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An investigation of a model of turbulence generation in the wall region of a turbulent boundary
layer is made through direct numerical simulations. The model is based on the varicose instability
of a streak. First, a laminar boundary layer disturbed by a continuous blowing through a slot is
simulated in order to reproduce and further investigate the results reported from the experiments of
Acarlar and SmithJ. Fluid Mech.175 43 (1987]. An isolated streak with an inflectional profile is
generated that becomes unstable, resulting in a train of horseshoe vortices. The frequency of the
vortex generation is equal to the experimental results. Comparison of the instability characteristics
to those predicted through an Orr—Sommerfeld analysis are in good agreement. Second, a direct
numerical simulation of a turbulent boundary layer is performed to point out the similarities between
the horseshoe vortices in a turbulent and a laminar boundary layer. The characteristics of streaks and
the vortical structures surrounding them in a turbulent boundary layer compare well with the model
streak. The results of the present study show that one mechanism for the generation of horseshoe
vortices in turbulent boundary layers is related to a normal inflectional instability of the
streaks. ©2002 American Institute of Physic§DOI: 10.1063/1.1482377

I. INTRODUCTION pressure for identification of vortices in a turbulent channel
flow, and used conditional sampling to extract the precise

form of the coherent structure.
The occurrence of coherent vortices in wall-bounded tur-

bulent flows has been observed in a large number of invesB. Streamwise versus horseshoe vortex structures

tigationg by differerjt-me.ans. The experimental opservations Jeong and Hussdluid not detect any horseshoe vortices
have relied on dye injections or hydrogen bubbles introduced, ihe channel flow simulation by Kiret al” Instead they

in the flow. Lately, low Reynolds number flows have beengyiracted a coherent structure consisting of quasi-streamwise
investigated numerically through direct numerical simula-yortices by conditional sampling. Jimenez and Moand
tions (DNS). The flow field variables are all available at the Hamilton et al® observed, by shrinking the computational
same time and thus more sophisticated detection methodsx, that the self-sustained turbulence is linked to the quasi-
have been developed. Robindarsed the pressure success-streamwise vortices, and does not depend on the outer part of
fully for revealing horseshoe vortices in a data base from ahe flow. This scenario is consistent with the model of
DNS of a turbulent boundary layer. Singer and Jd3stiiso Waleffet® which states that the vortex is fed by energy from
used the pressure in a numerical simulation for visualizing 4he break up of the streak. Jimenez and Pittelised a
horseshoe vortex generated by blowing through a slotmethod of reducing the influence of the outer flow in a nu-
Chonget al used the discriminant of the velocity gradient Merical simulation to show that the regeneration cycle is
tensor for identifying flow structures in turbulent boundary!ndEpendenF on the'outer ﬂ_OW' Thus, accordl.ng to these find-
layers. They found structures that to a great extent consist T'gs’ there is little mtgractlon_ between the inner and ou.ter
attached vortex loops. Zht al* used the imaginary part of ow. Consequently, it is possible to model the regeneration

of turbulence via a self-sustaining process involving low-

the complex eigenvalue of the velocity gradient tensor tospeed streak and quasi-streamwise vortex, independent on

identify hairpin structures in channel flow. The structuresy o outer flow.

originated from a vortical structure imposed in the flow. By  on the other hand, horseshoe vortices observed in
plotting the imaginary part a clear picture of the structurepoundary layer flows reach into the outer flow. Experimental
was obtained and the shape was not sensitive to the levelidence include the work of Acarlar and Sniftand Haid-
chosen for visualization. Jeong and Hus3and Schoppa ari and Smith3in which vortices, generated by blowing fluid
and Hussaihused an eigenvalue based on the Hessian of théhrough a slot in the wall, were studied in a laminar bound-

A. Detection of coherent structures
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ary layer. The blowing was continuous in the experiment byis included, categorizes the mechanisms into parent-offspring
Acarlar and Smith while a pulsed injection was used by Hai-and instability based scenarios. The former is characterized
dari and Smith. Recently, Adriaet al* have visualized as the generation of vortices by direct action of existing vor-
hairpin vortices in a turbulent boundary layer using particletices, whereas the second involves local instability of quasi-
image velocimetry(PIV). They show that hairpin packets steady flow. Within the instability based scenarios the sinu-
(groups of horseshoe vortigesuild up the turbulent bound- ous and varicose streak instabilities are the two main ones.
ary layer. The number of vortices that constitute a packet ighe view of Schoppa and Huss&iseems to be that there is
lower in a low Reynolds number flow than in high Reynoldsa contradiction between these explanations. Our view is that
number flows. Further experiments with conditional sam-turbulence is such a rich phenomenon that there are most
pling by Christensen and Adridhrevealed that the outer likely several mechanisms at work regarding coherent struc-
structure of the turbulent boundary layer includes spanwiséure generation, of which we here have chosen to study one.
vortices at a spacing and angle which are Reynolds number

independent. D. Present study

The experimental findings of Haidari and Smith was | this work we will pursue the horseshoe vortex dynam-
confirmed by the DNS of Singer and Joslithey observed ics, within the streak stability based scenario of varicose
different kinds of subsidiary vorticegsuch as necklace or type. In the experiments by Acarlar and Smiithhereafter
U-shaped vorticgsand the initial vortex generated by the denoted AS, an artificial low-speed streak was generated in a
blowing finally develops into a turbulent spot. laminar boundary layer by blowing fluid through a slot in the

The size of the horseshoe vortices seems to vary withigvall. The streak became unstable and horseshoe vortices
the flow and also vary with Reynolds number. A turbulencewere formed and were followed downstream. In the present
model for Reynolds average Navier—StoKBANS) calcu-  study we reproduce the flow studied by AS through DNS.
lations of turbulent flows has been developed by PerryMoreover, the hypothesis indicated by AS regarding the in-
et al!® based on size and strength of the horseshoe strustability causing the vortices is here further investigated. One
tures. This technique was recently used by Marfdsshow  of the objectives in the AS experiment was to give insight to
that packets of horseshoe vortices are statistically significarthe mechanisms and structures in a turbulent boundary layer.

structures. In the present work, a stronger link to turbulence is made
through comparison with a simulation of a zero pressure gra-
C. Streak instability and turbulence regeneration dient turbulent boundary layer.

The vortex structures present in turbulent boundary lay- The experlment_s by Haidari a_nd Siiticould als_o have
been reproduced with our numerical code by turning off the

ers seem to be related to streak instabilities. However, se lowi fter the iniecti leted. H th
eral types of instabilities seem to occur. Robinggmoposed owing after the injection was completed. However, the nu-
merical study by Singer and Jodliwas already performed

that a normal inflectional instability of the instantaneous ve-aS 2 numerical compliment to the pulsed iniection experi
locity profile may produce horseshoe vortices.  Sifiger ments by Haidari arf)d Smith Notepalso tha]t althou hpthe
showed that a normal inflectional instability of the velocity y ' g

profile may be responsible for the generation of secondar{éljlsecj ipjection Is important for the study of a single vortex
horseshoe vortices. Kirat al?° were the first to show that a eveloping downstream, the turbulent boundary layer seems

normal inflectional instability of the instantaneous velocity Qoslth/ to consist of packages of vortices, see, e.g., Adrian

profile is of importance in the turbulence regeneration cycle. . .
. . . o : After a presentation of the numerical method and param-
They observed the inflectional velocity profiles in connection . .
eters in Sec. Il, we present the results in Sec. Ill. The em-

with the rapid lift up of the low-speed streaks in the later part hasis is on the results from the laminar simulation, which is

of the process of the streak break up. Several models of th(F(:)aompared with the experimental results from AS. Further

turbulence regeneration cycle have been proposed b o ; - :

Landahl?*?2where inflectional instability of the local mean vesUgg tions pf the instability mgcham;m are made. Also

velocity profile is a main ingredient. comparison Wlt.h .thej .turbulent simulation is done, from
On the other hand, in the model of Waldftehe basic \;vehrlltggdstrong similarities between the two cases are pre-

state is two-dimensional and consists of the turbulent mean '

flow with a simple construction of the streak imposed. He

found that the dominating instability is sinuous and that it iS||. NUMERICAL METHODOLOGY

correlated with the spanwise inflection of the basic state. ) ) )

Kawaharaet al2® and Schoppa and Huss&ialso used such A Direct numerical simulations

a model and showed that the varicose mode is stable. The code used for the simulation is developed at KTH

Schoppa and Hussdiargued that this is consistent with the and FFA?® The program uses spectral methods with Fourier

absence of horseshoe vortices in their examination of theliscretization in the horizontal directions and Chebyshev dis-

DNS data base generated by Kenal.’ cretization in the normal direction. Since the boundary layer
The references cited above form only a small part of thés developing in the down-stream direction, it is necessary to

work that has been put into the detection and analysis ofise nonperiodic boundary conditions in the streamwise di-

coherent structures. A recent article by Schoppa andection. This is possible while retaining the Fourier discreti-

Hussair’* where a detailed discussion of the state of the artation if a fringe region is added downstream of the physical
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domain. In the fringe region the flow is forced from the the laminar boundary layer was disturbed at the beginning of
outflow of the physical domain to the inflow. In this way the the computational box by a random volume force near the
physical domain and the fringe region together satisfy periwall. The length(including the fringe, height and width of
odic boundary conditions. The fringe region is implementedthe computation box were 66800x 34. The number of
by the addition of a volume force whose form is designed tanodes was 648 201X 128. The simulations were performed
minimize the upstream influence. The upstream influence ot Res =450 for the laminar inflow before the tripping,
the fringe region is of the same order as the height of thevhich gives a turbulenReg :343—-636. The resolution in
computational box. Since our box is very long and thin, theplus units wasAX*=19, AZ*=5.5, and ranging from
influence is marginal. All the results are taken from regionsAY*=0.04 close to the wall td\Y*=5.6 at the coarsest
well upstream of any fringe influence. For an analysis of thepart of the grid.

fringe region technique, the reader is referred to the investi-

gation by Nordstim et al?® B. The linear stability analysis

Time integration is performed using a third order  ong of the main conclusions of this work will concern
Runge—Kutta scheme for the advective and forcing t€rMgne jnstability mechanism of a low-speed streak leading to
and Crank-Nicholson for the viscous terms. horseshoe-shaped vortices. Linear stability theory will be

All quantities are nondimensionalized by the freestrean),seq to describe the early stages of this instability. The dis-
velocity (U.) and the displacement thickness*( at the  y,hance occurring due to the instability of the streak will be
starting position of the simulatiorx=0) where the flow is  genoted secondary disturbance, since the primary distur-
laminar. At that positiorR ez =U..6"/v=450 for all Simu-  ance is the streak itself. The velocity profiles close to where
lations, except for some simulations performed R he secondary disturbance start to appear, below derdted
=290 for the comparison of frequency characteristics. The_ U(y), were analyzed by solving the Orr—Sommerfeld
length (including the fringg, height and width of the com- (g equation. The results from the OS equation are only
putation box were 26@7> 14 in these units. The number of |6y ant as long as the disturbance is small enough and varia-
modes was 43265x72. The size and resolution wWere qns of the base flowstreak in the horizontal directions and
checked to be sufficient for all cases. time is much smaller than the length scale of the instability

The simulations were performed with an initial objective \yaves The OS equation is the linearized Navier—Stokes
of reproducing some of the results obtained in the eXperi'equations for the disturbance

ments of AS. In their experiments the slot was 63.5 mm in
length and 1 mm in width. The simulations were performed
with a slot with the same length but twice the width, i.e., 2‘;S
mm. This change in geometry results in a large decrease in
computational cost. The slot in simulation coordinatés)(  The two-dimensional disturbance is written as a stream func-
is approximately 30 long and 1 wide. The flow through thetion

slot is set by a velocity profile resembling a channel flow

parabola in the spanwise direction and is increasing from = ¢(y)exgia(x—ct)]=o(y)exdi(ax—ot)]. (2)

zero to the maximum value during the first 10% of the slot

length at the upstream end,.and is likewise terminated at _the Because the secondary disturbance is characterized by
downstream end. The blowing through the slot was continys frequency and its growth in space in the simulations, spa-
ued without interruption through all of the simulations. To 44 analysis of the OS equation will be used. In the case of
avoid large transients in the beginning of the simulation Wespatial analysis the eigenvalue problém is solved for a
ramped up the blowing from zero to the maximum Valuegiven R and w, which is real. The solution ig(y) (eigen-
during an initial time of 106*/U.,). The time step was con- function) anda= a,+i«; (eigenvalug The value of— a; is
siderably decreased when the blowing through the wall igpe growth rate, and, is the streamwise wave number.
applied. The strength of the blowing was varied from 6.5%  The results from the analysis of the OS equation are

to 20% of the freestream velocity. . compared with the actual behavior of the flow in the DNS.
A low-speed streak is formed immediately above the slofrpe gigenvalue- a; is compared with the growth rate of the

due to the lift-up of low-speed fluid to the flow further outin isturbance. Furthermore, the eigenvalug is compared

the boundary layer. A disturbance on this streak was detectégith the streamwise wave number of the disturbance. The

and the frequency was observed during a long period of timeyna\ysis of the time signal from DNS is done through a Fou-

and was then locked by letting a small% of the original  yier transform in time of the velocity fields. For a given fre-

blowing) additional time-periodic blowing be superimposed guency, we take the maximum over the spanwise and normal

on the blowing forming the streak. The frequency of thegjrections. Thus, the results from DNS are contained in a
initial disturbance on the streak was locked to be able tq,ction 0(x). The growth rate of the disturbance is

calculate the growth rate of the disturbance through a Fourier
transform in time. q
A simulation of a turbulent boundary layer was per- a=—Re[l—U], 3)
formed to investigate how the streak instabilities observed in 0 dx
the isolated streak in the laminar boundary layer could be
applicable to a turbulent flow. The same code was used, bw@nd the streamwise wave number of the disturbance is

" 2024+ atp=iaR{(U=c)(¢"~ a?$)~U"¢]. (1
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secondary vortex

96

third structure

first structure

FIG. 1. The flow field downstream of the slot. The light gray structuresFiG. 2. The flow field far downstream of the slot. The light gray structures
represent the low-speed streaks and the darker ones represent regions Widpresent the low-speed streaks and the darker ones represent regions with
low pressure. Contour levels are0.08 for the streamwise velocity fluctua- low pressure. Contour levels are0.11 for the streamwise velocity fluctua-

tions and—0.01 for the pressure. tions and—0.005 for the pressure.
1
a=Im :iﬁ . (4) Ill. RESULTS
0 dx

) A. Initial observations
The use of the Orr—Sommerfeld equation proposed here

does not take the spanwise variation of the streak profile int<_)1 c . ih AS iment
account. Although this could in principle be done, it would ™ ompanson wi experimen

defeat our purpose which is to show that an instability due to  The development of the streak downstream of the slot is
the normal shear is the dominating growth mechanism reshown in Fig. 1. Only the part immediately after the slot is
sponsible for the initiation of the horseshoe vortex. We areshown. The light gray iso-surface represents the low-speed
interested in obtaining a simple model which we can apply irstreak, and the dark gray represents the low pressure. The
the more complicated turbulent case, in the same manner atot ends ak=60 and the first low-pressure structure is ob-
Waleffe!® models the sinuous secondary instability of a tur-served at that point. The subsequent pressure structures de-
bulent streak with only a spanwise varying shear. In additionyelop downstream and become stronger. Additional streaks
a 2D stability analysis would also be superfluous since wen either side are being induced by the pressure structure at
extract a result equivalent to such an analysis from the DN&=70. This will be further discussed in Sec. Il B. Around
calculations. In fact, the DNS results can be considered as= 94 the last structure in the train of vortices is observed,
secondary instability calculation, where not only the spanand the streak has been lifted upward. The low-pressure
wise shear is taken into account, but also the streamwisstructure vanishes, but the streak and the additional, induced
nonparallel effects, as long as the amplitude of the disturstreaks persist downstream, as seen from Fig. 2, where the

bance is small. region downstream of the breakup is also shown. The three
008 T T a.14
(a) (b)
0.07 1 o.12r
0.06F
0.4 H
005+
.08
Urms | Urms®
008 1 FIG. 3. ups at (8 x=60, (b) x
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0.04 1
0.02r
001k 0.02
[ 1 2 3 4 5 6 7 8 [ 1 2 3 4 5 6 7 8
n n

Downloaded 04 Jun 2002 to 130.237.222.14. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 14, No. 7, July 2002 Varicose instabilities in turbulent boundary layers 2313

FIG. 4. Iso-surface of low pressure just downstream of the slot. Same paflG. 5. Iso-surface of the imaginary part of the eigenvalue of velocity
of the flow field as in Fig. 1. gradient tensor. The figure shows the eigenvalue calculated from the same
velocity field as in Fig. 4. Contour level at 0.32.

streaks continue far downstream until more complicated low-

pressure structures occunat 145, marked with an arrow in

Fig. 2. Here the flow has more of a turbulent nature, which igation, showing vorticity can be misleading when seeking

also seen from the rms-values shown in Fig. 3. Thgs  parts of the flow where rotating structures are of interest. The
profile from a position at the end of the slot is shown in Fig.imaginary part of the eigenvalue on the other hand, indicates
3(a). This profile has a shape which is a result of an inflecwhere swirling occurs.

tional instability, which will be further discussed in Sec. In Fig. 4 the low-pressure structures in Fig. 1 are shown

II1D. The u,s from a position far downstreamx&160) is  without the low-speed streak to get a clearer picture of the
shown in Fig. 8b). This profile resembles a profile from a gtyyctures themselves. The structures in Fig. 5 consist of iso-
turbulent boundary layer. T.hus., the more turbulgnt like flowgrfaces of the imaginary part of the eigenvalue. The strong
at the far downstream region is revealed both in the strucggrelation indicate that the structures in Fig. 4 are due to

tures themselves and in the statistical profiles. The streaj i rotation of the flow in the regions of low pressure.
spacing is actually 100 in viscous units in this region, further Observe that th€-shape of the last structure in Fig. 5 is

indicating attributesd_of a tfurrt]) ulent boundary Iayebr. q reminiscent of the structure observed by Zhetual* Also,
In AS no spreading of the structures were observed ang,, i of the legs about one-third of the length from the

they argue that .thls IS dge to the sub-critical laminar bourldIJpstream end are present in the last structure. Note that the
ary layer in their experiment. They do however observe

. . %ackground flow in the present simulation is laminar
more turbulent like profile downstream and also three elon- 9 P

L whereas it consisted of a turbulent mean flow in the study of
gated low-speed streaks, originating from secondary strea

i . : . . T houet al* The kinked legs and the curled back head of the
wise vortices. Our simulation continue further downs’treamI

than the experiment by AS, and the persistent Iow-speeﬁ‘St structure in Fig. 5 was also observed by AS at the same

streaks were observed downstream until the more <:ompI|-0W£Stream deS'tIOT' is ob d ab the pri h
cated vortices appearedat 145, see Fig. 2. secondary vortex is observed above the primary horse-

It was shown, in the experiments by Haidari and Shith shoe vortex in the two structures before the last one in Fig. 5.

of a single vortex developing downstream, that the growth ofl '€ Sécondary vortex is also visible in one of the corre-
the structure is caused by both the interaction of the primaryP°nding pressure structures as marked in Fig. 1. The sec-
vortex with surface fluid and inviscid deformation of the Ondary vortex is visible at approximately the same position
vortex lines. The latter mechanism was however not found it in AS. Zhouet al* found not only secondary horseshoe
the numerical investigation of a single vortex by Singer andvortices developing upstream of the primary vortex, but also
Joslin? Furthermore, the numerical simulation showed thatdownstream, which was not observed in the present simula-
the secondary vortices formed beneath the hairpin vorteion. In the experiments of AS, a secondary vortex appears to
legs were closely related to the initial injection and not gen-originate from the position above the legs of primary vortex.
erated by the primary vortex. Thus, it seems difficult to ob-It either grows to be an independent vortex, or agglomerates
tain and observe the dynamics of a single vortex; it iswith the upstream or downstream vortex. The same behavior
strongly linked to the generation process. is observed in the present simulations.

The low-pressure structures seen in Fig. 1 are vortex Thus, the secondary vortices appearing upstream, above
loops, consisting of swirling flow. To illustrate that the low- the legs, of the primary one are in common with many of the
pressure regions consist of rotational flow, the imaginary paréxperimental and numerical investigations, while the genera-
of the complex eigenvalue of the velocity gradient tensor cartion of downstream secondary vortices depends on the
be used”’ Because the vorticity indicates both shear and ro-strength and duration of blowing.
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artificial streak introduced. The proposed mechanism is that
the low-speed streak makes the streamwise velocity profile
highly inflectional. The instability is very strongvith a large
growth rate. The disturbance grows downstream and higher
harmonics occur. The stability analysis is presented in Sec.
I D.

The results in this section are taken from the simulation
at a Reynolds numbeRes =U .. 6*/v=450 atx=0, which
corresponds to a Reynolds numbes =490 at the begin-
ning of the slot. The normal velocity blowing out of the slot
was V,,=0.0657, resulting in a slot Reynolds number of
Re,, =28.3. The blowing was introduced betwegs 30
and x=59 in the streamwise direction, and between
=—0.48 andz=0.48 in the spanwise direction.

1. Vortex formation above the slot

One velocity field is studied, using plots in two dimen-
sions of different planes. In Figs(a&-7(f) the planes are
from different positions irx, showing what happens with the
FIG. 6. Turbulent boundary layer. Only a part of the computational box isﬂOW above the slot. The lines in the horizontal direction,
shown. The light gray structures represent the low-speed streaks and tfe0m blue to green, are the iso-lines of streamwise velocity,
darker ones represent regions with low pressure. Contour levels Gu@7 while the arrows represents the normal and spanwise velocity
for the strgamwise veloc@ty fluctuations aﬁop.003 for the pressure. The components. The firsfFig. 7(a)] figure shows the undis-
arrows point to some typical horseshoe vortices. . .

turbed laminar boundary layer at the point where the slot
starts. The next ongFig. 7(b)] shows a plane further down-
stream. Here the injection is visible as the strong flow out
from the wall. The lines representing constant streamwise

The presence of streaky structures in a near-wall turbuvelocity are bent outward and thus forming a low-speed
lent flow has been observed in many experiments and simwstreak. The low-speed streak is formed because of the injec-
lations. These structures are low speed regions, where th@n velocity that lifts up low-speed fluid from the near-wall
streamwise velocity is lower than the mean velocity, theregion higher up in the laminar boundary layer. In Fitc) &
mean taken in the spanwise)(direction for eachx- and  swirling flow is observed at either side of the low-speed
y-position. They are narrow in the spanwise direction andstreak. As the vortical motion becomes stronger it deforms
elongated in the streamwise direction with a spanwise spadhe streak as seen in Figdj, where also the vortex is strong
ing of about 100 in wall units. Streaks lying at different enough to be represented with low pressure regions at the
positions inz break down at different positions i Also, a  center of the vortex. Iso-lines of constant low pressure are
new streak seems to be born where the old one breaks dowshown as red lines. These low pressure regions that evolve
In a number of investigations, events referred to as bursirom the center of the vortex at either side of the streak are
have been observed, and are generally considered to be pé#ne legs of the first low pressure structure seen in Fig. 1. The
of the streak break up. plane in Fig. Td) is located at the end of the slot, thus no

An instantaneous flow field from the simulation of a tur- more injection velocity can be observed. In Fige)the low
bulent boundary layer is shown in Fig. 6. Only a part of thepressure region is above the streak and the motion in the
computational box at approximatelRRey,=450 is shown. region is a flow upward. The plane in Fig(eY is located a
The spanwise width is about 300 in wall units and the heighshort distance downstream of the plane in Figd).7Thus,
is 200. The light gray regions represent the low-speedmmediately after the legs have appeared an upward motion
streaks. Also shown in the figure, in the dark gray color, ards seen in Fig. #) in the low pressure region now located
regions of low pressure. The presence of horseshoe or haiabove the streak, and hence forms the head of the first struc-
pin vortices is well illustrated by this picture. The most ture. At the other sidédownstream sideof the low pressure
clearly visible ones are marked with arrows in Fig. 6. It isregion the motion is a downward flow, as seen in Fig).7
observed that the vortices are strongly connected to thé&his downward velocity at the downstream side of the head
streaks, since the vortices are positioned with their heathdicates that the low pressure structure is a vortex loop.
above a streak and their leg or legs on either side of th&ince the head is observed right after the legs, the structure is
streak. This feature is common to both the laminar and turvery short, which was also observed in Fig. 1.
bulent streaks, cf. Figs. 1 and 6.

2. Near-wall turbulence

2. Vortex formation downstream of the slot

B. Horseshoe vortex formation Now that the flow above the slot and around the first

The mechanisms behind the formation of vortices fromstructure has been studied, the flow further downstream will
the streak is here studied in detail in the laminar flow with anbe investigated. The same technique is used to get an idea
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FIG. 7. (Color) Vertical planes in the spanwise)(and normal ¥) directions. Arrows represent the spanwise and normal velocity. Blue through green lines
represent constant streamwise velocity from 0 to 0.5. Red lines represent constant pessure30, (b) x=38, (c) x=53, (d) x=59, (e) x=60,
(f) x=62.

about what happens with the flow around the well developegblot as in Fig. 6. The structure is representative for a turbu-
structure indicated as number three in Fig. 1. The structure itent structure since many can be identified in the same in-
the laminar simulation is compared with a typical structurestantaneous pressure field. The specific structure shown in
found in the turbulent field. Figs. 8b) and 9b) is located approximately in the middle of

In Fig. 8 verticalxy-planes are shown. In Fig(® the the computational domaitk=200, z=1), and is similar to
plane is located at the centerline=0) in the laminar field. the one in the upper right corner in Fig. 6. Then a horizontal
The blue line is an iso-line of constant streamwise disturplane is cut through the centén the spanwise directigrof
bance velocity and thus represent the low-speed streak, whitbe structure and its head is seen as the low pressure region
the red lines are iso-lines of low pressure. The arrows indiin Fig. 8b). Contour levels are-0.04 for the streamwise
cate the normal velocity and the streamwise disturbance verelocity fluctuations and from-0.02 to—0.01 for the pres-
locity. The streamwise disturbance velocity is calculated bysure.
subtracting the mean velocifghe mean taken in the span- The similarities between Figs(&@ and 8b) are remark-
wise direction at each point. The flow is from left to right able. In both figures the center of rotatiorelative to the
and arrows pointing to the left merely indicate low speedlocal mean flow is displaced from the center of low pres-
compared to the mean. What is seen in Fi@) & thus the sure. An additional, but weaker low pressure region is found
head of the pressure structure. The swirling flow around théelow the head of both structures. The head of the turbulent
head is the relative motion when the mean streamwise velostructure in Fig. &) is located aty™ =135.

ity is subtracted. Contour levels are0.08 for the stream- In Fig. 9, vertical cross-streany¢—) planes are shown.
wise velocity fluctuations and from 0.05 to—0.01 for the  The red contours represent low pressure and blue to yellow
pressure. lines are the iso-levels of streamwise velocity. The arrows

In Fig. 8b) a structure from the turbulent simulation is consist of normal and spanwise velocity components. In Fig.
shown. The horseshoe vortex was identified with a pressuré(a) the legs of the structure in the laminar field are clearly
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FIG. 8. (Color) Vertical planes in the
streamwise X) and normal ¥) direc-
tions. Arrows represent the streamwise
disturbance velocity and normal veloc-
ity components. The blue lines repre-
sent constant streamwise disturbance
velocity (low-speed streak The red
color represents constant presstiosv
pressurg (a) From the laminar simu-
lation. (b) From the turbulent simula-
tion atz=1.

FIG. 9. (Color) Vertical planes in the
spanwise £) and normal ¥) direc-
tions. Arrows represent the spanwise
and normal velocity. Blue through
green lines represent constant stream-
wise velocity. Red lines represent con-
stant pressure(@) From the laminar
simulation. (b) From the turbulent
simulation atx=196.
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FIG. 10. Nondimensional frequendy of the disturbance versuRes: .

Symbols correspond to different injection veIocitié&a\,W=WVW/v. Rey, 10, 1195. 1200. tiT;;é)S' 1210 1213
=28.30]; Re, =33.6 O; Rey, =38.7 <. Bold symbols represent experi-
mental data from AS. FIG. 12. Time signal of the normal velocity component>at60 and

x=70.

visible as the two low pressure regions, and the flow is cir- .

cling around the low pressure. Also seen are the inducefPrmed the same pattern as the corresponding pressure con-
vortices further out from the centerline. These induced vorfours. The vorticity ranged from-1 to —0.5 in the trans-
tices were also observed in the experiments by AS. The planéerse vortex and front- 1.5 to 0 in the longitudal vortices.

in Fig. 9a) is located atx=70, thus showing the legs be- o

longing to the structure whose head was shown in Fig..8 C- Frequency characteristics

The blue to green contour lines represent streamwise veloc- |n the experiments by AS the frequency of the roll up
ity from zero to 0.5. was measured. Their observations led to the conclusion that

In Fig. 9b), a cross-stream plane from the turbulentthe frequency increased when the injection velocity or the
simulation is shown. The plane is locatedxat 196 (refer-  freestream velocity was increased. They present the results
ring to the coordinates in Fig.(8), which corresponds to a as a nondimensionalized frequendyst/U..) as a function
distance ofx™ =184 (wall units) upstream of the head lo- of slot Reynolds numberReVWEWvW/,,) and boundary
cated atx=204 in Fig. 8b). The legs belongmg to the horse- layer Reynolds numberRes) at the beginning of the slot.
shoe vortex whose head was observed in Fig) &re the  jarey s the width of the slot. The simulations were per-
two low pressure regions located furthest from the wall, 10-toymed at twoRes , each with three differenRa, , for

Ci‘tiigtz;r? d 6}[?122_a;egélhzrggglnaifhoztlgir;tg:a%hei Ilz%s IS compari_son with experimental _results from AS. TRes« at
¥he otr;er low r>e/ssure rep ) | o th I bel ' tthe beginning of the computational box were 450 and 290,
i P gions close fo the wat belong Ocorresponding to 490 and 330 at the point where the slot
streamwise vortices. The blue to yellow contour lines repré s,
Sﬁgtes\};erag:vc'gﬁ dveinqﬁlttynf;(l)lrg'rZ(aec:rt(')otr:)ngérL?ttzgéf?iIn;r't In the present simulations the frequency was calculated
Th y ” pf tlh Ih d ! d II ! fth ! h h Y- using the time-signal of the velocity from various locations
. ehp0|3| lons ot eI €ad and legs of the Ors.ehs r?e VO, the flow. The frequency of the disturbance was observed
tex in the laminar simulation are in agreement with the ex- ver the full extent of the slot at a number of positions in the

perimental findings in AS. The strength of the transverse anaormal direction. When either of the two Reynolds numbers
longitudinal vortices corresponding to the head and legs '

were calculated in AS by assuming constant vorticity within
the vortex core. However, in the present DNS we find that 12
the vorticity varies through the core. For the vortical struc-
tures visualized by low-pressure in FiggaBand 9a), the 1k
vorticity lines (spanwise and streamwise, respectiyely

[eX:14
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FIG. 11. Nondimensional frequendy of the disturbance versug, /U., . T]
Symbols correspond to different Reynolds numbRes =490 [J; Reg
=330 0. Bold symbols represent experimental data from AS. FIG. 13. Velocity profile ax=45.
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were changed, the frequency also changed. The frequencias indicated in Fig. 11. This was also suggested by AS, al-
for three differentRe, at twoRes are plotted in Fig. 10, though they present their frequency data as in Fig. 10.

together with the results from Aghick symbol3. When the From simulation data it was observed that the frequency
frequency is plotted as a function of the two Reynolds numWwas doubled when going from a point above the slot to a
bers as was done in AS, it is observed that the frequency fdposition further downstream, as shown in Fig. 12, where the

Re, =28.3 is half of that observed by A&ig. 10. Also,  time signal of the normal component)( of the velocity at
v the two downstream locations gt=0.5 are shown. As was

reducingRe, further in the simulation caused the vortex g )
eneration té“ cease. In the experiment by &R, =28.3 shown in Sec. Il B, the roll up of the structures starts right at
g ’ w ' the downstream end of the slat£60), and the frequency
was the largest slot Reynolds number for which an orderegf the primary structures is thus the one measured=a60
vortex generation was observed, while as low values a§,q ot the frequency of double value which occurs further
Rey, =11.3 were shown to generate vortices. downstream ax="70. The doubling of the frequency is con-
Thus, theRe, for which vortex generation was ob- sjstent with the growth of a second harmonic of the distur-

served in the simulations was larger than the correspondinance further investigated in the next section.

Rey, in the experiments. For the value ’e\,w=28.3, com-
mon to both simulation and experiment, the frequency obD. Stability analysis
served in the simulation was half of that observed in the | this section the laminar and turbulent simulations are
experiment. These discrepancies might be explained by thgaateq separately.
value of the blowing velocity, which is half the value in the .
1. The laminar case

simulation as compared to the experiment by AS. However;
the slot has double width in the simulation, making the slot ~ From the observations of their experiment, AS speculate
Reynolds number equal to the experimental value. If thahat a normal inflectional instability causes the oscillations

blowing velocity itself, normalized by the freestream veloc-on the low-speed streak leading to vortex roll up. Also in the
ity, is used as the parameter in the comparison, the frequen@xperiments by Haidari and Smithan unstable normal ve-
for various blowing velocities compare well, as seen fromlocity profile was observed shortly before the vortex head
Fig. 11. Thus, the initial guess that the slot Reynolds nhumbewas developed.

in the simulation should be equal to the experimental value As described in Sec. Il B, the spatial stability analysis is
to obtain the same frequency is not supported by Fig. 10performed with the OS equation. The input is the Reynolds
Instead, it is the ratio of blowing velocity to freestream ve-number, frequency of the disturbance, and the velocity pro-
locity that apparently is the crucial parameter in this respectfile. The three inputs are well defined and taken from the

(a)
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FIG. 15. Normal component(@ x
=45. (b) x=55. —— rms-value;
- - - eigenfunction.
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FIG. 16. Maximum ofu. —— First harmoni¢ - - - second harmonic;
-+~ linear fit: —- —-—-— curve fit of first harmonic. FIG. 17. O The growth rate from the OS analysis— Smoothed DNS

data(curve fiY. - -- Linear approximation to DNS data.

DNS. The output is the eigenfunction, which contains infor-

mation of the disturbance shape, and the eigenvalue, whiciumPer from the OS analysis with the corresponding values
gives the growth rate and the streamwise wave number. 10M DNS data, the DNS data has to be smoothed since

Throughout this section the laminar simulation with taking derivatives directly will give spurious oscillations.

Rey =490 at the beginning of the slot and a slot Reynolds  1"€ growth rate from the DNS data, denoted dyis
number ofRe, =28.3 will be considered. In Fig. 13 the calculated from the development in time of the maximum

velocity profile atx=45 andz=0, corresponding to the cen- value of the velocity in the downstream direction. The maxi-

ter of the slot, is shown. The profile is highly inflectional and r;]um value ']:Q‘ ext_racFed f(1)_rhd|fferer;t freq(;1en|c|e§ fr_om the
the OS analysis will give a large value of the growth rate. ourier transform in time. The transformed velocity is
Figures 14 and 15 show the eigenfunction from the OS | [~ it
together with the rms-value of the velocity from DNS at u(x,y,z,w)—leu(x,y,z,t)e dt. ®)
positionsx=45 andx=55. The eigenfunctions are calcu- . i o )
lated using the instantaneous velocity profile at the twdBY taking the maximum ovey andz and specifying which
x-positions as basic states. The rms-value from DNS is calfféquency of interest, only thew-dependency is leftd
culated over one period of the disturbance, which Was = 9(X).

—14.8(in units of 5 /U.,) and the corresponding frequency N Fig. 16 the maximum ofi in the first and second
wasQ =0.425. harmonics are shown. The maximum occurs at the centerline.

The eigenfunction in the streamwise direction is shownBY Showing the logarithm of the maximum as in Fig. 16, a
in Figs. 14a) and 14b), together with the corresponding,s ~ CUrve fit is possible, shown as the dash—dotted line. Also in
from the DNS. The solid line is DNS data and the dashed™ 9. 16 the linear approximations to both the first and second
line is from the OS analysis. The wall normal coordinate isharmonics are shown as the dotted lines. The slope for the
scaled with the boundary layer thickness. The sharp peak ifécond harmonic is twice the slope for the first.
the profile is due to the shear layer instability. At both
positions the shape is well predicted. The double inner peak
observed in thau,,s profile is slightly overpredicted by the
OS analysis ak=45 and is lacking ax=>55. Qr

The eigenfunction in the normal direction is shown in
Figs. 15a) and 18b), together with the corresponding,,s
from the DNS. The profiles are well predicted by the linear _
OS analysis. However, the second, outer peak is also slighth™
overpredicted by the linear OS analysis. Observe dhatis
not zero at the wall due to the injection through the slot.

The results shown in Figs. 14 and 15 are based on ar o8r oo
instantaneous two-dimensional approximation of the basic
state. The agreement between the calculated eigenfunctior

071

and the rms-profiles found in the fully three-dimensional o6k

DNS is remarkable, indicating that the instability mechanism

is determined mainly by the local flow conditions. 05 20 ) 0 s 50 P
The growth rate from DNS data is calculated from the z

Fourier transform in time of velocity fields as a function of g 18, © The streamwise wave number from OS the analysis.
Xx. When comparing the growth rate and streamwise wave— Smoothed DNS datéurve fif. - - - Linear approximation to DNS data.
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Now, the growth rate is calculated from E@), which  (g) 4 : ' ' ' ' k
can be written as
~1d d nlc "
U_md_)(|u|_d_)((n|u|). (6)

The linear approximation to the maximum ofin the
first harmonic(shown in Fig. 16 is used for calculating the
growth rate, which becomes a constant and is shown as th 2

dotted line in Fig. 17. By using the curve fit éfinstead of 3\/\_/(—

the linear approximation, the growth rate becomes as the
solid line shown in Fig. 17. The circles are the corresponding ' ' '
growth rates calculated from OS using the instantaneous ve z
locity profiles.

The real part of the eigenvaluer() from the OS analy-
sis, is shown in Fig. 18 as circles. To calculate the corre-(p) “F— ' ' ' ' ' ]
spondinga, from DNS, which is denoted, Eq. (4) is used. 3 E
This equation also involves derivatives in the downstream
direction which cause spurious oscillations. To equivalently
smooth thew, Eq.(4) is rewritten, by noting thafi=¢e'®, in

the form z
a=R do 7
a=Re . (7
-3 h
Thus, it is a matter of smoothin@, which is defined by
_4. 1 1 L L 1 L Il
— N 44. 46. 48. 50. 52. 54. 56.
O=—iln0. (8) -

The resulting smoothe@ is shown in Fig. 18. The linear FIG. 19. Contours of maximurtovery) shear with spacing 0.1. Contours

approximation becomes a constant and is also shown in thepresenting the largest values are indicated with thick lir@sNormal

figure. shea_lr (magiou/ayl), maximum=1.3. (b) Spanwise shear (mgiu/dZ),
Until the second harmonic has reached a substantial anf2@Ximum=0.5.

plitude (see Fig. 1Hthe extracted results from the DNS cal-

culation represents the true varicose secondary instability,

including effects of both streamwise and spanwise variatio

of the pase flow. Thus, the agreemept b(_etween_ the ir'Stabi”tghear. In a parallel studiAnderssoret al3'), streak profiles
analysis and DNS data pres.ented. n th.'s sec'tl.on St.rength%th strong normal shear were analyzed. In those cases the
the. argumgnts for a normal inflectional mstablll'ty beln'g thevaricose mode dominated over the sinuous mode.
main contributor to the horseshoe vortex formation. This was
also found by Park and Hueffewho studied streaks in
curved boundary layers and showed theoretically that thé- 1/7€ turbulent case
sinuous mode is primarily induced by the spanwise shear, So far, the detailed analysis of the low-speed streak in an
while the varicose mode is triggered by the wall-normalotherwise laminar boundary layer has confirmed some of the
shear. In addition, Asaéet al?® studied the response to a results from the experiment of AS. Furthermore, a thorough
single low speed streak in a boundary layer excited by analysis of the origin of the instability of the streak was
time-periodic signal of either sinuous or varicose type. Themade with linear stability analysis. The simulations also
growth of the sinuous mode evolved into a train of streamshowed the development of more complicated structures fur-
wise vortices and the varicose mode into horseshoe vorticether downstream, where the statistics resembled turbulence.
To further show that the normal instability is of greatest ~ These results, together with the striking resemblance of
interest in our case, we show the maximum normal and sparthe streak development between Figs. 6 and 1 lead to the
wise shear in Fig. 19. The maximum of the normal shear irhypothesis that, at least to some degree, the break up of
Fig. 19a) is located above the streak, and has a value of 1.3treaks in a turbulent field is governed by the same mecha-
The maximum of the spanwise shear in Fig(l)9s located nisms as for the isolated streak in the laminar boundary layer.
on either side of the streak, and has a value of 0.5. To qualitatively show that streak instabilities exist in a
In the secondary instability calculation of Anderssonturbulent boundary layer that are of the same normal inflec-
et al*° the spanwise shear in a typical streak was about théonal type as in the laminar case, the OS analysis was per-
same as the maximum found here. The calculated growtformed with velocity profiles from the turbulent velocity
rate, however, was about one order of magnitude lower thafield.
the one we found from the DNS data and the presented sta- When a horseshoe structure in the turbulent field has
bility calculations. been identified, it can be followed backward in time, if ve-

Anderssonet al3° found no varicose instability since
rfhey did not have normal velocity profiles with strong normal
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FIG. 20. Time signal of the streamwise velocity componenkatl70, 00 2 4 6 8 10 12 12 16
y=0.4,z=-6.5.
locity fields from earlier times are available. Since the life FIG. 22. Velocity profile from a turbulent boundary layer.

cycle of a structure is longover T=150 §*/U.,), the re-

quirement for data storage is demanding. As the structure is

followed backward in time, it is found further upstream and

is weaker. At some point in time and space the structure )

vanishes. Thus, at this point the birth of the structure can bé&/here the frequency of the disturbance was observed for the
investigated. By examining the time signal of the velocity longest period of time. This position {g=170,z=-6.5 in
from points just upstream of the first appearance of the strudhe e€xample discussed above. The time interval over which
ture, the frequency of the disturbance leading to the vortefh€ rms-profiles were taken was 1558415 596.

formation can be determined. One example of a time signal  This whole procedure was performed for three indepen-
of the streamwise velocity is shown in Fig. 20. The instabil-dent structures, each separated in time over 2@00U..).

ity wave appears at time 15 588. All three of the structures could be traced back to their point

The point(x=170,y= 0.4, z= — 6.5) where the velocity ~ Of roll up, and the analysis of the velocity profiles gave simi-
signal was examined is located just upstream of the first agar results.
pearance of a structure. The newly born structure is shown in  Furthermore, the OS analysis showed that the resulting
Fig. 21. The figure shows the low pressure signature of th€igenfuctions are not sensitive to changeRig+ and fre-
structure at the time 15 596eferring to Fig. 20. qguency(w). The independence of Reynolds number is ex-

A velocity profile was extracted from the turbulent field plained by the inviscid nature of the inflectional instability.
at a point where the disturbance was small compared to furFhe insensitivity onw shows that the time scale of the dis-
ther downstream, i.e., before roll up of the vortex. In thisturbance is not important for the instability mechanism. This
particular case the point was locatedyat 170,z=—6.5 at  points towards an instability of a Kelvin—Helmholz charac-
the time 15584. This profile was used together with the obter.
served frequency in the OS equation. One example of the velocity profile just before roll up is

To compare the DNS data with the eigenfunctions fromshown in Fig. 22. The frequency in this case was 0.78
the OS analysis, the rms-profiles were extracted by collectingnd the OS analysis gave a growth rate-af;=0.024. The
statistics during a simulation over one period of the distureigenfunctions from the OS analysis were then compared to
bance. The rms-profiles were taken from the same position asns-values taken over one period of the disturbance. The
results from this analysis are shown in Figs(@&nd 23b).

In the streamwise compongiig. 23a)], the double peak is
predicted by the linear analysis, even though the outer peak
is located further out in the,.s profile. In the normal com-
ponent[Fig. 23b)], the inner peak is located slightly closer
to the wall in the predicted profile. Also a tendency to a
second peak is seen, though thg,s profile has a much
stronger peak.

Although we have only investigated three randomly
picked events, the results are promising and a larger investi-
\ gation with an objective method for detecting structures, fol-

167 \/ - & lowed by tracing them back in time to their point of origin
—12.5 and the associated inflectional velocity profile, could provide
FIG. 21. Iso-surface of pressure at time 15 596. Contour level@pos.  Statistical evidence of the horseshoe vortex formation. This
The height of the box shown is 4.5, corresponding to 80 in wall units. IS, however, beyond the scope of the present investigation.
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IV. DISCUSSION AND CONCLUSIONS part, and hence the hairpins, has been removed, the streak

prevails. See, e.g., the work by Jimenez and Kcamd

A DNS of a laminar boundary layer disturbed by a CON"amilton et al? The turbulence cycle is then dominated by

;I(?rl:::osl '?’Egvg‘t?et(gir\?;g\:v;esigtr:an r?deuc\;\(lea!n:lafsur?r?eerninr\)/eers_the sinuous instability, which is not surprising since the vari-
) . J P . cose mode is related to hairpins which are suppressed by the
tigate the results reported from the experiments of Acarlar

. . . eometrical constrains.
and Smitht? The blowing of fluid from the slot creates a 9 . 14 .
Adrian et al.** also propose a cause for the formation of

low-speed streak which exhibits a disturbance wave growin . : -
downstream. It was argued that this secondary disturbancgi‘gfa vortices themselves. They write thghairpin] packets

originated from a normal inflectional instability in the originate at the wall from a disturbance whose character is

streamwise velocity profile. An analysis using the Orr_not specified except that it creates a pool of low momentum

Sommerfeld equations gave qualitative agreement in thslt the wall, i.e., a Q2 event from another hairpin, a bump, a

growth rate and streamwise wave number with the correpuff of l_OW momentum through the yvall, a random pressure
sponding values extracted from the DNS velocity fields. Theﬂuctuatlon, or a culmination of flow induced by surrounding
nonlinear effects gave rise to higher harmonics at the end dfYeMNts Such as wall-tangent flows that converge o a stagna-
the slot where the first low-pressure structure was found. ThEO_n _pomt_ and thence erupt upwards. Ou_r findings support
structure consist of a vortex loop that evolves downstream t&1iS idea in the sense that the streak consists of low momen-
form a horseshoe vortex. After the horseshoe vortex breakdm and the varicose instability follows as a consequence.
down the low-speed streak persist together with additional 1he inflectional instability considered in the present
streaks formed by the horseshoe vortex. Further downstrealork |sloof a different 2t3ype from those investigated in
more complicated structures appear and the streak spacing{é@leffe,” Kawahareet al™ and Schoppa and Hussdimho
100 in wall units. model the turbulent velocity profile as a mean flow with the
The frequency of the vortex generation was shown tostreaky structure deforming the profile, rather than the in-
scale with the ratio between the blowing velocity andStantaneous profile considered here. They showed that it is
freestream velocity. Good agreement with the experimentaﬁ‘e sinuous mode which is unstable. Furthermore, it has been
data was obtained. shown in the secondary instability calculations by Andersson
Also a DNS of a zero pressure gradient turbulent bound€t al,*’ that the growth rate of the sinuous mode scales with
ary layer was performed, and horseshoe vortices were ofihe spanwise derivative of the mean flow, just as in the model
served using low-pressure identification. The similarities beof Waleffe. Thus it is reasonable to assume that the sinuous
tween structures in the turbulent field and the onednstability depends primarily on the appearance of the span-
originating from the low-speed streak in the laminar simula-wise inflection. Reddyet al** further showed that the sinu-
tion were presented. The origins of the horseshoe vortices iaus instability is inhibited by the appearance of normal shear.
the turbulent boundary layer were investigated by tracing ~We show in this work, as it has been implied in others
their evolution backwards in time, and the results suggestete.g., Robinson? Asai et al?), that the appearance of an
that it was related to an inflectional instability of the streaks.unstable normal velocity profilén many cases associated
This is similar to the investigations of Johanssenal3?>  with a normal inflection pointis a precursor to the appear-
which traced the evolution of typical structures associatedgnce of horseshoe vortices. In terms of a streak instability,
with the VISA events in low Reynolds number channel flow. Bottaro and Klingmantf among others, have shown that this
Their investigation did not contain any stability calculationsis related to the varicose mode. Thus the sinuous streak in-
and can therefore not be directly compared to ours. stability is correlated with a basic state with a spanwise in-
In addition, the results from our turbulent boundary layerflection and the varicose mode with a basic state with a nor-
simulation is in general agreement with the investigation ofmal inflection, as has also been shown by Park and Hégrre.
Adrian et al.** which shows that the low-speed streak in It is reasonable to assume that both types of streak insta-
turbulence may be spawned by horseshoe vortices. Howevdiilities are of importance in a turbulent boundary layer; the
in the numerical experiments of turbulence where the outesinuous type for the regeneration of near-wall turbulence, as
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