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Varicose instabilities in turbulent boundary layers
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An investigation of a model of turbulence generation in the wall region of a turbulent boundary
layer is made through direct numerical simulations. The model is based on the varicose instability
of a streak. First, a laminar boundary layer disturbed by a continuous blowing through a slot is
simulated in order to reproduce and further investigate the results reported from the experiments of
Acarlar and Smith@J. Fluid Mech.175, 43 ~1987!#. An isolated streak with an inflectional profile is
generated that becomes unstable, resulting in a train of horseshoe vortices. The frequency of the
vortex generation is equal to the experimental results. Comparison of the instability characteristics
to those predicted through an Orr–Sommerfeld analysis are in good agreement. Second, a direct
numerical simulation of a turbulent boundary layer is performed to point out the similarities between
the horseshoe vortices in a turbulent and a laminar boundary layer. The characteristics of streaks and
the vortical structures surrounding them in a turbulent boundary layer compare well with the model
streak. The results of the present study show that one mechanism for the generation of horseshoe
vortices in turbulent boundary layers is related to a normal inflectional instability of the
streaks. ©2002 American Institute of Physics.@DOI: 10.1063/1.1482377#
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I. INTRODUCTION

A. Detection of coherent structures

The occurrence of coherent vortices in wall-bounded t
bulent flows has been observed in a large number of inv
tigations by different means. The experimental observati
have relied on dye injections or hydrogen bubbles introdu
in the flow. Lately, low Reynolds number flows have be
investigated numerically through direct numerical simu
tions ~DNS!. The flow field variables are all available at th
same time and thus more sophisticated detection meth
have been developed. Robinson1 used the pressure succes
fully for revealing horseshoe vortices in a data base from
DNS of a turbulent boundary layer. Singer and Joslin2 also
used the pressure in a numerical simulation for visualizin
horseshoe vortex generated by blowing through a s
Chonget al.3 used the discriminant of the velocity gradie
tensor for identifying flow structures in turbulent bounda
layers. They found structures that to a great extent consis
attached vortex loops. Zhouet al.4 used the imaginary part o
the complex eigenvalue of the velocity gradient tensor
identify hairpin structures in channel flow. The structur
originated from a vortical structure imposed in the flow. B
plotting the imaginary part a clear picture of the structu
was obtained and the shape was not sensitive to the l
chosen for visualization. Jeong and Hussain5 and Schoppa
and Hussain6 used an eigenvalue based on the Hessian of
2301070-6631/2002/14(7)/2309/15/$19.00
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pressure for identification of vortices in a turbulent chan
flow, and used conditional sampling to extract the prec
form of the coherent structure.

B. Streamwise versus horseshoe vortex structures

Jeong and Hussain5 did not detect any horseshoe vortic
in the channel flow simulation by Kimet al.7 Instead they
extracted a coherent structure consisting of quasi-stream
vortices by conditional sampling. Jimenez and Moin8 and
Hamilton et al.9 observed, by shrinking the computation
box, that the self-sustained turbulence is linked to the qu
streamwise vortices, and does not depend on the outer pa
the flow. This scenario is consistent with the model
Waleffe10 which states that the vortex is fed by energy fro
the break up of the streak. Jimenez and Pinelli11 used a
method of reducing the influence of the outer flow in a n
merical simulation to show that the regeneration cycle
independent on the outer flow. Thus, according to these fi
ings, there is little interaction between the inner and ou
flow. Consequently, it is possible to model the regenerat
of turbulence via a self-sustaining process involving lo
speed streak and quasi-streamwise vortex, independen
the outer flow.

On the other hand, horseshoe vortices observed
boundary layer flows reach into the outer flow. Experimen
evidence include the work of Acarlar and Smith12 and Haid-
ari and Smith13 in which vortices, generated by blowing flui
through a slot in the wall, were studied in a laminar boun
9 © 2002 American Institute of Physics
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ary layer. The blowing was continuous in the experiment
Acarlar and Smith while a pulsed injection was used by H
dari and Smith. Recently, Adrianet al.14 have visualized
hairpin vortices in a turbulent boundary layer using parti
image velocimetry~PIV!. They show that hairpin packet
~groups of horseshoe vortices! build up the turbulent bound
ary layer. The number of vortices that constitute a packe
lower in a low Reynolds number flow than in high Reynol
number flows. Further experiments with conditional sa
pling by Christensen and Adrian15 revealed that the oute
structure of the turbulent boundary layer includes spanw
vortices at a spacing and angle which are Reynolds num
independent.

The experimental findings of Haidari and Smith w
confirmed by the DNS of Singer and Joslin.2 They observed
different kinds of subsidiary vortices~such as necklace o
U-shaped vortices! and the initial vortex generated by th
blowing finally develops into a turbulent spot.

The size of the horseshoe vortices seems to vary wi
the flow and also vary with Reynolds number. A turbulen
model for Reynolds average Navier–Stokes~RANS! calcu-
lations of turbulent flows has been developed by Pe
et al.16 based on size and strength of the horseshoe st
tures. This technique was recently used by Marusic17 to show
that packets of horseshoe vortices are statistically signific
structures.

C. Streak instability and turbulence regeneration

The vortex structures present in turbulent boundary l
ers seem to be related to streak instabilities. However,
eral types of instabilities seem to occur. Robinson18 proposed
that a normal inflectional instability of the instantaneous
locity profile may produce horseshoe vortices. Singe19

showed that a normal inflectional instability of the veloc
profile may be responsible for the generation of second
horseshoe vortices. Kimet al.20 were the first to show that a
normal inflectional instability of the instantaneous veloc
profile is of importance in the turbulence regeneration cyc
They observed the inflectional velocity profiles in connect
with the rapid lift up of the low-speed streaks in the later p
of the process of the streak break up. Several models of
turbulence regeneration cycle have been proposed
Landahl,21,22 where inflectional instability of the local mea
velocity profile is a main ingredient.

On the other hand, in the model of Waleffe10 the basic
state is two-dimensional and consists of the turbulent m
flow with a simple construction of the streak imposed.
found that the dominating instability is sinuous and that it
correlated with the spanwise inflection of the basic sta
Kawaharaet al.23 and Schoppa and Hussain6 also used such
a model and showed that the varicose mode is sta
Schoppa and Hussain6 argued that this is consistent with th
absence of horseshoe vortices in their examination of
DNS data base generated by Kimet al.7

The references cited above form only a small part of
work that has been put into the detection and analysis
coherent structures. A recent article by Schoppa
Hussain,24 where a detailed discussion of the state of the
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is included, categorizes the mechanisms into parent-offsp
and instability based scenarios. The former is character
as the generation of vortices by direct action of existing v
tices, whereas the second involves local instability of qua
steady flow. Within the instability based scenarios the si
ous and varicose streak instabilities are the two main on
The view of Schoppa and Hussain24 seems to be that there i
a contradiction between these explanations. Our view is
turbulence is such a rich phenomenon that there are m
likely several mechanisms at work regarding coherent str
ture generation, of which we here have chosen to study o

D. Present study

In this work we will pursue the horseshoe vortex dyna
ics, within the streak stability based scenario of varico
type. In the experiments by Acarlar and Smith,12 hereafter
denoted AS, an artificial low-speed streak was generated
laminar boundary layer by blowing fluid through a slot in th
wall. The streak became unstable and horseshoe vor
were formed and were followed downstream. In the pres
study we reproduce the flow studied by AS through DN
Moreover, the hypothesis indicated by AS regarding the
stability causing the vortices is here further investigated. O
of the objectives in the AS experiment was to give insight
the mechanisms and structures in a turbulent boundary la
In the present work, a stronger link to turbulence is ma
through comparison with a simulation of a zero pressure g
dient turbulent boundary layer.

The experiments by Haidari and Smith13 could also have
been reproduced with our numerical code by turning off
blowing after the injection was completed. However, the n
merical study by Singer and Joslin2 was already performed
as a numerical compliment to the pulsed injection expe
ments by Haidari and Smith. Note also that although
pulsed injection is important for the study of a single vort
developing downstream, the turbulent boundary layer se
mostly to consist of packages of vortices, see, e.g., Adr
et al.14

After a presentation of the numerical method and para
eters in Sec. II, we present the results in Sec. III. The e
phasis is on the results from the laminar simulation, which
compared with the experimental results from AS. Furth
investigations of the instability mechanism are made. A
comparison with the turbulent simulation is done, fro
which strong similarities between the two cases are p
sented.

II. NUMERICAL METHODOLOGY

A. Direct numerical simulations

The code used for the simulation is developed at KT
and FFA.25 The program uses spectral methods with Four
discretization in the horizontal directions and Chebyshev d
cretization in the normal direction. Since the boundary la
is developing in the down-stream direction, it is necessary
use nonperiodic boundary conditions in the streamwise
rection. This is possible while retaining the Fourier discre
zation if a fringe region is added downstream of the physi
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2311Phys. Fluids, Vol. 14, No. 7, July 2002 Varicose instabilities in turbulent boundary layers
domain. In the fringe region the flow is forced from th
outflow of the physical domain to the inflow. In this way th
physical domain and the fringe region together satisfy p
odic boundary conditions. The fringe region is implemen
by the addition of a volume force whose form is designed
minimize the upstream influence. The upstream influence
the fringe region is of the same order as the height of
computational box. Since our box is very long and thin,
influence is marginal. All the results are taken from regio
well upstream of any fringe influence. For an analysis of
fringe region technique, the reader is referred to the inve
gation by Nordstro¨m et al.26

Time integration is performed using a third ord
Runge–Kutta scheme for the advective and forcing te
and Crank–Nicholson for the viscous terms.

All quantities are nondimensionalized by the freestre
velocity (U`) and the displacement thickness (d* ) at the
starting position of the simulation (x50) where the flow is
laminar. At that positionRed* 5U`d* /n5450 for all simu-
lations, except for some simulations performed atRed*
5290 for the comparison of frequency characteristics. T
length ~including the fringe!, height and width of the com
putation box were 26037314 in these units. The number o
modes was 432365372. The size and resolution wer
checked to be sufficient for all cases.

The simulations were performed with an initial objecti
of reproducing some of the results obtained in the exp
ments of AS. In their experiments the slot was 63.5 mm
length and 1 mm in width. The simulations were perform
with a slot with the same length but twice the width, i.e.,
mm. This change in geometry results in a large decreas
computational cost. The slot in simulation coordinates (d* )
is approximately 30 long and 1 wide. The flow through t
slot is set by a velocity profile resembling a channel flo
parabola in the spanwise direction and is increasing fr
zero to the maximum value during the first 10% of the s
length at the upstream end, and is likewise terminated at
downstream end. The blowing through the slot was con
ued without interruption through all of the simulations. T
avoid large transients in the beginning of the simulation
ramped up the blowing from zero to the maximum val
during an initial time of 10(d* /U`). The time step was con
siderably decreased when the blowing through the wal
applied. The strength of the blowing was varied from 6.5
to 20% of the freestream velocity.

A low-speed streak is formed immediately above the s
due to the lift-up of low-speed fluid to the flow further out
the boundary layer. A disturbance on this streak was dete
and the frequency was observed during a long period of ti
and was then locked by letting a small~1% of the original
blowing! additional time-periodic blowing be superimpos
on the blowing forming the streak. The frequency of t
initial disturbance on the streak was locked to be able
calculate the growth rate of the disturbance through a Fou
transform in time.

A simulation of a turbulent boundary layer was pe
formed to investigate how the streak instabilities observe
the isolated streak in the laminar boundary layer could
applicable to a turbulent flow. The same code was used,
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the laminar boundary layer was disturbed at the beginning
the computational box by a random volume force near
wall. The length~including the fringe!, height and width of
the computation box were 600330334. The number of
modes was 64032013128. The simulations were performe
at Red* 5450 for the laminar inflow before the tripping
which gives a turbulentReQ :343– 636. The resolution in
plus units wasDX1519, DZ155.5, and ranging from
DY150.04 close to the wall toDY155.6 at the coarses
part of the grid.

B. The linear stability analysis

One of the main conclusions of this work will conce
the instability mechanism of a low-speed streak leading
horseshoe-shaped vortices. Linear stability theory will
used to describe the early stages of this instability. The
turbance occurring due to the instability of the streak will
denoted secondary disturbance, since the primary dis
bance is the streak itself. The velocity profiles close to wh
the secondary disturbance start to appear, below denoteU
5U(y), were analyzed by solving the Orr–Sommerfe
~OS! equation. The results from the OS equation are o
relevant as long as the disturbance is small enough and v
tions of the base flow~streak! in the horizontal directions and
time is much smaller than the length scale of the instabi
waves. The OS equation is the linearized Navier–Sto
equations for the disturbance,

f+22a2f91a4f5 iaR@~U2c!~f92a2f!2U9f#. ~1!

The two-dimensional disturbance is written as a stream fu
tion

c5f~y!exp@ ia~x2ct!#5f~y!exp@ i ~ax2vt !#. ~2!

Because the secondary disturbance is characterize
its frequency and its growth in space in the simulations, s
tial analysis of the OS equation will be used. In the case
spatial analysis the eigenvalue problem~1! is solved for a
given R and v, which is real. The solution isf(y) ~eigen-
function! anda5a r1 ia i ~eigenvalue!. The value of2a i is
the growth rate, anda r is the streamwise wave number.

The results from the analysis of the OS equation
compared with the actual behavior of the flow in the DN
The eigenvalue2a i is compared with the growth rate of th
disturbance. Furthermore, the eigenvaluea r is compared
with the streamwise wave number of the disturbance. T
analysis of the time signal from DNS is done through a Fo
rier transform in time of the velocity fields. For a given fre
quency, we take the maximum over the spanwise and nor
directions. Thus, the results from DNS are contained in
function û(x). The growth rate of the disturbance is

s52ReH 1

û

d

dx
ûJ , ~3!

and the streamwise wave number of the disturbance is
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ã5ImH 1

û

d

dx
ûJ . ~4!

The use of the Orr–Sommerfeld equation proposed h
does not take the spanwise variation of the streak profile
account. Although this could in principle be done, it wou
defeat our purpose which is to show that an instability due
the normal shear is the dominating growth mechanism
sponsible for the initiation of the horseshoe vortex. We
interested in obtaining a simple model which we can apply
the more complicated turbulent case, in the same manne
Waleffe10 models the sinuous secondary instability of a t
bulent streak with only a spanwise varying shear. In additi
a 2D stability analysis would also be superfluous since
extract a result equivalent to such an analysis from the D
calculations. In fact, the DNS results can be considered
secondary instability calculation, where not only the sp
wise shear is taken into account, but also the streamw
nonparallel effects, as long as the amplitude of the dis
bance is small.

FIG. 1. The flow field downstream of the slot. The light gray structu
represent the low-speed streaks and the darker ones represent region
low pressure. Contour levels are20.08 for the streamwise velocity fluctua
tions and20.01 for the pressure.
Downloaded 04 Jun 2002 to 130.237.222.14. Redistribution subject to A
re
to

o
-

e
n
as
-
,
e
S
a

-
se
r-

III. RESULTS

A. Initial observations

1. Comparison with AS experiment

The development of the streak downstream of the slo
shown in Fig. 1. Only the part immediately after the slot
shown. The light gray iso-surface represents the low-sp
streak, and the dark gray represents the low pressure.
slot ends atx560 and the first low-pressure structure is o
served at that point. The subsequent pressure structure
velop downstream and become stronger. Additional stre
on either side are being induced by the pressure structu
x570. This will be further discussed in Sec. III B. Aroun
x594 the last structure in the train of vortices is observ
and the streak has been lifted upward. The low-press
structure vanishes, but the streak and the additional, indu
streaks persist downstream, as seen from Fig. 2, where
region downstream of the breakup is also shown. The th

with
FIG. 2. The flow field far downstream of the slot. The light gray structu
represent the low-speed streaks and the darker ones represent region
low pressure. Contour levels are20.11 for the streamwise velocity fluctua
tions and20.005 for the pressure.
FIG. 3. urms at ~a! x560, ~b! x
5160.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2313Phys. Fluids, Vol. 14, No. 7, July 2002 Varicose instabilities in turbulent boundary layers
streaks continue far downstream until more complicated lo
pressure structures occur atx5145, marked with an arrow in
Fig. 2. Here the flow has more of a turbulent nature, which
also seen from the rms-values shown in Fig. 3. Theurms

profile from a position at the end of the slot is shown in F
3~a!. This profile has a shape which is a result of an infle
tional instability, which will be further discussed in Se
III D. The urms from a position far downstream (x5160) is
shown in Fig. 3~b!. This profile resembles a profile from
turbulent boundary layer. Thus, the more turbulent like fl
at the far downstream region is revealed both in the str
tures themselves and in the statistical profiles. The str
spacing is actually 100 in viscous units in this region, furth
indicating attributes of a turbulent boundary layer.

In AS no spreading of the structures were observed
they argue that this is due to the sub-critical laminar bou
ary layer in their experiment. They do however observe
more turbulent like profile downstream and also three el
gated low-speed streaks, originating from secondary stre
wise vortices. Our simulation continue further downstre
than the experiment by AS, and the persistent low-sp
streaks were observed downstream until the more com
cated vortices appeared atx5145, see Fig. 2.

It was shown, in the experiments by Haidari and Smit13

of a single vortex developing downstream, that the growth
the structure is caused by both the interaction of the prim
vortex with surface fluid and inviscid deformation of th
vortex lines. The latter mechanism was however not foun
the numerical investigation of a single vortex by Singer a
Joslin.2 Furthermore, the numerical simulation showed th
the secondary vortices formed beneath the hairpin vo
legs were closely related to the initial injection and not ge
erated by the primary vortex. Thus, it seems difficult to o
tain and observe the dynamics of a single vortex; it
strongly linked to the generation process.

The low-pressure structures seen in Fig. 1 are vor
loops, consisting of swirling flow. To illustrate that the low
pressure regions consist of rotational flow, the imaginary p
of the complex eigenvalue of the velocity gradient tensor
be used.27 Because the vorticity indicates both shear and

FIG. 4. Iso-surface of low pressure just downstream of the slot. Same
of the flow field as in Fig. 1.
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tation, showing vorticity can be misleading when seeki
parts of the flow where rotating structures are of interest. T
imaginary part of the eigenvalue on the other hand, indica
where swirling occurs.

In Fig. 4 the low-pressure structures in Fig. 1 are sho
without the low-speed streak to get a clearer picture of
structures themselves. The structures in Fig. 5 consist of
surfaces of the imaginary part of the eigenvalue. The str
correlation indicate that the structures in Fig. 4 are due
rapid rotation of the flow in the regions of low pressure.

Observe that theV-shape of the last structure in Fig. 5
reminiscent of the structure observed by Zhouet al.4 Also,
the kink of the legs about one-third of the length from t
upstream end are present in the last structure. Note tha
background flow in the present simulation is lamin
whereas it consisted of a turbulent mean flow in the study
Zhouet al.4 The kinked legs and the curled back head of t
last structure in Fig. 5 was also observed by AS at the sa
downstream position.

A secondary vortex is observed above the primary hor
shoe vortex in the two structures before the last one in Fig
The secondary vortex is also visible in one of the cor
sponding pressure structures as marked in Fig. 1. The
ondary vortex is visible at approximately the same posit
as in AS. Zhouet al.4 found not only secondary horsesho
vortices developing upstream of the primary vortex, but a
downstream, which was not observed in the present sim
tion. In the experiments of AS, a secondary vortex appear
originate from the position above the legs of primary vorte
It either grows to be an independent vortex, or agglomera
with the upstream or downstream vortex. The same beha
is observed in the present simulations.

Thus, the secondary vortices appearing upstream, ab
the legs, of the primary one are in common with many of t
experimental and numerical investigations, while the gene
tion of downstream secondary vortices depends on
strength and duration of blowing.

rtFIG. 5. Iso-surface of the imaginary part of the eigenvalue of veloc
gradient tensor. The figure shows the eigenvalue calculated from the s
velocity field as in Fig. 4. Contour level at 0.32.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2. Near-wall turbulence

The presence of streaky structures in a near-wall tur
lent flow has been observed in many experiments and si
lations. These structures are low speed regions, where
streamwise velocity is lower than the mean velocity, t
mean taken in the spanwise (z) direction for eachx- and
y-position. They are narrow in the spanwise direction a
elongated in the streamwise direction with a spanwise sp
ing of about 100 in wall units. Streaks lying at differe
positions inz break down at different positions inx. Also, a
new streak seems to be born where the old one breaks d
In a number of investigations, events referred to as b
have been observed, and are generally considered to be
of the streak break up.

An instantaneous flow field from the simulation of a tu
bulent boundary layer is shown in Fig. 6. Only a part of t
computational box at approximatelyReQ5450 is shown.
The spanwise width is about 300 in wall units and the hei
is 200. The light gray regions represent the low-spe
streaks. Also shown in the figure, in the dark gray color,
regions of low pressure. The presence of horseshoe or
pin vortices is well illustrated by this picture. The mo
clearly visible ones are marked with arrows in Fig. 6. It
observed that the vortices are strongly connected to
streaks, since the vortices are positioned with their h
above a streak and their leg or legs on either side of
streak. This feature is common to both the laminar and
bulent streaks, cf. Figs. 1 and 6.

B. Horseshoe vortex formation

The mechanisms behind the formation of vortices fro
the streak is here studied in detail in the laminar flow with

FIG. 6. Turbulent boundary layer. Only a part of the computational bo
shown. The light gray structures represent the low-speed streaks an
darker ones represent regions with low pressure. Contour levels are20.07
for the streamwise velocity fluctuations and20.003 for the pressure. The
arrows point to some typical horseshoe vortices.
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artificial streak introduced. The proposed mechanism is
the low-speed streak makes the streamwise velocity pro
highly inflectional. The instability is very strong~with a large
growth rate!. The disturbance grows downstream and high
harmonics occur. The stability analysis is presented in S
III D.

The results in this section are taken from the simulat
at a Reynolds numberRed* 5U`d* /n5450 atx50, which
corresponds to a Reynolds numberRed* 5490 at the begin-
ning of the slot. The normal velocity blowing out of the sl
was Vw50.0657, resulting in a slot Reynolds number
ReVw

528.3. The blowing was introduced betweenx530
and x559 in the streamwise direction, and betweenz
520.48 andz50.48 in the spanwise direction.

1. Vortex formation above the slot

One velocity field is studied, using plots in two dime
sions of different planes. In Figs. 7~a!–7~f! the planes are
from different positions inx, showing what happens with th
flow above the slot. The lines in the horizontal directio
from blue to green, are the iso-lines of streamwise veloc
while the arrows represents the normal and spanwise velo
components. The first@Fig. 7~a!# figure shows the undis
turbed laminar boundary layer at the point where the s
starts. The next one@Fig. 7~b!# shows a plane further down
stream. Here the injection is visible as the strong flow o
from the wall. The lines representing constant streamw
velocity are bent outward and thus forming a low-spe
streak. The low-speed streak is formed because of the in
tion velocity that lifts up low-speed fluid from the near-wa
region higher up in the laminar boundary layer. In Fig. 7~c! a
swirling flow is observed at either side of the low-spe
streak. As the vortical motion becomes stronger it defor
the streak as seen in Fig. 7~d!, where also the vortex is stron
enough to be represented with low pressure regions at
center of the vortex. Iso-lines of constant low pressure
shown as red lines. These low pressure regions that ev
from the center of the vortex at either side of the streak
the legs of the first low pressure structure seen in Fig. 1.
plane in Fig. 7~d! is located at the end of the slot, thus n
more injection velocity can be observed. In Fig. 7~e! the low
pressure region is above the streak and the motion in
region is a flow upward. The plane in Fig. 7~e! is located a
short distance downstream of the plane in Fig. 7~d!. Thus,
immediately after the legs have appeared an upward mo
is seen in Fig. 7~e! in the low pressure region now locate
above the streak, and hence forms the head of the first s
ture. At the other side~downstream side! of the low pressure
region the motion is a downward flow, as seen in Fig. 7~f!.
This downward velocity at the downstream side of the he
indicates that the low pressure structure is a vortex lo
Since the head is observed right after the legs, the structu
very short, which was also observed in Fig. 1.

2. Vortex formation downstream of the slot

Now that the flow above the slot and around the fi
structure has been studied, the flow further downstream
be investigated. The same technique is used to get an

s
the
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 7. ~Color! Vertical planes in the spanwise (z) and normal (y) directions. Arrows represent the spanwise and normal velocity. Blue through green
represent constant streamwise velocity from 0 to 0.5. Red lines represent constant pressure.~a! x530, ~b! x538, ~c! x553, ~d! x559, ~e! x560,
~f! x562.
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about what happens with the flow around the well develo
structure indicated as number three in Fig. 1. The structur
the laminar simulation is compared with a typical structu
found in the turbulent field.

In Fig. 8 verticalxy-planes are shown. In Fig. 8~a! the
plane is located at the centerline (z50) in the laminar field.
The blue line is an iso-line of constant streamwise dist
bance velocity and thus represent the low-speed streak, w
the red lines are iso-lines of low pressure. The arrows in
cate the normal velocity and the streamwise disturbance
locity. The streamwise disturbance velocity is calculated
subtracting the mean velocity~the mean taken in the span
wise direction! at each point. The flow is from left to righ
and arrows pointing to the left merely indicate low spe
compared to the mean. What is seen in Fig. 8~a! is thus the
head of the pressure structure. The swirling flow around
head is the relative motion when the mean streamwise ve
ity is subtracted. Contour levels are20.08 for the stream-
wise velocity fluctuations and from20.05 to20.01 for the
pressure.

In Fig. 8~b! a structure from the turbulent simulation
shown. The horseshoe vortex was identified with a press
Downloaded 04 Jun 2002 to 130.237.222.14. Redistribution subject to A
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plot as in Fig. 6. The structure is representative for a tur
lent structure since many can be identified in the same
stantaneous pressure field. The specific structure show
Figs. 8~b! and 9~b! is located approximately in the middle o
the computational domain~x5200, z51!, and is similar to
the one in the upper right corner in Fig. 6. Then a horizon
plane is cut through the center~in the spanwise direction! of
the structure and its head is seen as the low pressure re
in Fig. 8~b!. Contour levels are20.04 for the streamwise
velocity fluctuations and from20.02 to20.01 for the pres-
sure.

The similarities between Figs. 8~a! and 8~b! are remark-
able. In both figures the center of rotation~relative to the
local mean flow! is displaced from the center of low pres
sure. An additional, but weaker low pressure region is fou
below the head of both structures. The head of the turbu
structure in Fig. 8~b! is located aty15135.

In Fig. 9, vertical cross-stream (yz2) planes are shown
The red contours represent low pressure and blue to ye
lines are the iso-levels of streamwise velocity. The arro
consist of normal and spanwise velocity components. In F
9~a! the legs of the structure in the laminar field are clea
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. ~Color! Vertical planes in the
streamwise (x) and normal (y) direc-
tions. Arrows represent the streamwis
disturbance velocity and normal veloc
ity components. The blue lines repre
sent constant streamwise disturban
velocity ~low-speed streak!. The red
color represents constant pressure~low
pressure!. ~a! From the laminar simu-
lation. ~b! From the turbulent simula-
tion at z51.

FIG. 9. ~Color! Vertical planes in the
spanwise (z) and normal (y) direc-
tions. Arrows represent the spanwis
and normal velocity. Blue through
green lines represent constant strea
wise velocity. Red lines represent con
stant pressure.~a! From the laminar
simulation. ~b! From the turbulent
simulation atx5196.
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visible as the two low pressure regions, and the flow is
cling around the low pressure. Also seen are the indu
vortices further out from the centerline. These induced v
tices were also observed in the experiments by AS. The p
in Fig. 9~a! is located atx570, thus showing the legs be
longing to the structure whose head was shown in Fig. 8~a!.
The blue to green contour lines represent streamwise ve
ity from zero to 0.5.

In Fig. 9~b!, a cross-stream plane from the turbule
simulation is shown. The plane is located atx5196 ~refer-
ring to the coordinates in Fig. 8~b!, which corresponds to a
distance ofx15184 ~wall units! upstream of the head lo
cated atx5204 in Fig. 8~b!. The legs belonging to the horse
shoe vortex whose head was observed in Fig. 8~b! are the
two low pressure regions located furthest from the wall,
cated atz55 andz523. The normal position of the legs i
y1570, and they are separated with a distancez15190.
The other low pressure regions close to the wall belong
streamwise vortices. The blue to yellow contour lines rep
sent streamwise velocity from zero to 0.7. In Figs. 8~b! and
9~b! every second point in all directions is omitted for clarit

The positions of the head and legs of the horseshoe
tex in the laminar simulation are in agreement with the
perimental findings in AS. The strength of the transverse
longitudinal vortices corresponding to the head and l
were calculated in AS by assuming constant vorticity with
the vortex core. However, in the present DNS we find t
the vorticity varies through the core. For the vortical stru
tures visualized by low-pressure in Figs. 8~a! and 9~a!, the
vorticity lines ~spanwise and streamwise, respective!

FIG. 10. Nondimensional frequencyf * of the disturbance versusRed* .
Symbols correspond to different injection velocities.ReVw

5wVw /n. ReVw

528.3 h; ReVw
533.6 s; ReVw

538.7 L. Bold symbols represent exper
mental data from AS.

FIG. 11. Nondimensional frequencyf * of the disturbance versusVw /U` .
Symbols correspond to different Reynolds number.Red* 5490 h; Red*
5330 s. Bold symbols represent experimental data from AS.
Downloaded 04 Jun 2002 to 130.237.222.14. Redistribution subject to A
-
d

r-
ne

c-

t

-

o
-

r-
-
d
s

t
-

formed the same pattern as the corresponding pressure
tours. The vorticity ranged from21 to 20.5 in the trans-
verse vortex and from61.5 to 0 in the longitudal vortices.

C. Frequency characteristics

In the experiments by AS the frequency of the roll u
was measured. Their observations led to the conclusion
the frequency increased when the injection velocity or
freestream velocity was increased. They present the res
as a nondimensionalized frequency (f d* /U`) as a function
of slot Reynolds number (ReVw

[wVw /n) and boundary
layer Reynolds number (Red* ) at the beginning of the slot
Here w is the width of the slot. The simulations were pe
formed at twoRed* , each with three differentReVw

, for
comparison with experimental results from AS. TheRed* at
the beginning of the computational box were 450 and 2
corresponding to 490 and 330 at the point where the
starts.

In the present simulations the frequency was calcula
using the time-signal of the velocity from various locatio
in the flow. The frequency of the disturbance was obser
over the full extent of the slot at a number of positions in t
normal direction. When either of the two Reynolds numb

FIG. 12. Time signal of the normal velocity component atx560 and
x570.

FIG. 13. Velocity profile atx545.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 14. Streamwise component.~a!
x545. ~b! x555. rms-value;
- - - eigenfunction.
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were changed, the frequency also changed. The frequen
for three differentReVw

at two Red* are plotted in Fig. 10,
together with the results from AS~thick symbols!. When the
frequency is plotted as a function of the two Reynolds nu
bers as was done in AS, it is observed that the frequency
ReVw

528.3 is half of that observed by AS~Fig. 10!. Also,
reducingReVw

further in the simulation caused the vorte
generation to cease. In the experiment by AS,ReVw

528.3
was the largest slot Reynolds number for which an orde
vortex generation was observed, while as low values
ReVw

511.3 were shown to generate vortices.
Thus, theReVw

for which vortex generation was ob
served in the simulations was larger than the correspon
ReVw

in the experiments. For the value ofReVw
528.3, com-

mon to both simulation and experiment, the frequency
served in the simulation was half of that observed in
experiment. These discrepancies might be explained by
value of the blowing velocity, which is half the value in th
simulation as compared to the experiment by AS. Howe
the slot has double width in the simulation, making the s
Reynolds number equal to the experimental value. If
blowing velocity itself, normalized by the freestream velo
ity, is used as the parameter in the comparison, the freque
for various blowing velocities compare well, as seen fro
Fig. 11. Thus, the initial guess that the slot Reynolds num
in the simulation should be equal to the experimental va
to obtain the same frequency is not supported by Fig.
Instead, it is the ratio of blowing velocity to freestream v
locity that apparently is the crucial parameter in this resp
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as indicated in Fig. 11. This was also suggested by AS,
though they present their frequency data as in Fig. 10.

From simulation data it was observed that the freque
was doubled when going from a point above the slot to
position further downstream, as shown in Fig. 12, where
time signal of the normal component (v) of the velocity at
the two downstream locations aty50.5 are shown. As was
shown in Sec. III B, the roll up of the structures starts right
the downstream end of the slot (x560), and the frequency
of the primary structures is thus the one measured atx560
and not the frequency of double value which occurs furt
downstream atx570. The doubling of the frequency is con
sistent with the growth of a second harmonic of the dist
bance further investigated in the next section.

D. Stability analysis

In this section the laminar and turbulent simulations a
treated separately.

1. The laminar case

From the observations of their experiment, AS specul
that a normal inflectional instability causes the oscillatio
on the low-speed streak leading to vortex roll up. Also in t
experiments by Haidari and Smith13 an unstable normal ve
locity profile was observed shortly before the vortex he
was developed.

As described in Sec. II B, the spatial stability analysis
performed with the OS equation. The input is the Reyno
number, frequency of the disturbance, and the velocity p
file. The three inputs are well defined and taken from
FIG. 15. Normal component.~a! x
545. ~b! x555. rms-value;
- - - eigenfunction.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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DNS. The output is the eigenfunction, which contains inf
mation of the disturbance shape, and the eigenvalue, w
gives the growth rate and the streamwise wave number.

Throughout this section the laminar simulation wi
Red* 5490 at the beginning of the slot and a slot Reyno
number ofReVw

528.3 will be considered. In Fig. 13 th
velocity profile atx545 andz50, corresponding to the cen
ter of the slot, is shown. The profile is highly inflectional a
the OS analysis will give a large value of the growth rate

Figures 14 and 15 show the eigenfunction from the
together with the rms-value of the velocity from DNS
positionsx545 andx555. The eigenfunctions are calcu
lated using the instantaneous velocity profile at the t
x-positions as basic states. The rms-value from DNS is
culated over one period of the disturbance, which wasT
514.8 ~in units of d* /U`! and the corresponding frequenc
wasV50.425.

The eigenfunction in the streamwise direction is sho
in Figs. 14~a! and 14~b!, together with the correspondingurms

from the DNS. The solid line is DNS data and the dash
line is from the OS analysis. The wall normal coordinate
scaled with the boundary layer thickness. The sharp pea
the profile is due to the shear layer instability. At bothx
positions the shape is well predicted. The double inner p
observed in theurms profile is slightly overpredicted by the
OS analysis atx545 and is lacking atx555.

The eigenfunction in the normal direction is shown
Figs. 15~a! and 15~b!, together with the correspondingv rms

from the DNS. The profiles are well predicted by the line
OS analysis. However, the second, outer peak is also slig
overpredicted by the linear OS analysis. Observe thatv rms is
not zero at the wall due to the injection through the slot.

The results shown in Figs. 14 and 15 are based on
instantaneous two-dimensional approximation of the ba
state. The agreement between the calculated eigenfunc
and the rms-profiles found in the fully three-dimension
DNS is remarkable, indicating that the instability mechani
is determined mainly by the local flow conditions.

The growth rate from DNS data is calculated from t
Fourier transform in time of velocity fields as a function
x. When comparing the growth rate and streamwise w

FIG. 16. Maximum of u. First harmonic; - - - second harmonic;
¯ linear fit; • • • curve fit of first harmonic.
Downloaded 04 Jun 2002 to 130.237.222.14. Redistribution subject to A
-
ch

s

S

o
l-

n

d
s
in

k

r
tly

n
ic
ns
l

e

number from the OS analysis with the corresponding val
from DNS data, the DNS data has to be smoothed si
taking derivatives directly will give spurious oscillations.

The growth rate from the DNS data, denoted bys, is
calculated from the development in time of the maximu
value of the velocity in the downstream direction. The ma
mum value is extracted for different frequencies from t
Fourier transform in time. The transformed velocity is

û~x,y,z,v!5E
2`

`

u~x,y,z,t !e2 ivtdt. ~5!

By taking the maximum overy andz and specifying which
frequency of interest, only thex-dependency is left,û
5û(x).

In Fig. 16 the maximum ofû in the first and second
harmonics are shown. The maximum occurs at the center
By showing the logarithm of the maximum as in Fig. 16,
curve fit is possible, shown as the dash–dotted line. Also
Fig. 16 the linear approximations to both the first and seco
harmonics are shown as the dotted lines. The slope for
second harmonic is twice the slope for the first.

FIG. 17. s The growth rate from the OS analysis. Smoothed DNS
data~curve fit!. ¯ Linear approximation to DNS data.

FIG. 18. s The streamwise wave number from OS the analys
Smoothed DNS data~curve fit!. ¯ Linear approximation to DNS data
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Now, the growth rate is calculated from Eq.~3!, which
can be written as

s5
1

uûu
d

dx
uûu5

d

dx
~ lnuûu!. ~6!

The linear approximation to the maximum ofû in the
first harmonic~shown in Fig. 16! is used for calculating the
growth rate, which becomes a constant and is shown as
dotted line in Fig. 17. By using the curve fit ofû instead of
the linear approximation, the growth rate becomes as
solid line shown in Fig. 17. The circles are the correspond
growth rates calculated from OS using the instantaneous
locity profiles.

The real part of the eigenvalue (a r) from the OS analy-
sis, is shown in Fig. 18 as circles. To calculate the cor
spondinga r from DNS, which is denotedã, Eq. ~4! is used.
This equation also involves derivatives in the downstre
direction which cause spurious oscillations. To equivalen
smooth theã, Eq. ~4! is rewritten, by noting thatû5eiQ, in
the form

ã5ReH dQ

dx J . ~7!

Thus, it is a matter of smoothingQ, which is defined by

Q52 i ln û. ~8!

The resulting smoothedã is shown in Fig. 18. The linea
approximation becomes a constant and is also shown in
figure.

Until the second harmonic has reached a substantial
plitude ~see Fig. 16! the extracted results from the DNS ca
culation represents the true varicose secondary instab
including effects of both streamwise and spanwise varia
of the base flow. Thus, the agreement between the instab
analysis and DNS data presented in this section streng
the arguments for a normal inflectional instability being t
main contributor to the horseshoe vortex formation. This w
also found by Park and Huerre28 who studied streaks in
curved boundary layers and showed theoretically that
sinuous mode is primarily induced by the spanwise sh
while the varicose mode is triggered by the wall-norm
shear. In addition, Asaiet al.29 studied the response to
single low speed streak in a boundary layer excited b
time-periodic signal of either sinuous or varicose type. T
growth of the sinuous mode evolved into a train of strea
wise vortices and the varicose mode into horseshoe vorti

To further show that the normal instability is of greate
interest in our case, we show the maximum normal and sp
wise shear in Fig. 19. The maximum of the normal shea
Fig. 19~a! is located above the streak, and has a value of
The maximum of the spanwise shear in Fig. 19~b! is located
on either side of the streak, and has a value of 0.5.

In the secondary instability calculation of Anderss
et al.30 the spanwise shear in a typical streak was about
same as the maximum found here. The calculated gro
rate, however, was about one order of magnitude lower t
the one we found from the DNS data and the presented
bility calculations.
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Anderssonet al.30 found no varicose instability since
they did not have normal velocity profiles with strong norm
shear. In a parallel study~Anderssonet al.31!, streak profiles
with strong normal shear were analyzed. In those cases
varicose mode dominated over the sinuous mode.

2. The turbulent case

So far, the detailed analysis of the low-speed streak in
otherwise laminar boundary layer has confirmed some of
results from the experiment of AS. Furthermore, a thorou
analysis of the origin of the instability of the streak w
made with linear stability analysis. The simulations al
showed the development of more complicated structures
ther downstream, where the statistics resembled turbulen

These results, together with the striking resemblance
the streak development between Figs. 6 and 1 lead to
hypothesis that, at least to some degree, the break u
streaks in a turbulent field is governed by the same mec
nisms as for the isolated streak in the laminar boundary la

To qualitatively show that streak instabilities exist in
turbulent boundary layer that are of the same normal infl
tional type as in the laminar case, the OS analysis was
formed with velocity profiles from the turbulent velocit
field.

When a horseshoe structure in the turbulent field
been identified, it can be followed backward in time, if v

FIG. 19. Contours of maximum~over y! shear with spacing 0.1. Contour
representing the largest values are indicated with thick lines.~a! Normal
shear (maxyu]u/]yu), maximum51.3. ~b! Spanwise shear (maxyu]u/]zu),
maximum50.5.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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locity fields from earlier times are available. Since the l
cycle of a structure is long~over T5150 d* /U`!, the re-
quirement for data storage is demanding. As the structur
followed backward in time, it is found further upstream a
is weaker. At some point in time and space the struct
vanishes. Thus, at this point the birth of the structure can
investigated. By examining the time signal of the veloc
from points just upstream of the first appearance of the st
ture, the frequency of the disturbance leading to the vor
formation can be determined. One example of a time sig
of the streamwise velocity is shown in Fig. 20. The instab
ity wave appears at time 15 588.

The point~x5170, y50.4, z526.5! where the velocity
signal was examined is located just upstream of the first
pearance of a structure. The newly born structure is show
Fig. 21. The figure shows the low pressure signature of
structure at the time 15 596~referring to Fig. 20!.

A velocity profile was extracted from the turbulent fie
at a point where the disturbance was small compared to
ther downstream, i.e., before roll up of the vortex. In th
particular case the point was located at~x5170, z526.5! at
the time 15 584. This profile was used together with the
served frequency in the OS equation.

To compare the DNS data with the eigenfunctions fro
the OS analysis, the rms-profiles were extracted by collec
statistics during a simulation over one period of the dist
bance. The rms-profiles were taken from the same positio

FIG. 20. Time signal of the streamwise velocity component atx5170,
y50.4, z526.5.

FIG. 21. Iso-surface of pressure at time 15 596. Contour level at20.004.
The height of the box shown is 4.5, corresponding to 80 in wall units.
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where the frequency of the disturbance was observed for
longest period of time. This position is~x5170, z526.5! in
the example discussed above. The time interval over wh
the rms-profiles were taken was 15 584–15 596.

This whole procedure was performed for three indep
dent structures, each separated in time over 2000 (d* /U`).
All three of the structures could be traced back to their po
of roll up, and the analysis of the velocity profiles gave sim
lar results.

Furthermore, the OS analysis showed that the resul
eigenfuctions are not sensitive to changes inRed* and fre-
quency~v!. The independence of Reynolds number is e
plained by the inviscid nature of the inflectional instabilit
The insensitivity onv shows that the time scale of the di
turbance is not important for the instability mechanism. T
points towards an instability of a Kelvin–Helmholz chara
ter.

One example of the velocity profile just before roll up
shown in Fig. 22. The frequency in this case wasv50.78
and the OS analysis gave a growth rate of2a i50.024. The
eigenfunctions from the OS analysis were then compare
rms-values taken over one period of the disturbance.
results from this analysis are shown in Figs. 23~a! and 23~b!.
In the streamwise component@Fig. 23~a!#, the double peak is
predicted by the linear analysis, even though the outer p
is located further out in theurms profile. In the normal com-
ponent@Fig. 23~b!#, the inner peak is located slightly close
to the wall in the predicted profile. Also a tendency to
second peak is seen, though thev rms profile has a much
stronger peak.

Although we have only investigated three random
picked events, the results are promising and a larger inve
gation with an objective method for detecting structures, f
lowed by tracing them back in time to their point of orig
and the associated inflectional velocity profile, could prov
statistical evidence of the horseshoe vortex formation. T
is, however, beyond the scope of the present investigatio

FIG. 22. Velocity profile from a turbulent boundary layer.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 23. ~a! Streamwise component
~b! Normal component. rms-
value of velocity. - - - Eigenfunction
from the OS equation.
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IV. DISCUSSION AND CONCLUSIONS

A DNS of a laminar boundary layer disturbed by a co
tinuous blowing through a slot in the wall has been p
formed. The objectives were to reproduce and further inv
tigate the results reported from the experiments of Aca
and Smith.12 The blowing of fluid from the slot creates
low-speed streak which exhibits a disturbance wave grow
downstream. It was argued that this secondary disturba
originated from a normal inflectional instability in th
streamwise velocity profile. An analysis using the Or
Sommerfeld equations gave qualitative agreement in
growth rate and streamwise wave number with the co
sponding values extracted from the DNS velocity fields. T
nonlinear effects gave rise to higher harmonics at the en
the slot where the first low-pressure structure was found.
structure consist of a vortex loop that evolves downstream
form a horseshoe vortex. After the horseshoe vortex bre
down the low-speed streak persist together with additio
streaks formed by the horseshoe vortex. Further downstr
more complicated structures appear and the streak spaci
100 in wall units.

The frequency of the vortex generation was shown
scale with the ratio between the blowing velocity a
freestream velocity. Good agreement with the experime
data was obtained.

Also a DNS of a zero pressure gradient turbulent bou
ary layer was performed, and horseshoe vortices were
served using low-pressure identification. The similarities
tween structures in the turbulent field and the on
originating from the low-speed streak in the laminar simu
tion were presented. The origins of the horseshoe vortice
the turbulent boundary layer were investigated by trac
their evolution backwards in time, and the results sugges
that it was related to an inflectional instability of the strea
This is similar to the investigations of Johanssonet al.32

which traced the evolution of typical structures associa
with the VISA events in low Reynolds number channel flo
Their investigation did not contain any stability calculatio
and can therefore not be directly compared to ours.

In addition, the results from our turbulent boundary lay
simulation is in general agreement with the investigation
Adrian et al.,14 which shows that the low-speed streak
turbulence may be spawned by horseshoe vortices. Howe
in the numerical experiments of turbulence where the ou
Downloaded 04 Jun 2002 to 130.237.222.14. Redistribution subject to A
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part, and hence the hairpins, has been removed, the s
prevails. See, e.g., the work by Jimenez and Moin8 and
Hamilton et al.9 The turbulence cycle is then dominated b
the sinuous instability, which is not surprising since the va
cose mode is related to hairpins which are suppressed by
geometrical constrains.

Adrian et al.14 also propose a cause for the formation
the vortices themselves. They write that ‘‘@hairpin# packets
originate at the wall from a disturbance whose characte
not specified except that it creates a pool of low moment
at the wall, i.e., a Q2 event from another hairpin, a bump
puff of low momentum through the wall, a random pressu
fluctuation, or a culmination of flow induced by surroundin
events such as wall-tangent flows that converge to a sta
tion point and thence erupt upwards.’’ Our findings supp
this idea in the sense that the streak consists of low mom
tum and the varicose instability follows as a consequenc

The inflectional instability considered in the prese
work is of a different type from those investigated
Waleffe,10 Kawaharaet al.23 and Schoppa and Hussain,6 who
model the turbulent velocity profile as a mean flow with t
streaky structure deforming the profile, rather than the
stantaneous profile considered here. They showed that
the sinuous mode which is unstable. Furthermore, it has b
shown in the secondary instability calculations by Anderss
et al.,30 that the growth rate of the sinuous mode scales w
the spanwise derivative of the mean flow, just as in the mo
of Waleffe. Thus it is reasonable to assume that the sinu
instability depends primarily on the appearance of the sp
wise inflection. Reddyet al.33 further showed that the sinu
ous instability is inhibited by the appearance of normal she

We show in this work, as it has been implied in othe
~e.g., Robinson,18 Asai et al.29!, that the appearance of a
unstable normal velocity profile~in many cases associate
with a normal inflection point! is a precursor to the appea
ance of horseshoe vortices. In terms of a streak instabi
Bottaro and Klingmann34 among others, have shown that th
is related to the varicose mode. Thus the sinuous streak
stability is correlated with a basic state with a spanwise
flection and the varicose mode with a basic state with a n
mal inflection, as has also been shown by Park and Huer28

It is reasonable to assume that both types of streak in
bilities are of importance in a turbulent boundary layer; t
sinuous type for the regeneration of near-wall turbulence
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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shown by Jimenez and Moin8 and Hamiltonet al.,9 and the
varicose type for the production of horseshoe vortices po
lating the region away from the wall~see, e.g., Robinson,18

Acarlar and Smith,12 Haidari and Smith,13 and Adrian
et al.14!.
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