the streamwise modulation of the
forcing, which corresponds to ∂w/∂x, creates a lower total production of w′w′.

In order to compare with the temporal case the production term P33 needs to be
evaluated, which is a non-trivial task, as shown by earlier attempts. In the statistics
from temporal forcing of the channel flow presented by Quadrio & Ricco (2003),
P33 was zero – excluding the initial transients, which were shown to be non-zero by
both Quadrio & Ricco (2003) and Xu & Huang (2005). However, as demonstrated
by Touber & Leschziner (2012), the decomposition of the flow needs to be refined in
the case of temporal forcing, and can be written as ũi = 〈ui〉 + u′′i , where 〈ui〉 is the
phase-averaged ũi, and u′′i represents stochastic fluctuations, separated from the phase
fluctuations; u′′i is related to the total fluctuation u′i via u′′i = u′i − (〈ui〉 − ui). Hence,
u′′i is the total fluctuation with periodic fluctuations removed. With this formulation, as
shown by Touber & Leschziner (2012), the production becomes

P33 =−2〈v′′w′′〉∂〈w〉
∂y

. (5.2)

An analogy can be made with the spatial case as follows. Consider the spatially
averaged statistics over an integer number of wavelengths (of the forcing). Then, both
v′w′ and ∂w/∂y are zero, thus yielding a zero Pvw. On the other hand, the spatially
averaged Pvw = v′w′∂w/∂y (with the product calculated at each x-location, followed
by an averaging in x) yields the dotted curve in figure 13(a). Thus, the (spatial) phase
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FIGURE 13. (a) The spanwise Reynolds stress production terms for case 2 and temp 2.
Spatial forcing: · · · , Pvw; −−, Puw; —, P33 =Pvw +Puw. Temporal forcing: − · −, P33
according to (5.2). (b) P33 profiles for case 2 at spatial positions indicated in the legend,
which correspond to positions 1–8 in figure 2.

average is clearly different compared to the spatial average, hence in analogy with the
temporal case.

The P33 resulting from (5.2) is included in figure 13(a) as the dash-dotted line.
Clearly, the production is of similar magnitude to the production from the first term
in (5.1) and hence the negative contribution from the second term explains (at least
partially) the lower values of wrms and consequently the larger DR in the case with
spatial forcing.

The individual P33 for case 2 at different phases are shown in figure 13(b) and
indicate that the behaviour through the various stages of one wavelength is rather
complicated. In addition, by comparing to the wrms in figure 11(b), it is noted that the
positions with maximum production are not equal to the phase with maximum wrms,
and hence all terms in the wrms budget need to be considered, as well as the complete
budgets of all the other Reynolds stresses (due to the inter-component energy transfer),
for the complete picture.

The analysis presented in this section provides no definite information as to why
the shear stress at the wall decreases. However, it does shed some light on why the
spanwise Reynolds stress is reduced more in the spatial case than in the temporal case,
hence giving a clue as to why the spatial forcing is more efficient at reducing the
viscous drag compared to the temporal forcing.

6. Conclusion
Direct numerical simulations have been performed to study the effect of spatial and

temporal wall oscillations with two different wall velocities on the turbulent boundary
layer. The resulting drag reduction is larger for the spatial oscillation, in agreement
with findings from channel flow simulations.

An estimation of the idealized power consumption shows that the positive energy
budget is greater for the weaker wall velocity case (in agreement with channel
flow). In the case of very high wall velocity, more energy is required for the spatial
oscillation than what is saved by DR, although the DR is enhanced compared to the
weaker wall velocity cases.
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The streamwise variation of the spanwise shear from the onset of spatial oscillations
is in good agreement with the analytical solution to the laminar Navier–Stokes
equations. In addition, comparisons of the spanwise velocity profiles at various
phases with the analytical solution show very good agreement. Furthermore, the spatial
transients are shown to be confined to the first wavelength of the wall forcing. The
short transients only occur for the spanwise flow, while the streamwise flow (for
example the DR) exhibits longer spatial transients.

The streamwise development of the spatial Stokes layer was theoretically found to
vary as ∼x1/15, and this estimation follows the trend observed in the DNS data.

The Reynolds stresses are reduced by the oscillations and the effect on the
maximum depends on whether the position of the maximum is inside or outside
the spatial Stokes layer formed due to the streamwise modulated wall velocity.

Comparing the Reynolds stresses from the spatial and temporal wall forcing cases
revealed that only the spanwise component is considerably lower for the spatial forcing
case, and thus accounts for the larger DR in this case. The spatial variation of the
spanwise Reynolds stress is periodic with a wavelength half of the wall forcing.
Comparison with the profiles from the temporal wall forcing case showed that the
latter are generally of a larger values even though the distinct double peak visible in
the spatial case at phases 3/8λx and 7/8λx is lacking in the temporal profiles.

The lower spanwise Reynolds stress for the spatial forcing case is (at least partially)
explained by the reduced production term. The attenuation is provided by a second
term involving the streamwise gradient of the spanwise velocity. Comparison with the
temporal case involved scrutinizing earlier statistics, and by utilizing new DNS data
from our own temporal forcing, the non-zero production of spanwise Reynolds stress
is confirmed. Furthermore, the production is of a similar magnitude to the spatial case.

This investigation (of the turbulence production) points to the difficulties involved
when defining the correct terms and the interpretations thereof.

In future work, apart from a continued effort to understand the DR mechanisms
from a fundamental point of view, a parametric map as provided by Viotti et al.
(2009) or Quadrio et al. (2009) for channel flow (the latter for travelling wave forcing),
giving the optimal parameters for DR would be welcome for the boundary layer flow.
However, the number of simulations to be performed in order to provide such a map
is prohibitively large and time-consuming. Perhaps a better approach would be to
utilize nonlinear optimization techniques, such as demonstrated by Hasegawa & Kasagi
(2011) for identifying the optimal set of parameters. Furthermore, as has been shown
by Skote (2012), the dependence on the parameters is likely to be similar for the two
types of flows, so that conclusions drawn from channel flow can be utilized for the
boundary layer. On the other hand, as the Reynolds number dependence has not yet
been addressed properly (Skote 2012), the validity and usefulness of such a parametric
map is limited since it will probably depend strongly on the Reynolds number.

Another approach for future work could be on the applicability of the methods
in real applications. An excellent example of this is presented by Ricco & Hahn
(2013), who utilize rotating discs instead of letting the whole wall oscillate. Innovative
ideas such as these could fast-forward the applicability of DR techniques, while the
slower-paced fundamental research, of which the present article is an example, could
provide deeper understanding and eventually lead to more efficient means of DR.
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