
Analysis of the data base from a DNS of a
separating turbulent boundary layer

By Martin Skote∗ and Dan S. Henningson∗†

1. Motivation and objectives

This work was performed at CTR during a month-long visit in May 1999. The
data base analyzed comes from a simulation performed by Na & Moin (1998a).

Although the data from the simulations have been used in the study of the
structure of the wall pressure (Na & Moin 1998b), an analysis of the mean flow
had not been conducted to a great extent. The aim of this work is to investigate
the near wall scalings of the turbulent mean flow close to separation.

The scalings are very important for the correct behavior of wall damp-
ing functions used in turbulence models. For a zero pressure gradient (ZPG)
boundary layer, the damping functions and boundary conditions in the loga-
rithmic layer are based on a theory where the friction velocity,

uτ ≡
√

ν
∂u

∂y

∣∣∣∣
y=0

, (1)

is used as a velocity scale. However, in the case of a boundary layer under an
adverse pressure gradient (APG), uτ is not the correct velocity scale, especially
not for a strong APG and low Reynolds number. In the case of separation this
is clear since uτ becomes zero. In a number of studies the case of separation
has been investigated. The various theories will be presented in the section
where the analysis is presented.

Also, for moderate pressure gradients, the near wall region is influenced if
the Reynolds number is low enough. The combination of a pressure gradient
and low Reynolds number give a flow that deviates from the classical near wall
laws. The equations governing the inner part of the boundary layer can be
analyzed, and the theory is applicable to the results from the direct numerical
simulations investigated here.

In section 2 the numerical method and flow geometry is briefly described.
The results from the investigation of the mean flow are presented in four parts
in section 3. The first part (3.1) is devoted to the total shear stress. Here
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Figure 1. Freestream velocity. — : U ; - - : V .

the alternative velocity scale based on the pressure gradient is introduced, and
the effect of the APG on the inner part of the boundary layer is discussed.
Continued investigation of the total shear stress in the second part (3.2) leads
to the logarithmic law of the velocity profile. The law is extended to the APG
case and is shown to be in fair agreement with DNS data. To further investigate
the different velocity scales, the viscous sub-layer is investigated in the third
part (3.3). And finally, in the fourth part (3.4), some earlier theories regarding
the APG flow and separation are briefly presented.

2. Numerical method and flow characteristics

The simulation evaluated here was performed by Na & Moin (1998a), using a
second-order finite difference method. The computational box was 350×64×50
based on the δ∗ at the turbulent inflow. The number of modes was 513×193×
129. The inflow condition was taken from Spalart’s ZPG simulation. It con-
sists of a mean turbulent velocity profile with superimposed turbulence with
randomized amplitude factors while the phase was unchanged. The bound-
ary conditions applied on the upper boundary are the prescribed wall normal
velocity and zero spanwise vorticity,

v(x,Ly, z) = V (x)
∂u

∂y

∣∣∣∣
x,Ly,z

=
dV (x)

dx
. (2)

In Fig. 1 the two components of the freestream velocity are shown as a
function of the downstream coordinate x. The two components are denoted U
and V in the streamwise and wall normal directions respectively. Elsewhere in
the flow the two components of the mean velocity are denoted u and v. There
is no third direction in the mean flow.

The wall normal velocity (V ) is prescribed in order to create a separation
bubble. The point of separation is at x = 158, and the reattachment occurs at
x = 257.

V varies in the downstream direction and thus induces a gradient in the
u component at the freestream boundary, due to the zero vorticity condition.
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Figure 2. Velocity profiles at x = 157, 200, and 260.
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Figure 3. In the vicinity of the separation. — : U ; - - : uτ × 100.

In Fig. 2 three velocity profiles are shown from different downstream positions
before, inside, and after the separation bubble. The gradients at the freestream
boundary due to the boundary conditions are clearly visible. Since the bound-
ary conditions applied in the simulation do not allow the y−derivative of the
velocity profile to be zero at the upper boundary, all quantities involving δ∗

or other integral quantities become ambiguous. The near wall behavior is not
influenced by this gradient, and the analysis of the boundary layer equations
can be compared with the DNS data.

The quantities shown in Fig. 3 as a function of the downstream direction
in the vicinity of the separation are U and uτ . There is a strong variation of
uτ at the point of separation as seen in Fig. 3.

3. Mean flow profiles

In this section the existing theoretical theories will be presented together with
results from the DNS. Much of the theory is based on the two distinct regions
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Figure 4. Total shear stress at x = 150. — : DNS;
- - : Eq. (4); · · · : Eq. (5).

of the flow, the inner and outer part respectively. Since only the inner part
of the boundary layer will be considered here, the theory concerning the outer
part is omitted.

3.1. The total shear stress

When neglecting the non-linear, advective terms in the equations describing
the mean flow, the equation governing the inner part of the boundary layer is
obtained. This equation can, when using the inner length and velocity scales
ν/uτ and uτ be written,

0 = − ν

u3
τ

1
ρ

dP

dx
+

d2u+

dy+2 − d

dy+
〈u′v′〉+, (3)

where 〈u′v′〉 is the Reynolds shear stress. If the term involving the pressure
gradient is smaller than the other terms, the equation reduces to the equation
governing the inner part of a ZPG boundary layer. However, for the APG case
considered here, this term cannot be neglected. Equation (3) can be integrated
to give an expression for the total shear stress,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1
ρ

dP

dx
y+ (4)

The total shear stress, τ+, from the DNS and the curve τ+(y+) represented by
Eq. (4) are shown in Fig. 4 at the position x = 150. The third and dotted line
is obtained when considering that the pressure gradient is slightly dependent
on the wall normal coordinate, in which case the integration of Eq. (3) yields,

τ+ = 1 +
∫ y+

0

ν

u3
τ

1
ρ

dP

dx
(y+)dy+. (5)

As seen in Fig. 4, the two expressions (4) and (5) are nearly identical. For a
zero pressure gradient case, Eq. (4) predicts a constant shear stress of unity.

The pressure gradient term in Eq. (4) is evidently important for the shear
stress distribution in the inner part of the boundary layer. This was observed in,
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Figure 5. Total shear stress at x = 150. — : DNS;
- - : Eq. (8); · · · : asymptotic profile τp = yp.

among others, the experiments by Bradshaw (1967), Samuel & Joubert (1974)
and Sk̊are & Krogstad (1994). It can be shown that the pressure gradient term
decreases with increasing Reynolds number. The term is thus important only
for low Reynolds numbers. However, close to separation, where uτ approaches
zero, it is clear that the terms becomes infinite even for large Reynolds numbers.

When considering separation the singularity mentioned above can be avoided
by introducing the velocity scale,

up ≡
(

ν
1
ρ

dP

dx

)1/3

. (6)

First Eq. (4) is formulated as

τ+ = 1 + (
up

uτ
)3y+. (7)

The velocity scale up has to be used instead of uτ if the last term in Eq. (7)
becomes very large, which happens if uτ � up, i.e. the boundary layer is
close to separation. This was noted by Stratford (1959), Townsend (1961) and
Tennekes & Lumley (1972). By multiplying Eq. (7) by (up/uτ )2, the following
expression for τp ≡ τ/u2

p is obtained,

τp = yp + (
uτ

up
)2, (8)

with the asymptotic form τp = yp when separation is approached, where yp ≡
yup/ν. Thus, in this rescaled form, the singularity is avoided.

In Figs. 5 and 6 the shear stress scaled with up is shown at x = 150 and
x = 158. Both the linear expression (8) and its asymptotic form are shown.
At x = 150 the separation has not been reached, thus the asymptotic version
deviates while the profile from Eq. (8) coincides with the DNS data. At x = 158
the asymptotic expression agrees with the profile from DNS since uτ = 0 at
that position.
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Figure 6. Total shear stress at x = 158. — : DNS;
- - : Eq. (8); · · · : asymptotic profile τp = yp.

3.2. The logarithmic region

Now, when the velocity scale up has been introduced, it is possible to investi-
gate how other theoretical results for a ZPG turbulent boundary layer can be
modified by the presence of an APG.

The Eq. (3) and the equation for the outer part of the boundary layer
constitute a problem with inner and outer solutions. This problem has been
treated with the method of matched asymptotic expansions by, among others,
Mellor (1972) and Afzal (1996). The aim is to obtain higher order terms in the
matching of the inner and outer solutions. The small parameter that is used in
the expansions is uτ/U , which is related to the Reynolds number through the
logarithmic friction law.

The presentation here will be very brief and only the inner part is discussed.
For the ZPG case, the scaling of the total shear stress with uτ gives a self-similar
profile (τ+ = 1). From Eqs. (7) and (8) it is observed that neither uτ nor up

as velocity scale results in a self-similar expression. However, Eq. (4) can be
formulated as

τ∗ ≡ 1
u2∗

(
ν

∂u

∂y
− 〈u′v′〉

)
= 1, (9)

where u∗ is a velocity scale that depends on y and can be expressed in either
plus or pressure gradient units,

u2
∗ = u2

τ +
u3

p

uτ
y+ = u2

τ + u2
py

p. (10)

Thus, by scaling the total shear stress with u∗, a self-similar expression is
obtained (τ∗ = 1).

For the ZPG case, the matching of the inner and outer equations results
in the equation,

y+ du+

dy+
=

1
κ

. (11)
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Figure 7. Velocity profiles. — : DNS; - - : Eq. (15) with
κ = 0.41 and B = −2; · · · : u+ = 1

0.41 ln y+ + 5.1.

If now u∗ is used as the velocity scale, the velocity gradient can be formulated
as,

ν
∂u

∂y

1
u2∗

=
(

∂u

∂y

)∗
. (12)

The matching between the inner and outer equations as described by Afzal
(1996) results in

y∗
(

∂u

∂y

)∗
=

1
κ

, (13)

where
y∗ ≡ yu∗/ν =

√
(y+)2 + (yp)3. (14)

In the same way as Eq. (11) can be integrated to give the logarithmic law
for the ZPG case, Eq. (13) above can be integrated. However, Eq. (13) must
be formulated with either uτ or up as velocity scale before being integrated. If
uτ is chosen as velocity scale, the integration of Eq. (13) yields,

u+ =
1
κ

(
ln y+ − 2 ln

√
1 + λy+ + 1

2
+ 2(

√
1 + λy+ − 1)

)
+ B, (15)

with

λ =
(

up

uτ

)3

. (16)

The expression (15) is not self-similar due to the term λ, which is Reynolds
number dependent.

Equation (15) is the same expression as Afzal (1996) arrived at. It is also
similar to the equation which Townsend (1961) derived from mixing length ar-
guments. The velocity profiles from the DNS of Na and Moin close to the point
of separation are shown together with the standard log-law and the extended
log-law (15) in Fig. 7. The separation occurs at x = 158 and the four velocity
profiles are shown at x = 150, 155, 157, 158.
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Figure 8. Velocity profiles. — : DNS; - - : Eq. (18) with
κ = 0.41 and C = −7.

From Fig. 7 it is clear that the logarithmic law, valid for ZPG flows, is
a poor instrument for obtaining boundary conditions in the log-layer for tur-
bulence models. The extended log-layer, which involves the pressure gradient,
seems to capture the deviation from the logarithmic profile surprisingly well.
The parameters κ and B have not been adjusted to fit the DNS data; rather,
the standard values have been used. In addition, the region where Eq. (15) is
valid can be discussed.

When up → 0, Eq. (13) reduces to the equivalent equation for the ZPG
case (11), and the usual log-law is recovered. If uτ → 0, Eq. (13) reduces to,

√
yp

∂up

∂yp
=

1
κ

, (17)

and the half-power law is obtained,

up ≡ u

up
=

1
κ

2
√

yp + C, (18)

which was first obtained by Stratford (1959).
Since it is shown that the scaling based on up is preferred over uτ close to

separation, the profiles in Fig. 7 should collapse better when scaled with up.
The same velocity profiles as in Fig. 7 are plotted together with the half-power
law (18) in Fig. 8.

An interesting observation is that Eq. (18) leads to a shape factor of
two with a small correction due to the constant C. The correction vanishes
for large Reynolds numbers when up/U → 0. In both DNS at low Reynolds
numbers (Spalart & Leonard 1987) and experiments at large Reynolds numbers
(Sk̊are & Krogstad 1994) of flows near separation, a shape factor close to two
was observed. The shape factor is 1.8 at separation for the flow of Na and
Moin. But, as discussed earlier, the gradient of the velocity profile at the
upper boundary give a value of the shape factor that cannot be considered a
proper one.



Analysis of a separating turbulent boundary layer 107

By expressing Eq. (13) in pressure gradient units and integrating, the
following expression for up is obtained,

up =
1
κ

(
2
√

γ2 + yp + γ ln yp − 2γ ln(
√

γ2 + yp + γ)
)

+ C, (19)

where
γ =

uτ

up
.

In the limit of uτ → 0, Eq. (18) is recovered. The velocity profiles collapse
much better in the pressure gradient scaling as can be seen from Fig. 8 where
the asymptotic profile (18) is also shown. The profiles obtained from Eq. (19)
do not vary much for different downstream positions, hence only the asymptotic
profile is shown.

The two expressions (15) and (19) are equivalent; only the choice of scaling
when integrating Eq. (13) differs. They are both dependent on the Reynolds
number through the terms λ and γ respectively. Equation (13) cannot be
integrated directly to yield u∗(y∗) independent on the Reynolds number. This
is due to the term (

∂u

∂y

)∗
,

which cannot be expressed in only u∗ ≡ u/u∗ and y∗. However, these arguments
regarding the lack of self-similarity of the velocity profile will be clearer if the
viscous sub-layer, where the Reynolds stress can be neglected, is considered.

3.3. The viscous sub-layer

In the viscous sub-layer the Reynolds shear stress approaches zero and Eq. (8)
can be integrated to give,

up =
1
2
yp2 +

(
uτ

up

)2

yp (20)

In plus units this equation becomes,

u+ = y+ +
1
2

(
up

uτ

)3

y+2
. (21)

This equation reduces to the usual linear profile in ZPG case.
Figure 9 shows velocity profiles near the wall for x = 150 and x = 158 in

plus units. The higher profile is located at x = 158. The solid lines are DNS
data and the dashed ones are the profiles from Eq. (21). The dotted line is
the profile valid for the ZPG case (up = 0). As seen from Fig. 9, the linear
approximation works reasonably well at x = 150, upstream of separation. But
at x = 158, the effect from the pressure gradient is too large. The profiles
diverge as separation is approached since the second term in Eq. (21) becomes
infinite.

Figure 10 shows velocity profiles near the wall for x = 150 and x = 158
in pressure gradient units. The higher profile is located at x = 150. In this
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Figure 9. Velocity profiles at x = 150 and x = 158.
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Figure 10. Velocity profiles at x = 150 and x = 158.
— : DNS; - - : 1
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case the asymptotic profile (dotted) is valid at separation. The solid lines are
DNS data and the dashed are the profiles given by Eq. (20). From Fig. 10 one
can draw the conclusion that the pressure gradient scaling is preferred since
the profiles approach an asymptotic profile instead of diverging infinitely as uτ

approaches zero.
In both the viscous and logarithmic region, the velocity has been scaled

with two different velocities, uτ and up. Both of these scalings give in an
asymptotic state a Reynolds number independent expression. The representa-
tions in plus units, Eqs. (15) and (21), return to the ZPG formulation when
up approaches zero. The representation in pressure gradient units, Eqs. (19)
and (20), become the square-root and square profiles when separation is ap-
proached.

In both these scalings the velocity profile is dependent of the ratio between
uτ and up as seen in the four equations mentioned above. However, the total
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Figure 11. Velocity profiles at x = 150 and x = 158.
— : DNS at x = 150; · · · : DNS at x = 158.

shear stress could be made independent of this ratio by scaling with u∗, Eq.
(9). Thus the profiles are self-similar with respect to Reynolds number and
pressure gradient. In order to obtain an expression for the velocity scaled with
u∗ in the viscous sub-layer, Eq. (9) with the Reynolds stress equal to zero must
be solved. Thus, it is

ν
∂u

∂y

1
u2∗

= 1. (22)

that needs to be solved. The solution u∗(y∗) should be independent of the ratio
between uτ and up. Equation (22) formulated in star units gives

∂u∗

∂y∗ +
1
2

(
yp

y∗

)3 (
y∗ ∂u∗

∂y∗ + u∗
)

= 1, (23)

where the relation between y∗ and yp is given by Eq. (14), which can be written

y∗2 =
(

uτ

up

)2

(yp)2 + (yp)3. (24)

The ratio between uτ and up is still present in Eq. (24), thus no independent
solution can be found. This is also evident from DNS data where the profiles
are scattered for different downstream positions as shown in Fig. 11.

3.4. Comparison with other theories for the logarithmic region

According to Tennekes & Lumley (1972), the scaling with pressure gradient
velocity up should lead to the same form of matching as in the zero pressure
gradient case. From this assumption a logarithmic law is obtained in the same
manner as the usual procedure of matching the outer and inner solutions. The
log-law becomes,

up =
1
κ

ln(yp) + B. (25)

Equation (25) is shown in Fig. 12 together with DNS data from the positions
x = 150 and x = 158.
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Figure 12. Velocity profiles. — : DNS; - - : Eq. (25) with
κ = 0.15, B = −6.5.

According to Stratford (1959), the velocity profile should be a half-power
law close to separation. Also Yaglom (1979) showed that a dimensional analysis
gives the following expression for the velocity profile close to separation,

u+ = K+
√

λy+ + K+
1 , (26)

which can be expressed in pressure gradient scaling,

up = K
√

yp + K1. (27)

Yaglom (1979) also proposed a fairly complicated dependence of K and K1

on up and uτ . This dependency was introduced to extend the theory valid
at separation to the region upstream of detachment. It cannot be regarded
as a sound procedure to incorporate a functional behavior in constants of an
expression valid only in an asymptotic state. It seems to be a better approach
to the equations to introduce the mixed velocity scale u∗ and do the analysis
leading to Eq. (19).

4. Conclusion

The scalings in the near wall region of a turbulent boundary layer close to sep-
aration have been analyzed. Two different velocity scales appears naturally in
the governing equation: the friction velocity and the pressure gradient velocity.
With the aid of the momentum equation governing the inner part, it is possible
to derive a mixed velocity scale. By using this velocity scale and matching the
inner and outer solutions, an extended logarithmic law is obtained. When ap-
proaching the zero pressure gradient case, the familiar log-law and plus scales
are recovered. In the limit of separation, the half-power law in pressure gradi-
ent scaling is obtained. In the vicinity of separation, the extended logarithmic
law in plus scaling give profiles in agreement with DNS data. The profiles
are widely scattered when using the friction velocity as a velocity scale due to
the large variation of the friction velocity in the vicinity of separation. When
using pressure gradient scalings, the profiles are much less scattered, and the
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extended logarithmic law in its asymptotic form (half-power law) agrees with
the DNS data.

The mixed velocity scale, which depends on y, was shown to give self-
similar profiles for the total shear stress. For the velocity however, no such
profiles can be derived. Thus, for practical purposes such as boundary con-
ditions for RANS-modeling and wall-damping functions, the extended loga-
rithmic law should give more reasonable results than the corresponding zero
pressure gradient laws. When the friction velocity varies rapidly or approaches
zero, the scaling with pressure gradient velocity is preferred since the singular-
ity at separation is avoided.

Even in the viscous sub-layer, the pressure gradient influences the velocity
profile if the Reynolds number is low enough. The two velocity scales based
on the friction velocity and pressure gradient velocity give profiles that are
independent on Reynolds number only in the limit of zero pressure gradient
and separation respectively. The comparison with data in the viscous sub-
layer from direct numerical simulation shows that the velocity scale based on
the pressure gradient can indeed be used in this region of the flow close to
separation. In fact, such scaling shows that the velocity profiles approach an
asymptotic, self-similar profile at separation. If the friction velocity scaling is
used, the profiles diverge as separation is approached. This scaling gives an
asymptotic self-similar profile (the linear profile) in the limit of zero pressure
gradient.
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