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Different near-wall scalings are reviewed by the use of data from direct numerical simulations (DNS) of
attached and separated adverse pressure gradient turbulent boundary layers. The turbulent boundary
layer equation is analyzed in order to extend the validity of existing wall damping functions to turbulent
boundary layers under severe adverse pressure gradients. A proposed near-wall scaling (Wallin and Jo-
hansson 2000) is based on local quantities and the wall distance, which makes it applicable for general
CFD methods. It was found to have a similar behaviour as the pressure-gradient corrected analytical y∗

scaling and avoids the inconsistencies present in the y+ scaling. The performance of the model is illus-
trated by model computations using explicit algebraic Reynolds stress models with near-wall damping
based on different scalings.

Keywords: turbulent boundary layer; adverse pressure gradient; separation; turbulence modelling;
direct numerical simulation; damping function

1. Introduction

Separation continues to be one of the most difficult flow phenomena to predict, both for laminar
and turbulent flows. Because of its importance for the efficiency of both aerofoils and turbo-
machinery a lot of effort has been put into investigations of separating flows, see e.g. Cuvier
et al. (2014) for a comprehensive list of references. Although laminar flow is prevalent in many
applications, e.g. biochemistry (Mårtensson et al. 2006), biology (Chen and Skote 2015) or even flow
control (Ibrahim and Skote 2012), turbulence in an ubiquitous phenomena in vehicle engineering
applications due to the transition from laminar to turbulent flow. In addition, turbulent boundary
layers around vehicles undergo another major metamorphosis from attached to separated, often
caused by geometry of the vehicle. Since the geometry parameters vary widely from case to case,
a more general condition of an applied adverse pressure gradient (APG) is often used to serve as
a generalization for the geometry-induced separation.

Two of the most widely used turbulence models, the K−ω model, Wilcox (1994), and the K−ω
SST model, Menter (1994), have gained popularity due to their applicability to weakly separated
flows around slender bodies (such as aerofoils). Also the one-equation Spalart-Allmaras model by
Spalart and Allmaras (1994) was developed precisely for these kind of geometries. However, these
models perform less well for bluff bodies. In addition, the above described models, whether they
are based on one or two equations, are employing the eddy viscosity concept.

On the other hand, the Hanjalić Reynolds Stress transport (RST) model by Hanjalić, Jakirlić,
and Hadžić (1995) utilizes the full transport equations for the Reynolds stresses and thus bypasses
the need for eddy viscosity. This model can predict the asymptotic behaviour for high Reynolds
numbers as shown by Skote, Henningson, and Henkes (1998). However, numerical stability and
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high computational cost remain severe drawbacks of the model for engineering applications. By
simplifying the full transport equations, an explicit algebraic model can be developed (Wallin and
Johansson 2000), which mitigates the difficulties associated with the RST model while retaining
the advantage of not relying on the eddy viscosity concept.

The aim with this work is to investigate how predictions of turbulent boundary layer flow is
affected by the complication of a severe APG and separation. In the near-wall part of the flow,
turbulence models often utilize damping functions. Their purpose is to damp various physical
quantities in the neighborhood of a wall. One important step towards better model predictions
in APG flows is the refinement of the damping functions. A relevant velocity scale is crucial for
the correct behaviour of wall damping functions used in turbulence models. For a zero pressure
gradient (ZPG) boundary layer, the damping functions and boundary conditions in the logarithmic
layer are based on a theory in which the friction velocity,

uτ ≡

√
ν
∂u

∂y

∣∣∣∣
y=0

, (1)

is used as a velocity scale. However, in the case of a boundary layer under an APG, uτ is not the
relevant velocity scale, especially not for a strong APG and low Reynolds number. In the case of
separation this is clear since uτ becomes zero. Wall damping functions based on y+ ≡ yuτ/ν are,
thus, not appropriate. Other possibilities than y+ that are used in near-wall damping functions are
Rey ≡

√
Ky/ν or the turbulent Reynolds number Ret ≡ K2/νε (see e.g. Wilcox (1993)). These

alternatives do not have the singularity caused by that uτ becomes zero. Note that alternatives to
the friction velocity as velocity scale naturally enter in the equation governing the inner part of
the turbulent boundary layer under any situation where the wall shear stress is affected by outer
influences, such as in drag reduced flows, see Skote (2014).

The scaling laws developed in many previous studies have been in a form not suitable for tur-
bulence models. Instead, the aim for the scaling of the velocity profile has often been to create a
tool for different prediction methods based on the simplified turbulent boundary-layer equations
(TBLE). Many of the earlier theoretical analyses were not performed with the same objectives
as we have today. Hence, the results, though interesting in many aspects, perhaps lack a natural
potential for direct application to the final goal — to calculate and predict a turbulent boundary
layer flow. The motivation for the thorough scaling analysis performed here is that the turbulence
modelling can be improved if the correct scaling is used. However, the scalings are entirely mo-
tivated by the TBLE itself, i.e. turbulence modelling is disregarded when performing the scaling
analysis of the TBLE.

The purpose of the present paper is to utilize direct numerical simulation (DNS) data to develop
the near-wall scalings aimed at improving the wall damping functions utilized by the turbulence
model. Two turbulent boundary layers subject to adverse pressure gradients (APG) were investi-
gated through DNS by Skote and Henningson (2002). The two APG distributions are quite similar,
but the influence of the APG on the flow is strong, creating two very different boundary layer flows.
One is everywhere attached (APG1), and the other is separated for a long streamwise section (SEP).

The particular model studied is the fully self-consistent explicit algebraic Reynolds stress model
(EARSM) developed by Wallin and Johansson (2000), which can, in contrast to standard eddy-
viscosity two-equation models, be successfully damped in the vicinity of a wall in zero pressure-
gradient boundary layers by employing the standard van Driest damping function.

The new velocity scale introduced in section 2.1 is used in the wall damping of the EARSM model
(described in sections 2.2 and 2.3) in section 3. A priori tests with DNS data from the APG1 and
SEP cases are presented in sections 3.2 and 3.3, respectively. Comparison with the damping based
on Rey proposed by Wallin and Johansson (2000) is made in section 3.4, and an example of the
performance of EARSM with the improved damping is given in section 3.5. Conclusions are drawn
lastly in section 4.
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2. Theory

Some basic ideas concerning the velocity scale in the inner part of the turbulent boundary layer
under an APG are presented in section 2.1. It is shown that the total shear stress varies linearly
in a turbulent boundary layer under a strong APG. The linear behaviour leads to a velocity scale
dependent on the normal coordinate, replacing the friction velocity as a velocity scale.

The specific turbulence model (EARSM) used in the present work is described in section 2.2
while the related near-wall corrections are presented in section 2.3.

2.1. Scalings in the near-wall region

When neglecting the non-linear, advective terms in the equation describing the streamwise mean
flow, i.e. the Reynolds-averaged Navier-Stokes (RANS) equation, the equation governing the inner
part of the boundary layer is obtained. This equation can, when using the inner length and velocity
scales ν/uτ and uτ be written,

0 = − ν

u3
τ

1

ρ

dP

dx
+
d2u+

dy+2 −
d

dy+
〈u′v′〉+, (2)

where 〈u′v′〉 is the Reynolds shear stress. If the term involving the pressure gradient is smaller than
the other terms, the equation reduces to the equation governing the inner part of a ZPG boundary
layer. However, for strong APG cases at finite Reynolds numbers, this term cannot be neglected.
Equation (2) can be integrated to give an expression for the total shear stress, τ+ ≡ τ/u2

τ ,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1

ρ

dP

dx
y+. (3)

For a zero pressure gradient case, equation (3) predicts a constant shear stress of unity. For an
APG case with a freestream distribution of the form U ∼ xm, the last term in equation (3) can be
shown (Skote, Henningson, and Henkes 1998) to decrease with increasing Reynolds number.

When considering a strong APG or separation, A singularity occurs when uτ becomes zero, which
can be avoided by introducing the velocity scale,

up ≡
(
ν

1

ρ

dP

dx

)1/3

. (4)

First equation (3) is formulated as

τ+ = 1 +

(
up
uτ

)3

y+. (5)

The velocity scale up has to be used instead of uτ if the last term in equation (5) becomes very
large which happens if uτ � up, i.e. the boundary layer is close to separation. This was noted by
Stratford (1959), Townsend (1961) and Tennekes and Lumley (1972). By multiplying equation (5)
by (uτ/up)

2, the following expression for τp ≡ τ/u2
p as a function of yp ≡ yup/ν is obtained,

τp = yp +

(
uτ
up

)2

. (6)

Equation (6) has the asymptotic form τp = yp when separation is approached. Thus, in this rescaled
form, the singularity is avoided.
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For the ZPG case, the scaling of the total shear stress with uτ gives a self-similar profile (τ+ = 1).
From equations (5) and (6) it is observed that neither uτ nor up as velocity scale results in a self-
similar expression. However, equation (3) can be formulated as

τ∗ ≡ 1

u2
∗

(
ν
∂u

∂y
− 〈u′v′〉

)
= 1, (7)

where u∗ is a velocity scale that depends on y and can be expressed in either plus or pressure
gradient units,

u2
∗ = u2

τ +
u3
p

uτ
y+ = u2

τ + u2
py
p. (8)

Thus, by scaling the total shear stress with u∗, a self-similar expression is obtained (τ∗ = 1). The
velocity scale u∗ reduces to uτ if up becomes zero, i.e. for a ZPG boundary layer. If instead uτ
becomes zero, i.e. a boundary layer at separation, the velocity scales becomes u∗ = up

√
yp.

For the special case with uτ = 0, the velocity scale u∗ is zero at the wall. This is natural since
the velocity gradient is zero at the wall. Previous investigators of the mixing length theory have
also observed the importance of u∗, see Granville (1989) for references.

From u∗ it is possible to define the length scale ν/u∗, and thus a normalized normal coordinate,
y∗ ≡ yu∗/ν which can be written,

y∗ =
√

(y+)2 + (yp)3. (9)

If a separated flow is considered, the definition of uτ has to be reconsidered. In the separated
region, the wall-normal derivative of the streamwise velocity is negative. Thus, the definition of uτ
in equation (1) involves a square root of a negative number. A general definition of uτ , recognizing
that u2

τ is directly related to the wall shear stress, is a vector relation (u2
τ )i ≡ ν∂ui/∂y and that

uτ =
√
|u2
τ | ≥ 0. Thus, in order to proceed with the analysis of the equations, the absolute value

of the wall shear stress is used in the definition of the friction velocity. Effectively, this means that
the definition,

uτ ≡

√
−ν ∂u

∂y

∣∣∣∣
y=0

, (10)

replaces (1).
In the case of a separated flow, the change of direction of the wall shear stress leads to a u∗ as,

u2
∗ = −u2

τ +
u3
p

uτ
y+ (11)

which becomes negative for y+ < (uτ/up)
3, because the shear stress is negative at those values of

y+. Hence, the length scale ν/u∗ has to be used with a restriction to positive values of u2
∗. This

leads to a y∗ of the form,

y∗ =
√

max{0,−(y+)2 + (yp)3}. (12)

2.2. The basic turbulence models

In two-dimensional mean flows, the fully self-consistent explicit algebraic Reynolds stress model
may be formulated based on any (quasi-)linear pressure-strain model (see Wallin and Johansson
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(2000) and Girimaji (1997) for details). Neglecting the advection and diffusion of the Reynolds
stress anisotropy aij ≡ 〈u′iu′j〉/K − 2δij/3 results in an implicit and non-linear relation

0 =

(
A3 +A4

P
ε

)
aij +A1Sij − (aikΩkj − Ωikakj)

+ A2

(
aikSkj + Sikakj −

2

3
aklSlkδij

)
, (13)

where Sij ≡ τ/2(Ui,j + Uj,i) and Ωij ≡ τ/2(Ui,j − Uj,i) are the symmetric and antisymmetric parts
of the velocity gradient tensor normalized by the turbulent time scale τ ≡ K/ε.

In a two-dimensional mean flow the solution for the anisotropy becomes

a12 = β1S12 + 2β4S11Ω12

a11 = β1S11 + β2

(
S2

11 + S2
12 −

1

3
IIS

)
− 2β4S12Ω12

a22 = −β1S11 + β2

(
S2

11 + S2
12 −

1

3
IIS

)
+ 2β4S12Ω12

a33 = β2

(
−1

3
IIS

)
(14)

where the β coefficients are functions of the flow invariants IIS ≡ SijSji and IIΩ ≡ ΩijΩji and the
model coefficients A1−4 in equation (13). Two different EARSMs will be considered; the ”W&J”
model, Wallin and Johansson (2000), based on a recalibrated LRR (Launder, Reece, and Rodi
1975) pressure-strain rate model and the ”Gir” model, Girimaji (1997), based on the linearized SSG
(Speziale, Sarkar, and Gatski 1991) pressure-strain rate model. The corresponding A1−4 coefficients
are given in table 1. The ”W&J” model results in that the β2 coefficient is zero and as a consequence
a33 = 0.

In two-dimensional mean flows the β coefficients are given by

β1 = −A1N

Q
, β2 = 2

A1A2

Q
, β4 = −A1

Q
, (15)

where the denominator is

Q = N2 − 2IIΩ −
2

3
A2

2IIS . (16)

N is given by

N =

{ A3

3
+
(
P1 +

√
P2

)1/3
+ sign

(
P1 −

√
P2

)
| P1 −

√
P2 |1/3, P2 ≥ 0

A3

3
+ 2

(
P 2

1 − P2

)1/6
cos

(
1

3
arccos

(
P1√

P 2
1 − P2

))
, P2 < 0

(17)

where

P1 =

(
A3

2

27
+

(
A1A4

6
− 2

9
A2

2

)
IIS −

2

3
IIΩ

)
A3

P2 = P 2
1 −

(
A3

2

9
+

(
A1A4

3
+

2

9
A2

2

)
IIS +

2

3
IIΩ

)3

. (18)
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Table 1. The values of the A-coefficients for different quasi-

linear pressure-strain models.

A1 A2 A3 A4

W&J (Recalibrated LRR) 1.20 0 1.80 2.25
Gir (Linearized SSG) 1.22 0.47 0.88 2.37

2.3. Near-wall treatments

In the model proposed by Wallin and Johansson (2000) the correct near-wall behaviour for zero
pressure-gradient boundary layers was obtained by modifying the β coefficients using a damping
function of the van Driest type. The original form was based on y+, but an alternative suggestion of
the damping function was based on yT = yT (Rey) in order of avoiding the singularity in separated
flows. The function yT was constructed to be similar to y+ for y+ < 100 in zero pressure-gradient
boundary layers. In this section the different near-wall scalings will be assessed by comparing model
predictions using y+, yT as well as y∗.

In a two-dimensional mean flow the near-wall corrections for the ”W&J” model reads

β1 = f1β
∗
1

β2 = f2
1β
∗
2 + (1− f2

1 )
3B2 − 4

max
(
IIS , II

eq
S

)
β4 = f2

1β
∗
4 − (1− f2

1 )
B2

2max
(
IIS , II

eq
S

) (19)

where β∗1 , β∗2 and β∗4 are the ”high-Re” uncorrected coefficients given by (15) and the damping
function

f1 = 1− exp(−y+/A+) (20)

and the model coefficients

IIeqS = 5.74 B2 = 1.8 (21)

For the damped expressions the turbulent time scale used for normalizing the velocity gradient
tensors must be limited by the viscous scale, such as

τ ≡ max

(
K

ε
,Cτ

√
ν

ε

)
(22)

where Cτ = 6.0 is used.

3. Evaluation of turbulence models

The results regarding the near-wall flow reported from the well resolved DNS in Skote and Hen-
ningson (2002) can be utilized in turbulence model predictions directly as, so called, wall-function
boundary conditions. Here we are instead interested in resolving the turbulent boundary layer all
the way to the wall and thus the wall damping functions become important.

A short description of the DNS and the turbulent boundary layer flows is given in section 3.1.
A priori tests done with DNS data from both simulations are presented in sections 3.2 and 3.3,
respectively, together with the development of damping functions. The relation between two length
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Figure 1. APG1: — U ; · · · Cf × 100. SEP: - - U ; − · − Cf × 100. S and R denote the points of separation and reattachment

respectively for SEP.

Table 2. Some parameters of the turbulent

boundary layers at different downstream positions.

APG1 SEP

x = 150 x = 300 x = 412 x = 450

U 0.73 0.51 0.46 0.45
uτ 0.0287 0.0165 0.0024 0.0166
up 0.0117 0.0086 0.0074 0.0071

scales used in the near-wall damping is analyzed in section 3.4. In section 3.5 some examples of
the performance of the EARSM model are shown, using the data from DNS.

3.1. Description of the test cases

The data from the two turbulent boundary layers considered in the present work were taken from
a DNS performed by Skote and Henningson (2002).

The freestream velocity (U) for the two simulations, APG1 and SEP, are shown in figure 1,
together with the skin friction (Cf ). As seen from the figure, a small change in the freestream
velocity has a great impact on the skin friction. In APG1, the boundary layer is subject to a strong
APG, but is everywhere attached. In SEP the boundary layer is separated for a large portion of
the computational domain.

The simulations start with a laminar boundary layer at the inflow (x = 0) which is triggered to
transition by a random volume force near the wall. The flow is fully turbulent at x = 100.

The downstream coordinate x is scaled with the displacement thickness (δ∗) at the starting
position of the simulation (x = 0), where the flow is laminar and Reδ∗ = 400.

Table 2 serves as a comparison of the two cases at the downstream positions investigated in the
present work.

3.2. APG1

In this section different modelling assumptions are tested by using DNS data from the attached
APG boundary layer (APG1). The anisotropies are calculated from equation (14) with Sij and Ωij

computed from DNS data. The resulting anisotropies are then compared with those taken directly
from the DNS.

The shear anisotropy a12 is plotted for one streamwise position (x = 150) in figure 2. The
behaviour is approximately the same at all streamwise positions for APG1. The anisotropy taken
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Figure 2. APG1 at x = 150: (a) ◦ DNS; — non-damped ”W&J”; · · · non-damped ”W&J” with β4 = 0; - - non-damped ”Gir”;

-·- non-damped ”Gir” with β4 = 0. (b) ◦ DNS. Damped ”W&J” with the scaled coordinate in f1 as — y+; - - y∗; · · · yT . -·-
damped ”W&J” with y+ and A+ = 11.

directly from DNS data is shown with circles. The non-damped models ”W&J” and ”Gir” are
shown in figure 2a. Both models overpredict the asymptotic value at large y+, which is around -0.3
in the DNS data. The failure to correctly predict the asymptotic value is due to that the basic,
undamped, models do not correctly respond to the pressure gradient. The error enters mainly
through the non-linear term in equation (14a) and the best result is actually obtained with β4 = 0
for the ”W&J” model, as shown in figure 2a with the dotted line. Setting β4 = 0 should, however,
not be considered as an alternative for improving the model behaviour since the β4 term results
from a formal approximation of the basic Reynolds stress transport model. Moreover, the β4 term
gives important contributions for the normal anisotropy components.

Near the wall, damping with f1 becomes important. The a12 profiles from the damped ”W&J”
model are shown in figure 2b. The standard van Driest damping, equation (20), with the standard
value of A+ = 26, does not give the correct near-wall damping (the solid line in figure 2b). Thus,
the standard van Driest damping, which gives a good agreement for a ZPG boundary layer, must be
improved in order to give reasonable results for an APG flow. The most straight forward correction
is to change the value of A+ in equation (20).

The damped profiles give very different results depending on the value of A+. The value of
A+ = 11 was observed to give the best agreement with the DNS data, (the dash-dotted profile in
figure 2b), and by setting β4 = 0 almost perfect agreement with DNS was obtained.

There are many relations between A+ and the ratio up/uτ proposed in the literature. Kays (1971)
proposed the relation,

A+ =
26

1 + 30.18
(
up
uτ

)3 , (23)

which gives a value of A+ = 8.6 for APG1. This value is far from the standard value of 26, but
does not agree with the best fitted value of 11 for APG1. In the experimental work of Nagano,
Tagawa, and Tsuji (1992) however, the formula (23) gave good predictions. Cebeci (1970) proposed
the relation,

A+ =
26√

1 + 11.8
(
up
uτ

)3
, (24)

which gives a value of A+ = 19.4 for APG1. This value is closer to 26, but far from the value of 11.
Granville (1989) proposed a relation which is similar to equation (24), with a factor of 12.6 instead
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of 11.8, which gives very similar values of A+ as the relation (24).
A list of other relations is included in the work of Granville (1989). However, the above relations

were derived from a mixing length hypothesis, which states that the Reynolds shear stress is linked
to the velocity gradient through,

−〈u′v′〉+ = (l+)2

(
du+

dy+

)2

, (25)

with

l+ = κy+f1 or l+ = κy∗f1, (26)

and f1 as in equation (20). The coordinate y∗ is given in equation (9). The second form of l+ above
(26b) was, among others, used by Granville (1989). However, he let a factor α reduce the influence
of the pressure gradient,

y∗ =

√
(y+)2 + α

(
up
uτ

)3

(y+)3 (27)

There is some discrepancy regarding the value of α in the literature. Perry, Bell, and Joubert (1966)
proposed a varying α from 0.65 to 0.9, while Granville (1989) specified 0.9 and McDonald (1969)
0.7. When Sk̊are and Krogstad (1994) investigated the formula (26b), they had to change the value
of κ from 0.41 to 0.78 to fit with experimental data through the logarithmic layer. In the present
investigation, the influence of α and κ will not be considered important, since the goal is not to
create a mixing length theory, but to use the best damping function for the EARSM model.

In the EARSM model, the relation between the Reynolds shear stress and the velocity gradient
is more complicated than equation (25), and an analysis is not as straightforward. The damping
with f1 as in equation (20), which was developed from the mixing-length theory, has proved to
work well for the EARSM model for channel flow and ZPG boundary layer flow. For the APG
boundary layer flow however, the damping of both the mixing-length theory, equation (25), and
the EARSM has to be developed. To further investigate this idea for the EARSM model, where no
mixing length exists, the viscous scaling of the normal coordinate in f1 is substituted with the y∗,
defined in section 2.1.

Arguing that uτ no longer is the relevant velocity scale, the scaled normal coordinate y+ in
equation (20) may be changed to y∗. A different length scale was proposed by Wallin and Johansson
(2000), and their scaled normal coordinate yT , is defined as,

yT = Cy1

√
Rey + Cy2Re

2
y, (28)

where Rey =
√
Ky/ν, Cy1 = 2.4 and Cy2 = 0.003.

Thus, the damping function f1 can be expressed as,

f1 = 1− exp(−y∗/A+), (29)

or

f1 = 1− exp(−yT /A+). (30)

The formulation of f1 as in equation (29) was actually used for the mixing length damping by
Cebeci and Smith (1968).
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Figure 3. APG1 at x = 150: (a) ◦ DNS; — non-damped ”W&J”; · · · non-damped ”W&J” with β4 = 0; - - non-damped ”Gir”;

-·- non-damped ”Gir” with β4 = 0. (b) ◦ DNS. Damped ”W&J” with the scaled coordinate in f1 as — y+; - - y∗; · · · yT . -·-
damped ”W&J” with y+ and A+ = 11.

Figure 4. APG1 at x = 150. (a) a11. (b) a33. ◦ DNS; — non-damped ”W&J”; - - non-damped ”Gir”; · · · damped ”W&J”

with the scaled coordinate in f1 as yT ; -·- same as the previous profile but with B2=1.52.

A third possibility would be to use yp. However, to change from y+ to yp cannot give any
improvement since they are linearly dependent of each other. Thus, the same f1 profile can be
obtained by using y+ or yp if the constant A+ is adjusted.

In figure 2b, the ”W&J” model damped with f1 based on the scaled normal coordinates y∗ and
yT are shown. They work almost equally well and the original value of A+ = 26 was kept.

Since the dependency of A+ on the pressure gradient and Reynolds number (up/uτ ) seems difficult
to describe correctly, the rescaled functions (29) and (30) are good alternatives for achieving proper
damping in APG flows.

The good results obtained with β4 = 0 for a12 is not consistent with the results for a22, shown
in figure 3. Here, the β4 coefficient is important to get agreement with DNS data for large values
of y+. Both the ”W&J” and ”Gir” models predict the asymptotic value of a22 well. The profiles
from the damped ”W&J” model are shown in figure 3b. The alternative length scales y∗ and yT

with A+ = 26 are also here very similar and give clear improvements compared to the y+ scaling.
The best fit is obtained by using y+ with A+ = 11 also in this case.

The anisotropies a11 and a33 are shown in figure 4a and b. For a11 the ”W&J” model gives better
agreement with DNS data at large y+ than the ”Gir” model. The damped ”W&J” model gives
profiles with the same trend as for a12 and a22, i.e. the alternative length scales y∗ and yT with
A+ = 26 work equally well as y+ with A+ = 11. Only the yT damped profile is shown (dotted
line) in figure 4a . For a33 (figure 4b), the non-damped ”W&J” model predicts a value of zero.
However, the ”Gir” model does not give a better prediction even though it is non-zero. The damped
”W&J” model results in a profile (dotted line) that gives a poor agreement with DNS data close
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Figure 5. APG1 at x = 150: (a) f1 using — y+ and A+ = 11; - - y∗ and A+ = 26; · · · yT and A+ = 26; -·- y+ and A+ = 26.

(b) — y+; - - y∗; · · · yT ; -·- yp.

to the wall. The wall values of a11 and a33 are controlled by the B2 coefficient, and by modifying
that to 1.52 almost perfect agreement is obtained (see figure 4). The original value B2 = 1.8 was
calibrated from channel flow and the different value obtained for this case indicates that there are
a pressure-gradient dependency in B2.

The damping functions are shown in figure 5a. The function based on y+ with the optimal value
of A+ = 11, and the functions based on y∗ and yT reach unity after approximately y+ = 40. Thus,
the damping has no effect for y+ over approximately 40. The change from the original shape (with
y+ and A+ = 26) is large. In figure 5b the scaled normal coordinates are shown as a function of
y+. From figure 5b it is noted that yp is proportional to y+, which is obvious since both uτ and up
are independent on y.

In conclusion, the change from y+ to y∗ or yT , is recommended in favour of keeping the y+

scaling where the value of A+ has to be changed for different APG layers. A specific value has to
be obtained for each APG and also for each downstream position if the range of Reynolds numbers
is large. The value of A+ = 11 is only valid for the APG1 case presented here. For a less severe
APG, the value of A+ has to be increased, whereas the scaling with y∗ or yT can be kept intact. In
the extreme case of uτ = 0, the formulation with y∗ or yT is still valid, whereas the y+ formulation
encounters a singularity, no matter what value of A+ being used. The extreme case of ZPG is the
limit where the value of A+ is 26 in y+ formulation and the formulation with y∗ is equivalent with
the y+ damping since y∗ = y+ for a ZPG boundary layer.

3.3. SEP

From the case with separation (SEP), three positions will be investigated. The positions are taken
from the separated region (x = 300), at the reattachment point (x = 412), and in the recovery
region (x = 450). The profiles are presented as functions of y+ at all positions. Observe that the
friction velocity is defined from the absolute value of the wall shear stress, so it is everywhere
positive.

At x = 300 the boundary layer is separated. At this position the non-linear term in the model
expression for a12 does not give the same strong contribution to the distribution of a12 as in the
APG1 case (see figure 6a).

The difference between the ”W&J” and ”Gir” models is suppressed at this position where the
boundary layer is separated, as seen from figure 6a.

The near-wall behaviour is entirely different from an attached layer. The non-damped profiles
reach up to a positive value of 0.3 at the wall, due to that S12 is negative in a separated case. S12

at x = 300 is shown in figure 9a as the solid line. The two other profiles are the S12 for x = 412
and x = 450. Both in the APG1 case and in the SEP case in the attached region (x = 450), the
non-damped profiles reach a value of −0.3 at the wall, because S12 is positive at those positions.

11



May 23, 2016 International Journal of Computational Fluid Dynamics skote-wallin

Figure 6. SEP at x = 300: (a) ◦ DNS; — non-damped ”W&J” · · · non-damped ”W&J” with β4 = 0; - - non-damped ”Gir”;
-·- non-damped ”Gir” with β4 = 0. (b) ◦ DNS. Damped ”W&J” with the scaled coordinate in f1 as — y+; - - y∗; · · · yT . -·-
damped ”W&J” with y+ and A+ = 11.

Figure 7. SEP at (a) x = 412. (b) x = 450. ◦ DNS; — non-damped ”W&J”. Damped ”W&J” with the scaled coordinate in

f1 as - - y∗; · · · yT ; -·- y+.

The damped ”W&J” model at x = 300 is shown in figure 6b. Since the pressure gradient is more
severe in this case (SEP), we do not expect the same value of A+ to give the good agreement as
for APG1 (remember that A+ depends strongly on up/uτ ). Actually, the value of A+ = 26 (solid
line) gives better agreement than A+ = 11 (dash-dotted line) in this case, as seen in figure 6b.

When using yT in the expression for f1, no much difference from the case of y+ together with
A+ = 11 can be detected, see figure 6b. The y∗ damping (dashed line in figure 6b) gives a better
agreement near the wall. This is due to that y∗ is zero close to the wall where the back-flow occurs,
see equation (12).

At x = 412 the boundary layer is at its reattachment point. The DNS data and profiles from the
EARSM are shown in figure 7a. At this position the non-damped profile from the ”W&J” model
stretches up to zero instead of approaching a constant value at the wall. This is due to that S12

goes to zero at the wall (zero wall shear stress). S12 at x = 412 is shown in figure 9a as the dashed
line. Note that the boundary layer is much thinner in the viscous scaling at x = 412 due to the
low value of uτ at reattachment.

It is interesting to note in the DNS data that a12 is negative also in the separation bubble where
S12 is negative. Hence, the turbulence production as well as an effective eddy viscosity is actually
negative, which an algebraic model cannot reproduce. This effect is probably due to transport of
the anisotropy in the thin near-wall layer.

At x = 450 the boundary layer is attached, and the near-wall behaviour is the same as for APG1.
The value of −0.3 is obtained with the non-damped ”W&J” model, shown with the solid line in
figure 7b. There is not much difference between the three different versions of the damping function,
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Figure 8. a12 = f1β1S12. SEP at (a) x = 412. (b) x = 450. ◦ DNS; — undamped ”W&J” (f1 = 1). Damped ”W&J” with the

scaled coordinate in f1 as - - y∗; · · · yT ; -·- y+.

Figure 9. SEP: (a) S12 at — x = 300; - - x = 412; · · · x = 450. (b) f1 at x = 412 and x = 300, using — y+; - - y∗; · · · yT .

shown in figure 7b. The value A+ = 26 was used for the damped model predictions in figures 7a
and b. However, the damping is insensitive to the the value of A+ at both positions x = 450 and
x = 412. The damping is insufficient for all versions of f1, and the reason is that the non-linear
terms have influence in this region.

The general near-wall behaviour is the same for both positions x = 450 and x = 412, except for
the important fact that also the non-damped profile at the wall is zero at x = 412, due to that the
boundary layer is at its reattachment point. Even though the non-damped profiles are ’naturally’
damped due to the value of zero at the wall, the damping works just as bad as for the position
x = 450.

Thus, at both positions x = 450 and x = 412 (figures 7a and b), it is observed that the damping
does not work very well. However, since the equation (14) is dependent on both the linear and
non-linear terms, the effect of the damping is complicated. To isolate the effect of the damping
of the linear term, only the first part of the expression for a12 is shown in figure 8a and b. The
damping works very well on the linear part, especially for the position where the boundary layer
is attached, figure 8b. The damping based on y∗ or yT gives as good agreement as y+.

The different versions of the function f1 (20, 29, 30) are shown at two downstream positions in
figure 9b. The formulation with y+ yields very different shapes at the two positions, whereas y∗

and yT give profiles close to each other. Note that f1 based on y∗ is zero up to y+ = 1 at x = 412.
The damping functions at x = 412 are shown in figure 10a. The function based on y+ increases

very slowly while the functions based on y∗ and yT reach unity after approximately y+ = 8. In
figure 10b, the scaled normal coordinates are shown as a function of y+. The largest difference
between the three coordinates are found at this position where reattachment occurs (x = 412).
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Figure 10. SEP at x = 412: (a) — y+; - - y∗; · · · yT . (b) f1 using — y+; - - y∗; · · · yT .

3.4. Similarities between the y∗ and yT scalings

Let us try to analyze why the y∗ and yT scalings behave similarly. The yT relation is written in
terms of Rey according to (28). The dominating term, at least for small Rey, is the

√
Rey term so

essentially yT ∼
√
Rey. The

√
Rey term is simply motivated by that Rey ∼ y2 since K ∼ y2 and

the wanted behaviour is yT ∼ y in the very near-wall region (the viscous sub-layer).
In the log region of the boundary layer there is another relation between Rey and the y∗ scaling

that may be derived from the following. Let us first rewrite Rey by using that 〈u′v′〉 = Ka12 as

Rey ≡
y
√
K

ν
= y+

√
K+ =

1√
−a12

y+
√
−〈u′v′〉+ (31)

Away from the viscous sub-layer, the viscosity may be neglected and then −〈u′v′〉+ ≈
1 + (up/uτ )3y+ (see equation 5). By using the relation (9) the Reynolds number may be related to
y∗ as

Rey ≈
1√
−a12

√
(y+)2 +

(
up
uτ

)3

(y+)3 =
y∗√
−a12

(32)

Since a12 is rather constant (and independent of the pressure gradient) away from the wall there is
a linear relation Rey ∼ y∗ in the log layer and Ret and y∗ could be expected to respond similarly
to pressure gradients.

However, the leading order term in the yT scaling is proportional to
√
Rey and, thus, yT ∼

√
y∗.

The
√
Rey dependency is adopted considering the viscous sub-layer where the assumption of ne-

glected viscosity in (32) is basically wrong. This analysis, thus, only gives a qualitative explanation
of the relation between y∗ and yT but gives an idea of why the two scalings behave similarly.

3.5. Performance of the EARSM model

The APG1 boundary layer was computed with a boundary layer solver using different turbulence
models. The DNS data at x = 150 were used as inflow condition to the boundary layer computa-
tions.

The turbulence models tested are the Wallin & Johansson (2000) EARSM with the wall-damping
function based both on y+ and yT , the corresponding EARSM based on the linearized SSG model
(Girimaji 1997) with the Wallin & Johansson wall-damping function based on yT , the Chien (1982)
eddy-viscosity K − ε model, and the Hanjalić, Jakirlić, and Hadžić (1995) RST model. All three
EARSMs are solved together with the Wilcox (1994) low-Reynolds number K − ω model.
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Figure 11. Computed skin friction coefficient Cf of the flat plate APG1 boundary layer compared to DNS data: — W&J

EARSM with yT damping; – – W&J EARSM with y+ damping; - - - Girimaji EARSM with yT damping; – - – Chien K − ε;
– - - – Hanjalić RST.

Figure 11 shows the computed skin friction coefficient compared with DNS data. After an initial
transient the computed skin friction levels out to some asymptotic behaviour. The transient is
caused by inconsistency between the inflow data and the turbulence model. In the computations
the coefficient β ≡ δ∗

τw
dP
dx was kept constant which leads to a reduced effect of the transient even

though the extent of the transient is rather large since the Reynolds number is relatively low.
Computations with a given pressure gradient resulted in a separated flow for the y+ based models,
which will not be reported here.

There are two models that significantly deviates from the other models. These are the Chien
K − ε and the Wallin & Johansson EARSM with the wall-damping function based on y+. The
wall-damping function in the Chien model is also based on y+. The other models do not use wall-
damping functions based on y+ and it is a reasonable assumption that the y+ scaling is the major
cause of the deviations. That is clearly seen if one compares the two computations using the Wallin
& Johansson EARSM where the only difference between these two is the wall length scaling (y+

or yT ).
Figure 12 shows the computed velocity profile compared with DNS data. Also here it is observed

that the models with y+ based near-wall damping compares bad with the DNS data while the
other models are reasonably accurate. Also here one can notice the difference between the two
computations using the Wallin & Johansson EARSM.
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Figure 12. Computed mean velocity profiles at x = 350 for APG1 compared to DNS data. ◦ DNS data; — W&J EARSM with

yT damping; – – W&J EARSM with y+ damping; - - - Girimaji EARSM with yT damping; – - – Chien K − ε; – - - – Hanjalić
RST.

4. Conclusion

The viscous sub-layer in the near-wall boundary layer is largely governed by transport and non-
equilibrium phenomena, which, in principle, only can be captured by full Reynolds stress models.
Eddy-viscosity models as well as algebraic Reynolds stress models must, thus, be modified by more
or less empirical near-wall damping functions in order to have the correct near-wall asymptotic
behaviour.

Near-wall damping functions based on y+ become singular in separation or reattachment points
and it was shown that the y+ scaling also behaves badly in attached boundary layers with adverse
pressure gradients. An alternative to y+ was suggested by Wallin & Johansson (2000) and is
basically yT ∼

√
Rey where Rey ≡

√
Ky/ν. It was found by use of the DNS data (APG1 and

SEP) that the yT scaling is reasonably similar to the pressure-gradient corrected analytical scaling
y∗ even close to separation.

In a general three-dimensional CFD method the formulation in terms of yT is more attractive
since that can be derived in every grid point by using local field variables and the wall distance.
The use of y∗ involves the skin friction of the nearest wall and also the local pressure gradient.
Moreover, in general three-dimensional cases the skin friction, pressure gradient, and external flow
are not in general aligned which introduces additional complications.

When damping the a12 component of the anisotropy with a van Driest type of wall damping
function it was found that the model predictions were much improved by using yT or y∗ compared
to y+ but there was still a significant deviation from the DNS data for the APG1 case. It is obvious
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that there are other aspects of damping the a12 anisotropy in adverse pressure gradients than the
wall distance scaling which could not be resolved within this study.

Comparisons between the Wallin & Johansson EARSM based on a LRR-type of pressure-strain
model and the Girimaji EARSM which is based on the linearized SSG show no major differences
concerning the near-wall damping. The only significant difference is that the a33 anisotropy com-
ponent is non-zero for the Girimaji model whereas it is zero for the Wallin & Johansson model
away from the viscous sub-layer due to an additional model simplification. However, the deviation
from the DNS data is about the same for both models.
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