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Direct numerical simulation of two turbulent boundary layer flows has been
performed. The boundary layers are both subject to a strong adverse pressure
gradient. In one case a separation bubble is created while in the other the
boundary layer is everywhere attached. The data from the simulations are
used to investigate scaling laws near the wall, a crucial concept in turbulence
models. Theoretical work concerning the inner region in a boundary layer under
an adverse pressure gradient is reviewed and extended to the case of separa-
tion. Excellent agreement between theory and data from the direct numerical
simulation is found in the viscous sub-layer, while a qualitative agreement is
obtained for the overlap region.

1. Introduction

The separation of boundary layer flow is of crucial importance in many applica-
tions, including airfoils, rear windows on cars, and turbine blades. Separation
is difficult to predict with current turbulence models, and the design of devices
that either loose their functionality or have their optimum performance close
to the onset of separation is an engineering difficulty.

A vast number of theoretical and/or experimental work has been presented
throughout the last decades, and lately direct numerical simulations (DNS)
have become an important tool for further investigation of this type of flows.
Although laboratory experimental techniques have improved and the reliabil-
ity of results from experiments has increased, there is still need for DNS for
improving the results in the near-wall region. Also, turbulent structures and
the instantaneous flow fields are better analyzed using DNS results.

1.1. Theoretical investigations

In most theoretical investigations of boundary layers it is of crucial importance
to determine the relevant velocity scale. For a zero pressure gradient (ZPG)
boundary layer such a velocity scale is naturally chosen as the friction velocity,

(1)
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However, in the case of a boundary layer under an adverse pressure gradient
(APG), u, is not the relevant velocity scale. This is true especially for strong
APGs and low Reynolds numbers. For a separating boundary layer this is clear
since u, becomes zero in this case. In a number of studies the case of a strong
APG and separation has been investigated theoretically. In many such studies
a velocity scale based on the pressure gradient is defined,
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In an analysis based on w,, Stratford (1959) obtained a square-root law for
the velocity profile from the assumption of zero wall stress and mixing length
theory. Townsend (1961) refined the theory based on mixing length to the case
of non-zero (but positive) wall shear stress and obtained a law with both square-
root and logarithmic parts based on w, as a velocity scale. Kader & Yaglom
(1978) extended the Stratford velocity profile to the case of positive wall stress.
However, they kept the square-root law based on u,, and let the influence of
a non-zero wall shear stress be accounted for by varying the constants. Mellor
(1966) arrived at a similar expression as Townsend. The work of Townsend
was later reviewed by McDonald (1969) who included non-linear inertia effects
in the expression for the velocity profile.

Afzal (1996) obtained similar expressions for the velocity profile as
Townsend by using asymptotic matching. Durbin & Belcher (1992) also used
asymptotic theory for the analysis of velocity profiles. They obtained a three
layer structure of the turbulent boundary layer under an APG. Melnik (1989)
also obtained a three layer structure by extending the asymptotic analysis of
Yajnik (1970) and Mellor (1972) with an algebraic turbulence model. Skote
& Henningson (1999) simplified the formulation of Townsend and showed that
the analysis could be valuable for turbulence modelling purposes.

Instead of using u, or u, as the velocity scale and letting the velocity profile
depend on the pressure gradient and Reynolds number, some investigators have
tried to make the profiles collapse on a single curve in an outer scaling. This
seems to be possible only if a velocity scale is determined a posteriori, with the
objective to make the profiles collapse. Coles (1956) proposed a wake function
to account for the variation of the velocity profile in the outer (or wake) region
of the boundary layer. The form of the wake function has later been modified
in a number of ways, see e.g. Musker (1979) for further references. Perry &
Schofield (1973) and Schofield (1981) used a scaling for the outer part of the
velocity profile designed to match the profiles to a half-power law close to the
wall. They claimed that the velocity scale is related to the maximum shear
stress.

Thus, there are two fundamentally different theoretical approaches to the
velocity profile in a turbulent boundary layer under a strong APG. One is
focusing on the local pressure gradient as the important parameter determining
the shape of the velocity profile, the other is focusing on a velocity scale, defined
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through a fitting procedure, that will make the velocity profiles collapse onto a
single curve. In this work we will develop further the analysis where the local
pressure gradient is the key factor.

1.2. Experiments

Many experiments have been performed on separated flows, albeit most of them
consider separation caused by a sharp edge, or an obstacle, see e.g. the review
of Simpson (1996) for a collection of references, and the work of Hancock (2000)
for references to the latest experiments.

The experiments on separation of a flat plate turbulent boundary layer
include the works of Perry & Fairlie (1975), Simpson et al. (1977, 1981a,b),
Dengel & Fernholz (1990), Driver (1991) and Alving & Fernholz (1996, 1995).
Some of these investigations have also tried to develop different scalings of the
velocity profile in both outer and inner variables.

Simpson et al. (1977) showed that the Perry-Schofield scaling is supported
upstream of separation, however with the the streamwise derivative of the lon-
gitudal and normal Reynolds stresses included in the estimation of the maxi-
mum shear stress. They concluded that the shear stress gradient is less than the
streamwise pressure gradient due to the Reynolds stresses and the convective
terms in the momentum equation.

Simpson et al. (1981a,b) developed a scaling based on the maximum back-
flow velocity and its distance from the wall for the back-flow profile, which
was shown to consist of three layers: the layer closest to the wall which is
governed by viscous forces, a relatively flat intermediate layer and the outer
back-flow which is dominated by the large-scale outer region flow. No universal
"back-flow function’ could be found. Upstream of separation the logarithmic
law was valid, as well as the Perry-Schofield scaling for the outer part. As
separation is approached the scalings are not fulfilled. Furthermore, they con-
cluded that the velocity profile in the outer part is not described by a universal
wake function. The normal and streamwise Reynolds stresses contribute to the
turbulence energy production at separation, and the enhanced turbulence en-
ergy production in the outer region supply turbulence energy to the back-flow
region by turbulent diffusion.

Dengel & Fernholz (1990) performed measurements in an axisymmetric
turbulent boundary layer. Three cases were investigated with skin friction zero,
slightly negative, and slightly positive. They concluded that the logarithmic
law is not valid when the first reverse-flow events occur. Furthermore, the
velocity profile does not confirm the Perry-Schofield scaling. Instead they let
a seventh order polynomial represent an asymptotic velocity profile close to
separation. However, Dengel & Fernholz did not base the velocity scale on
the maximum stress. Instead, they obtained the velocity scale by fitting the
velocity profiles to a half-power law, as suggested by Schofield (1981). Reynolds
stresses increased downstream in all three cases and the turbulence production
had its maximum far out in the boundary layer.
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Driver (1991) performed measurements on two boundary layers on an ax-
isymmetric body with similar pressure distributions but very different flows.
One is attached and the other is separated. He concluded that above a certain
value of the pressure gradient (in viscous scaling) the mean flow profile does
not obey the law of the wall. The attached boundary layer was found to be in
equilibrium and the Clauser parameter was nearly constant.

Alving & Fernholz (1996) performed an experiment on an axisymmetric
body with a turbulent boundary layer that separates in a short region. They
reported decreased Reynolds stresses in the inner region and large peaks away
from the wall. After reattachment, the inner region is slower in its recovery
than the outer part and the recovery does not start at the wall. Hence, the
large scale structures are intact over the separation bubble and then interact
with near-wall flow after reattachment. Alving & Fernholz (1995) investigated
the scaling of the velocity profiles from their experiment. They compared the
Durbin-Belcher and Perry-Schofield scalings, with the conclusion that the latter
works better than the former. However, they did not actually use the velocity
scale proposed by Perry & Schofield (1973), but rather determined their velocity
scale so that the velocity profiles close to separation collapse with the profile
given by Dengel & Fernholz (1990).

The consensus from the experiments mentioned above is that the turbu-
lence is intensified above a separated region while it is decreased in the back-flow
itself. Velocity profiles at streamwise positions close to the separation point can
only be made to collapse in the outer part by a fitting procedure of the velocity
scale. Upstream of separation the experiments give no evidence on how the
velocity profiles should be scaled. No universal profile for the back-flow seems
to exist and the proper scaling is still an open question.

1.3. Direct numerical simulations

A few direct numerical simulations (DNS) of separated turbulent boundary
layer flows have been performed earlier.

Na & Moin (1998a,b), hereafter abbreviated as NM, used a second-order
finite difference method to simulate a turbulent separation bubble. The com-
putational box was 350 x 64 x 50 based on the * at the turbulent inflow. The
number of points was 513 x 193 x 129. The inflow condition was taken from
Spalart’s temporal ZPG simulation. The velocity profiles were neither linear
in the viscous sub-layer nor logarithmic further from the wall at all streamwise
positions. The location of maximum turbulence intensity occurred above the
separation bubble.

The near-wall flow from the simulation by NM has previously been in-
vestigated by Skote & Henningson (1999). Good agreement between theory
regarding the viscous sub-layer (recapitulated here in section 2.1.1) and DNS
data was found in the region just upstream of separation.

Spalart & Coleman (1997), hereafter abbreviated as SC, performed DNS
of a separation bubble with heat transfer. They used a spectral code with
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640 x 200 x 256 modes. Their inflow-outflow boundary condition was based on
the fringe region technique with a turbulent inflow. Their results showed that
separation has large effects on the boundary layer, and that many assumptions
which are valid for an attached layer cannot be applied to the separated bound-
ary layer. The Reynolds shear stress increased dramatically over the separation
bubble as did the turbulent kinetic energy. This is explained by a lift-up of
turbulent fluid from the wall region that weakens the blocking effect of the
wall. The increased turbulent energy can also be explained by a contribution
from the normal and streamwise Reynolds stresses as argued by SC. Negative
production of turbulent kinetic energy was observed in the later part of the
separation bubble. This was not further explained by SC but was probably
due to a positive Reynolds shear stress in that part of the flow. However, SC
recognized that the effect of the rapid distortion on the boundary layer might
lead to results which are not valid for turbulent separation bubbles in general.

In both of these simulations the boundary condition on the upper boundary
was set by imposing a normal velocity that varies downstream and thus controls
the separation bubble. Many results are hence similar for both simulations.
The streamwise velocity profiles have a gradient at the upper boundary due
to the boundary condition, thus the velocity profiles constitute a boundary
layer with no freestream edge, where the streamwise velocity gradient and the
normal velocity are small.

Both NM and SC noted that the streaks near the wall are eliminated by
an APG. In NM they concluded that the vortical structures are lifted above
the bubble and impinge on the wall in the reattachment region.

The simulations performed here are different from the ones by NM and SC
in some important aspects. First, the boundary condition used in the present
simulations gives a boundary layer with a well defined freestream edge, thus
permitting an investigation of integral parameters which was not possible in
NM and SC. Second, the separated region is longer than in NM and SC, hence
the local distortion of the boundary layer is less severe. The strength of the
back-flow is also stronger, which reveals new phenomena.

In this work we start with a review and extension of the theory concern-
ing velocity profiles in an attached and separated turbulent boundary layer in
section 2. The results from the simulations are presented in section 3. A pre-
sentation of the numerical methodology, including a resolution check, is given
in section 3.1. This is followed by a general description of the flow, including
both instantaneous structures and turbulence statistics, in section 3.2. The
theoretical results from section 2 are compared with DNS data in section 3.3.
The results are further discussed in section 4, and comparison with NM and
SC will be made, as well as with some experimental data.

In the present work we focus on the near-wall flow since few results from
the near-wall region in a separated flow have previously been reported. The
flow close to the wall is scrutinized by comparing results from theoretical con-
siderations with data obtained from the DNS
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2. The turbulent boundary layer equations

In the past, much effort has been spent to obtain numerically solvable ordinary
differential equations for the parameters quantifying the turbulent boundary
layer. See e.g. Schlichting (1979), Rotta (1962) and Cebeci & Smith (1974) for
references. Using such methods, separation and reattachment can be predicted
in some cases. However, no general formula to predict separation has been
offered. The emphasis today is shifted towards more general closures of the
Navier-Stokes equations, based on turbulence models. Therefore, no attempts
to analyze or improve the methods based on simplified versions of the turbulent
boundary layer equation (TBLE) are conducted here. The TBLE is used to
extend and improve the theoretical understanding of the streamwise velocity
profile in the inner region of the turbulent boundary layer.

The near-wall behavior of a turbulent boundary layer close to separation,
or fully separated, is difficult to analyze with the TBLE, since a separated
flow does not permit the simplifications of the Navier-Stokes equations leading
to the TBLE. However, even if the TBLE is not valid when the downstream
development of a separating boundary layer is to be calculated, it can still be
used to understand what happens locally in the boundary layer.

Results from a straightforward analysis of the TBLE is of importance for
the development and calibration of turbulence models. The near-wall laws de-
rived for ZPG boundary layers have been used extensively for obtaining bound-
ary conditions in calculations of boundary layer flow with turbulence models.
Thus, better near-wall laws for turbulent boundary layers would improve the
predictions made of APG flows using turbulence models. The near-wall laws
presented here can be used for such purposes.

In section 2.1 the analysis of the TBLE will be presented for two reasons.
First we wish to strengthen the arguments and results from some of the previous
authors. The analysis reported here clarifies how and under what circumstances
previous results are applicable. Second, the modified analysis can be repeated
for the separated case. This analysis is presented in section 2.2. The theoretical
results for the separated case are derived from the same arguments as for the
attached case. It is only the changed boundary condition at the wall that
make the resulting expressions for the velocity profile different from the ones
describing an attached boundary layer.

2.1. The attached boundary layer

The analysis of the TBLE will be divided into three parts. The first and second
parts deal with the total shear stress in the inner region of the boundary layer,
where the advective terms in the TBLE are neglected. The analysis in the
first part will lead to a velocity profile in the viscous sub-layer, where also the
Reynolds stress can be neglected. The overlap region is investigated in the
second part.

The third part is devoted to the outer part of the boundary layer, where
the viscous term in the TBLE is neglected. Together with the analysis of the
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outer part, an integration of the TBLE with all terms included, gives some
relations between mean flow parameters, such as shape factor and skin friction.

2.1.1. The inner region

The analysis of the inner region (near-wall flow) will be performed in more detail
than the analysis of the outer part, since the low Reynolds number together
with an adverse pressure gradient give a flow that differs substantially from the
ZPG flow. Also, the results for the separated flow will be based on the analysis
of the APG flow.

When neglecting the non-linear, advective terms in the equations describing
the mean flow, the equation governing the inner part of the boundary layer is
obtained. Using the inner length and velocity scales v/u, and u., the equation
can be written,

v 1dP d*u*t d
= - ), 3)
ud pdr  dyt dyt
where (u/v') is the Reynolds shear stress. If the term involving the pressure
gradient is negligible small compared to the other terms, the equation reduces
to the equation governing the inner part of a ZPG boundary layer. However, for
strong APG cases at finite Reynolds numbers, this term cannot be neglected.
Equation (3) can be integrated to give an expression for the total shear stress,
v 1dP
T+E——<U/UI>+=1+—3—— + (4)
us p dx
For a ZPG case, equation (4) predicts a constant shear stress of unity in the
inner region.

The pressure gradient term in equation (4) is evidently important for the
shear stress distribution in the inner part of the boundary layer. This was
observed in, among others, the experiments by Bradshaw (1967), Samuel &
Joubert (1974) and Skare & Krogstad (1994), and the DNS by Spalart & Wat-
muff (1993) and Skote et al. (1998). It can be shown that the pressure gradient
term decreases with increasing Reynolds number, and thus is important only
for low Reynolds numbers. However, close to separation, where u, approaches
zero, it is clear that the pressure gradient term becomes infinite, even for large
Reynolds numbers.

When considering a strong APG or separation, the singularity mentioned
above can be avoided by introducing the velocity scale u,, defined in equation
(2). To see this, we first formulate equation (4) as

3
=1+ (%) yt. (5)

The velocity scale u, has to be used instead of u, if the last term in equation
(5) becomes very large which happens if u; < u,, i.e. the boundary layer
is close to separation. This was noted by Stratford (1959), Townsend (1961)
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and Tennekes & Lumley (1972). By multiplying equation (5) by (u,/u,)?, the
following expression for 77 = 7/ (puf,) as a function of y? = yu, /v is obtained,

2

m=y (i) ©
Up

Equation (6) has the asymptotic form 77 = y? when separation is approached.

Thus, in this rescaled form, the singularity is avoided.

There are three possible complications in the above analysis. First, the
pressure gradient may depend on the normal coordinate. This was proved to be
important when the analysis was compared with the data from the simulation
of NM, see Skote & Henningson (1999). However, due to the straightforward
boundary conditions used in the present simulation, no such dependence exists
in the data presented here. The second complication is that the TBLE contains
the streamwise derivative of longitudal and normal Reynolds stresses. These
terms may be important in a strong APG flow as was noted by Rotta (1962).
A third complication is the non-linear inertia terms, which can influence the
total shear stress as argued by McDonald (1969). However, in the present
simulations these two terms are not important and will be disregarded in the
following.

Now, in the viscous sub-layer the Reynolds shear stress approaches zero
and equation (6) can be integrated to give,

2
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In the limit of separation, when u,/u, — 0, equation (7) reduces to

1
W= L) )
In viscous units, equation (7) becomes,
1 (u,\®
+_ gt (% +32
=ty (1) 0 )

This equation reduces to the usual linear profile in ZPG case, when w,/u, — 0.
The two expressions (5) and (6) are equivalent. It is in the limits of
ur/up, — 0 and u,/u; — 0 respectively that the formulation becomes cru-
cial. The same observation is true for the expressions (7) and (9). However,
when plotting data from the rapidly varying separation bubble of NM, the
scaling based on u, gives a much better collapse of the profiles. In the scaling
based on u,, the profiles are scattered, due to the strong variation of w,. In
the simulations presented here, the pressure gradient is varying less violently.

2.1.2. The overlap region

The velocity profiles derived in this section will have asymptotic forms that
are consistent with the profiles in the viscous sub-layer derived in the previous
section. That is, the two velocity scales (u, and u,), yield two different velocity
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profiles, valid in the limits of ZPG (up/u, = 0) and separation (u,/u, = 0)
respectively. In flows between these asymptotic states (APG flows), the two
scalings are equivalent and both give a velocity profile that depends on the
Reynolds number and the pressure gradient through the ratio between u, and
Up.

We now proceed with the analysis by first considering the total shear stress.
For the ZPG case, the scaling of the total shear stress with u, gives a self-similar
profile (77 = 1). From equations (5) and (6) it is observed that neither u, nor
uy, as velocity scale results in a self-similar expression. However, equation (4)

can be formulated as
L1 ou
T=a (a_y B W“”) -t (10

where u, is a velocity scale that depends on y and can be expressed in either
viscous or pressure gradient units,
ud
u? zuz—&-u—pgﬁ' :uz—kuzy”. (11)
T

Thus, by scaling the total shear stress with wu,, a self-similar expression is
obtained (7* = 1). The velocity scale u, reduces to u, if u, becomes zero, i.e.
for a ZPG boundary layer. If instead u, becomes zero, i.e. for a boundary
layer at separation, the velocity scale becomes u. = u,/yP. However, when
Uy = Up+/yP is inserted in equation (10) we can write the equation as 77 = y?,
i.e. we use up as the velocity scale. Note that for the special case with u, =0,
the velocity scale u, is zero at the wall. This is natural since the velocity
gradient is zero at the wall.

The logarithmic behavior of the turbulent boundary layer is obtained from
the matching of the velocity gradient, or equivalently, the shear stress, in the
inner and outer regions of the boundary layer. The matching also requires a
consistency condition that results in the logarithmic friction law.

For the matching of the inner and outer equations, it is enough to observe
that the total shear stress can be written in the form (10) in the inner part. In
the outer part it is assumed that the velocity gradient can be written,

ou

— = Flu, /A, 12

= (12)
where F’ is a function of a similarity variable (y/A) and A is the outer length
scale. Equation (12) should be considered as the scaled formulation of the ve-
locity gradient for the outer part, corresponding to the scaled velocity gradient
for the inner part, which can be written as

. :f/u*/yv (13)

where f’ is a function of a similarity variable (yu./v).
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If the total shear stress is scaled with u, in the outer and inner parts, and
assumptions (12) and (13) are valid, then the matching of the total shear stress

gives the equation,
L (ou\" 1
Y (8_3,/) = P (14)

where a short notation is used for the scaled velocity derivative,

ou\" ou 1
— | =v——=. 15
(3y> oy u? (15)
The scaled normal coordinate is
Y= yu/v=/(y")* + (yP)>. (16)
For the ZPG case, for which u, = 0, equation (14) is reduced to,
dut 1
+2Z . 17
VO T (17)

When integrated, equation (17) gives the logarithmic velocity profile.

In the same way as equation (17) can be integrated to give the logarithmic
law for the ZPG case, equation (14) above can be integrated to give a velocity
profile in either viscous scaling (u* = u/u, = f(y™)) or pressure scaling (u? =
u/u, = g(y?)). Both of these expressions will depend on the ratio between .,
and up, and are thus not self-similar. A self-similar profile of the form u* =
u/ux = h(y*) is not consistent with equation (10). This is further discussed at
the end of this section.

If u, is chosen as velocity scale, the integration of equation (14) yields,

1 VIt +1
ut == <1ny+ 721n+++ +2(/1+ Myt — 1)) +B,  (18)

K

with

The expression (18) is not self-similar due to the term A which is Reynolds
number dependent. Equation (18) is the same expression as Afzal (1996) ar-
rived at. It is also similar to the equation which Townsend (1961) derived from
mixing length arguments.

If w,, is chosen as velocity scale, then (18) can be written,

|
wr == (VA2 97 + 9y — 2y (VA2 +9)) +C (19)

where
Ur
7=
Up
For a ZPG boundary layer, for which A = 0, equation (18) reduces to the
logarithmic profile. In the other limit, at separation, when + is zero, equation
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(19) reduces to the half-power law,

W= 2/ +C, (20)

which was first derived by Stratford (1959). Note that equation (20) can be
rewritten in such a manner it is independent on the viscosity, as in the formu-
lation by Stratford.

As mentioned earlier, it is not possible to solve equation (14) directly to
obtain an expression for u* as a function of only y*. This is due to the scaled
(with wu,) velocity gradient, which cannot be formulated independently of u,
and u,. The velocity gradient scaled with a constant velocity scale u, or u,, is,
on the other hand, straightforward to express independently of the Reynolds
number,

+ +
youl _ (@) _ T (21)
Oy u2 Ay dyt

Thus, in the ZPG case the equation permits a self-similar velocity profile
(the logarithmic function). The same is true for the zero wall stress case (the
half-power law). In all flows between these two asymptotic states, the velocity
profile depends on the Reynolds number through the ratio between u, and w,,.

In other words, for all APG boundary layers, including the asymptotic
states ZPG and separation, the total shear stress can be made self-similar by
using the velocity scale u,. For the ZPG and separating boundary layers, wu,
reduces to a constant (y independent) velocity scale (u, and w, respectively).
This leads to that the velocity profile becomes self-similar for those two cases
(due to equation (21) above). For all APG cases in between, the velocity scale
U4 is not constant, and hence the velocity profile is not self-similar.

2.1.3. The outer part

The analysis of the integrated TBLE, together with the analysis of the outer
part, where the viscous terms are neglected, was conducted thoroughly by Skote
et al. (1998). Only the resulting equations, linking the mean flow parameters
with each other, will be recapitulated.

The aim here is to simplify the equations under the assumption of self-
similarity. The conditions for self-similarity and the resulting relations between
mean flow parameters are presented. The reason for interest in self-similar
flows originates from at least three arguments. First, the equation of motion
are simpler to analyze. Second, turbulence models can be calibrated using a
single profile, or investigated from an asymptotic approach. Third, calibra-
tion and determination of parameters such as friction velocity can be done in
experiments.

If the viscous term is neglected in the equations describing the mean flow
of a two-dimensional, incompressible, turbulent boundary layer, the equation
governing the outer part of the layer is obtained. From this equation it is
possible to deduce that a necessary condition for self-similarity is that a pressure
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gradient parameter (denoted ) is constant,

0* dP
= — — = constant. 22
h Ty dT (22)
Furthermore, if w, /U is regarded as constant and an outer length scale varies
linearly, the condition 8 =constant is fulfilled if the freestream variation is of

the form U ~ z™, which when specifying a profile becomes,
U =Up(l— =)™, (23)
Zo

If this form of the freestream is inserted in the TBLE together with the
assumption that the velocity defect and Reynolds shear stress, when scaled
with the friction velocity, are functions of an outer variable 7,

(u—"U)/urs = F(n), —(u'v") Juz* = R(n),
n=y/Ax), A=Ué"/u,, (24)
the TBLE becomes,
16} dF
—2B8F + —(1 —
BE + —(1+m)y a
U 3 dF " dR 1 d?°F
T _BF?2 4+ 21 - Fdny=—+ ———. 25
+U{ b +m( +m)d77/0 77} d7]+R65*d'{]2 (25)

The equation governing the outer part is obtained if the last term in equa-
tion (25) is neglected.

If F is of order unity, the terms within the bracket after u,/U can be
neglected, which results in a linearization of the equation. This simplification is
only valid in the limit of infinite Reynolds number, when u./U — 0. However,
closer to the wall, and for finite Reynolds number, F' is of order U/u, and
all terms in the equation are of the same order. Thus, when integrating from
the wall to the freestream, the non-linear terms must be kept. The viscous
term is also important since it is zero only for a boundary layer at the point of
separation.

Thus, retaining all terms and integrating equation (25), the relationship,

p
H(1+p8)+26’
is obtained. H is the shape factor. The asymptotic result for infinite Reynolds
number, when u,/U — 0, is obtained by setting H equal to unity.

m=—

(26)

In the present APG simulation the Reynolds stress profiles at different
positions are not self-similar, due to the small variation of u,/U. For large
Reynolds numbers, the profiles tend to a self-similar state. This can be seen
from e.g. the experiments with a strong pressure gradient of Skare & Krogstad
(1994), or from calculations with turbulence models as in Henkes (1998) or
Skote et al. (1998).
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From the definition of 3, equation (22), and the freestream profile used,
equation (23), it follows that if m and the ratio u,/U are constants, then,

A=(1-2)A,. (27)
T

All of these conditions and the resulting relations are investigated in the
DNS data presented in section 3.2.1. Now the effect of a different velocity scale
is investigated.

In the previous studies by Skote et al. (1998), the APG was not so strong
that rescaling was required, neither in the inner nor in the outer region. For a
strong APG or separated case, the scaling of the velocity defect with u, has to
be reconsidered, following the arguments from the preceding sections.

As for the inner part, the rescaling merely means a change of the veloc-
ity scale from u, to u,. When using u, instead of u, as velocity scale, the
parameter occurring in the TBLE is changed from 3 to 3,

& dU u; \? o
By ugUd:E ﬁ(up> P (28)
The TBLE scaled with wu, is equation (25) multiplied by (u,/u,)?, and
integrated it gives the relation,
Br
H((2)2+8,) +26,

which is identical to relation (26). If u, — 0, the relation (29) reduces to,

m=—

(29)

1

T
which is also what (26) reduces to when u, — 0, i.e. when § — 0.

(30)

In the analysis of the TBLE with u, instead of u,, the self-similar expres-
sions (24) are replaced with the following expressions,

(u—=U)/up = Fp(np), _<“/U/>/Up2 = Rp(np)s
My =y/Ap(z), Ay = UG [up. (31)

The scaling of the velocity defect with u, cannot give self-similar profiles
since (3, is not constant according to the definition (2) of w,. The ratio u,/U
is not constant either. Thus, a theoretical expression for the outer part in a
boundary layer close to separation must be based on another kind of scaling.

There have been many attempts to properly describe the velocity profile
in the outer part of the boundary layer, both for ZPG and APG flows. Coles
(1956) proposed a wake function for the description of the velocity profile.
Since then a number of changes and refinements have been presented. Musker
(1979), among others, proposed a velocity profile that is valid from the wall
to the freestream, consisting of a logarithmic function and a wake function of
the polynomial form. Dengel & Fernholz (1990) disregarded the form of the
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original wake function, and propose a polynomial fit to the velocity profile. A
different approach was chosen by Perry & Schofield (1973), who found their
velocity scale by a fitting procedure similar to the Clauser plot in the ZPG
case. They also related the velocity scale to the maximum shear stress, but
no experimental data have confirmed this relation. Durbin & Belcher (1992)
derived a three-layered structure of the turbulent boundary layer under a strong
adverse pressure gradient. No experimental data have verified their scalings.

With this abundance of theories and proposed functions for the description
of the velocity profile in the outer part, it is difficult to extract the ’best’ theory,
especially with those containing a large number of constants to be adjusted
to obtain the best fit with DNS data. Therefore, in the present work, the
velocity profile in the outer part will not be investigated with respect to the
vast number of suggested profiles described above. We are content with a
comparison between the velocity scales u, and w,.

The difficulties in finding an appropriate description of the velocity profile
in the outer part of the boundary layer in strong APG flows with or without
separation, may be attributed to ’historical effects’, i.e. the flow is not deter-
mined by local parameters (except for equilibrium layers), but is influenced by
downstream and upstream conditions. This is consistent with the arguments of
Perry (1966), who divided the boundary layer into a wall region, where the flow
is determined by local parameters, and a ’historical region’ where this local or
‘regional similarity’ does not apply.

2.2. The separated boundary layer

The TBLE cannot be used as a tool if a calculation of the downstream be-
havior of a separated boundary layer from given boundary condition is to be
performed, Rotta (1962), Perry & Fairlie (1975). However, the TBLE can still
be used for the analysis of local velocity profiles.

In this section the case of separation will be discussed. The limit of zero
shear stress (u./u, — 0) was approached in the analysis above, and the as-
ymptotic version of the expression for the velocity in the viscous sub-layer was
equation (8), and in the logarithmic region it was equation (20). These two
expressions were obtained by setting u, = 0 in equation (7) and (19) respec-
tively. Now, if a separated flow is considered, the definition of u, has to be
reconsidered. In the separated region, ‘g—Z is negative. Thus, the definition of
u, in equation (1) involves a square root of a negative number. Instead, the
definition will be changed so that the square root will be taken of a positive
number. Thus, to proceed with the analysis of the equations, the definition of
the friction velocity will have to be changed to

(32)

This change will affect the analysis outlined in the previous section. It is
the boundary condition at the wall used when integrating the TBLE that will



DNS of separating turbulent boundary layers 129

be different from the attached case. In this section the analysis will start with
the inner part, continue with the overlap region, and end with the outer part.

The equation for the inner part (3) will not be changed since the scaling
is not affected by the change of definition of u,.. However, in the integration
leading to equation (4), the boundary condition at the wall is used and will
now, with the definition (32), change sign. Thus, the analysis is the same as in
section 2.1. It is only the boundary condition that change the expression from

equation (6) to
2
p_p_ (Y 33
" (WJ) . 33)

For the velocity in the viscous sub-layer the expression becomes,

2
1 U
wP = Z(yP)2 — [ 2= P 34
507 = (%) (34)
instead of equation (7). Due to the changed boundary condition, the corre-
sponding equation in viscous scaling, equation (9), will read as,

3
1 /u
e +12
w=r g () 6 (39)
Note that the equations (7) (attached boundary layer) and (34) (separated
boundary layer) take the same form,

u” = S (y")?, (36)

when u, /u, — 0. This asymptotic form is equal for the two cases since the as-
ymptotic state is the onset of separation. On the other hand, the corresponding
equations in the viscous scaling, equations (9) and (35), have the asymptotic
forms T = yT and T = —yT respectively. Thus, the assumption that vis-
cous forces are stronger than the pressure gradient give different profiles in the
attached and separated region.

From equations (7) or (35) it is possible to extract the maximum negative
velocity and the position where it occurs. In pressure gradient scaling the
1

maximum back-flow is —3(%=)* at y? = (¥=)?. These results are valid if the
g P

back-flow maximum is located in the viscous sub-layer.

Now the logarithmic part of the boundary layer will be discussed. Accord-
ing to equation (33), the velocity scale that produce a self-similar shear stress
(* =1) is,

ud
u? = —u? + u—py+ = —uZ +uly’. (37)
T

By inserting either form of w, into equation (14), two different expressions for
the velocity profile are obtained. Using the viscous scaling yields,

wt = l 2y 1~ 2aretan (Vo™ —1)] + B, (38)
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3
A= (L
ur )

By using the pressure gradient scaling we obtain,

1 P
uP = - [2\/:(}17 — 72 — 2varctan (\/?)] +C, (39)

with

where

The logarithmic dependence has been replaced by the arctan function.
However, the asymptotic function (20) is recovered from equation (39) when
ur/u, — 0.

The equation (38) was actually derived by McDonald (1969) from
Townsend’s extended log law, however with the velocity scale u,, replaced with
the shear stress gradient. McDonald argues that the shear stress gradient is dif-
ferent from the streamwise pressure gradient, and that the deviation originates
from inertia effects.

After the analysis of the inner and logarithmic parts, we now proceed with
the outer part. Since the separation (at least the weak one considered here) is a
phenomenon confined to the inner part of the boundary layer, the outer part is
not affected. However, the integration of the TBLE, presented in section 2.1.3,
are affected since the boundary condition will change for a separated boundary
layer compared to the attached one.

When integrating equation (25) in pressure gradient scaling, the changed
boundary condition results in the relation,

Bp
H (_(Z_;)Q + 510) + 2@07

(40)

m=—

This relation is almost identical with the relation (29), and the only difference
is the sign in front of u,2, which enters through the boundary condition at
the wall. The asymptotic version for vanishing wall shear stress is the same,
equation (30).

3. Direct numerical simulations

The numerical code and a discussion about the resolution required are presented
is section 3.1. The results from the simulations will be presented in two sections.
The general description of the flow is presented in section 3.2. In section 3.3
the mean flow will be presented and compared to the theoretical results from
section 2.
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3.1. Numerical considerations

The code used for simulation is only a tool to provide the data wanted. How-
ever, the complexity of numerical issues makes it interesting to present the
basic ideas behind the numerical solution procedure. Especially in combina-
tion with the use of super computers, the computational algorithm can itself
lead to research in its own right.

3.1.1. Numerical method and parallelization

The code used for the direct numerical simulations (DNS) was developed at
KTH and FFA, Lundbladh et al. (1999). The numerical approximation consists
of spectral methods with Fourier discretization in the horizontal directions
and Chebyshev discretization in the normal direction. Since the boundary
layer is developing in the downstream direction, it is necessary to use non-
periodic boundary conditions in the streamwise direction. This is possible while
retaining the Fourier discretization if a fringe region is added downstream of
the physical domain. In the fringe region the flow is forced from the outflow
of the physical domain to the inflow. In this way the physical domain and the
fringe region together satisfy periodic boundary conditions. The fringe region
is implemented by the addition of a volume force F, to the Navier-Stokes
equations:

8’&2‘ 3uz 1 ap 8211,,'

9t " Yow, T pow oz,

o (41)

The force
Fy = Nx)(t; — u;) (42)

is non-zero only in the fringe region; @; is the laminar inflow velocity profile
which the solution w; is forced to and A(z) is the strength of the forcing. The
form of A(z) is designed to minimize the upstream influence. For an analysis of
the fringe region technique, the reader is referred to Nordstrom et al. (1999).
Time integration is performed using a third order Runge-Kutta method for
the advective and forcing terms and a Crank-Nicolson method for the viscous
terms. A 2/3-dealizing rule is used in the streamwise and spanwise direction.

The numerical code is written in FORTRAN and consists of two major
parts, one linear part where the equations are solved in spectral space, and one
non-linear part where the non-linear terms in the equations are computed in
physical space. The linear part needs data for one spanwise (z) position at a
time since the equations are solved in the wall normal (y) direction. The non-
linear part needs data for one y position at a time since the FFT is performed
in the horizontal directions (spanwise and streamwise). The flow variables are
stored at an intermediate level with spectral representation in the horizontal
directions and physical representation in the y direction. All spatial derivatives
are calculated with spectral accuracy. The main computational effort in these
two parts is in the FFT.



132 M. Skote € D. S. Henningson

The simulations were performed to a large extent on computers with dis-
tributed memory. The parallelization and optimization of the code for these
type of computers were performed by Alvelius & Skote (2000). Communica-
tion between processors is necessary when the different operations on the data
set are to be performed in the two different parts of the code. The data set
(velocity field) is divided between the different processors along the z direction.
Thus, in the linear part, no communication is needed. When the non-linear
terms are calculated, each processor needs data for a horizontal plane. The
main storage is kept at its original position on the different processors. In
the non-linear part each processor collects the two-dimensional data from the
other processors, on which it performs the computations and then redistributes
it back to the main storage.

The boundary conditions are no-slip at the wall and at the freestream the
normal derivative of the streamwise and spanwise velocity components are set
to zero, while for the normal component the prescribed value of the APG is
used,

v OVapc  OUapc

6_y_ Jy ox

(43)
These boundary conditions ensures that the prescribed APG is obtained.

3.1.2. Numerical parameters

The simulations were performed on various computers. The tuning of the pres-
sure gradient for the desired flow situation was performed on a Cray T3E at
NSC in Link6ping, using 32 processors. After the design of the pressure gra-
dient, a simulation with 20 million modes was performed on an IBM SP2 at
PDC, KTH in Stockholm, using 32 processors. The results presented here are
mainly from a second simulation with 40 million modes performed at the Na-
tional Aerospace Laboratory (NAL), Tokyo. The same (with some differences
due to the different types of processors) code was used on all three comput-
ers, using MPI (Message-Passing Interface) for the communication between the
processors. The numerical method and the simulation performed at NAL was
presented at the Parallel CFD 2000 conference in Trondheim.

The computer used at NAL was the Numerical Wind Tunnel (NWT), a
parallel computer that consists of 166 vector processors from Fujitsu. The
maximum performance on each processor is 1.7 Gflop/s. The main difference
from the other two computers (CRAY T3E and IBM SP2) is the type of proces-
sor. While the other two consist of super-scalar processors, the NWT utilizes
vector processors. These processors give a higher performance for each of the
processing elements. The fast Fourier transforms (FFT), for which most of the
time is spent during the simulation, have different structure for the scalar and
vector processors.

The simulations start with a laminar boundary layer at the inflow which
is triggered to transition by a random volume force near the wall. All the
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quantities are non-dimensionalized by the freestream velocity (U) and the dis-
placement thickness (6*) at the starting position of the simulation (x = 0),
where the flow is laminar. At that position Res« = Ud§* /v = 400. The length
(including the fringe), height and width of the computation box were 700 x
65 x 80 in these units. The fringe region has a length of 100 and the trip is
located at x = 10.

Results from two simulations are presented. One, which is called APG1,
is a boundary layer subject to a strong APG. The flow in APG1 is everywhere
attached. The second, which is called SEP, is a boundary layer under even
stronger APG, and the flow is separated for a large portion.

Two different resolutions were used for the simulations. For APGI1 the
number of modes was 512 x 193 x 192. After a simulation of SEP with
the same resolution, a larger simulation was performed using the NWT. The
number of modes in this simulation was 720 x 217 x 256, which gives a total
of 40 million modes or 90 million collocation points.

The simulations were run for a total of 7500 time units (6*/U), and the
sampling for the turbulent statistics was performed during the last 2500 time
units. The statistics were collected during the simulations and averaged in the
spanwise direction. No filtering of the statistics has been used.

3.1.3. Resolution check

The simulation of a separated boundary layer was performed with two different
resolutions and could be compared with each other. The turbulent statistics
for both resolutions were computed from the same amount of simulation time.
The general behavior in the streamwise direction is the same for the two reso-
lution, i.e. there are no large differences in parameters such as friction velocity,
shape factor etc. There were some differences in the region where the back-flow
has its largest magnitude, which is now further investigated. Velocity profiles
from two downstream positions are shown in figure 1, one at x = 350 where
the back-flow is strongest, and one at x = 500, where the boundary layer is at-
tached. A large part of the profile from the less resolved simulation at the point
of maximum back-flow (x = 350) is below the profile from the well resolved
simulation. However, close to the wall they collapse. In the attached region,
the two profiles are essentially similar. Thus, the region where strong back-flow
occurs is sensitive to the resolution, which means that caution is needed when
simulating this type of flow. Also in the Reynolds shear stress some differences
could be detected, most notably in the outer region, near the freestream. In
the attached region there were no differences between the two resolutions for
the Reynolds stresses. It should be noted that even though the history effects
can influence the boundary layer downstream of reattachment, (see e.g. the
investigations of Alving & Fernholz (1996)), the differences upstream of reat-
tachment in the the two resolutions do not influence the boundary layer in the
attached region.
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FiGURE 1. SEP: Velocity profile in the separated region at
x = 350 and in the attached region at x = 500. — 720 x 217
X 256 modes; - - 512 x 193 x 192 modes.

0 0.5 1 15 2 25 3
log(modes)

FIGURE 2. SEP: Energy contained in modes in — z; - - y;

- z. Thick lines: 720 x 217 x 256; Thin lines: 512 x 193 x

192.

This investigation shows that the lower resolution is sufficient for the at-
tached region, while in the separated region, the high resolution is crucial for
capturing the correct behavior.

Comparison with the resolution in the simulations by NM and SC is pos-
sible by rescaling the size of the box of their simulations in the coordinates
of the present simulation and divide with number of collocation points. The
result is shown in table 1. The resolution is better for the present simulation
than in NM in all three directions, even though their method has second order
accuracy while our method, as in SC, is spectral.

To further confirm the resolution we show the energy in the flow as function
of the spectral modes for the two resolutions in figure 2. The thick lines are
from the well resolved case. Note that the two velocity fields are from different
times, thus the curves from the two cases do not collapse. The energy decays
consistently in the three directions when the resolution is refined. The small
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] | present | NM | SC |
Az | 0.65 |0.85|0.57
Ay 0.30 0.41 | 0.27
Az 0.21 0.48 | 0.21

TABLE 1. Comparison of resolution between the present sim-
ulation and the simulations by SC and NM.

contamination in the highest modes moves to higher wavenumbers as resolution
is increased.

3.2. General description of the flow

The general behavior of the mean flow parameters is described and discussed in
section 3.2.1. The instantaneous velocity field will be presented in section 3.2.2,
where a qualitative description of the structures appearing in the flow will be
afforded. In section 3.2.3 a general description of some turbulence statistics are
presented.

3.2.1. Mean flow parameters

In earlier simulations of APG turbulent boundary layers by the authors of the
present work, Skote et al. (1998), the freestream velocity varied according to
a power law in the downstream coordinate, U ~ ™. The motivation for this
was that a self-similar profile in the outer part could be developed. In the
simulations presented here, the aim was to get a boundary layer as close to a
separated state as possible. The tuning of the pressure gradient is extremely
time consuming since the boundary layer has a slow response to any change in
the pressure distribution.

The pressure gradient is determined through the freestream velocity, which
is of the same functional form as in Skote et al. (1998),

The two parameters that can be changed are xy and m, and they are summa-
rized in table 2.

The freestream velocity (U) for the two simulations, APG1 and SEP, are
shown in figure 3, together with the skin friction (Cf). As seen from the figure,
a small change in the freestream velocity has a great impact on the skin friction.
A number of simulations were performed to obtain a boundary layer with a wall
shear stress as close to zero as possible. These two simulations are the ones
where we obtained w., closest to zero, and were therefore continued for a long
time to get good statistics. The resolution was discussed in section 3.1, and
the conclusion was that both simulations can be considered well resolved.

Even if the boundary condition (U) is almost the same for the two sim-
ulations, the resulting boundary layers contain very different flows. In APG1
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the boundary layer is subject to a strong APG, but is everywhere attached.
In SEP the boundary layer is separated for a large portion of the computa-
tional domain. The resulting normal velocity at the freestream boundary (V')
is shown for the two cases in figure 4.

The parameter [ for APGI is shown in figure 5, and is approximately
constant. The shape factor from APGI is almost exactly constant over the
whole domain z = 150 — 550. The corresponding parameter 3, from SEP is
also shown in figure 5 together with the shape factor. The boundary layer with
separation is evidently not near equilibrium since 3, is not constant. The shape
factor also varies strongly downstream as a consequence of the non-equilibrium
as seen in figure 5.

Since 3 is constant in the APG1 case, it is possible to check the relation
given by equation (26). Using § and H from APG1 (shown in figure 5), equation
(26) yields an m close to —0.23, shown as the solid line in figure 6. However,
the value of m was set to —0.25 in the simulation. The difference in the value of
m is explained by the non-uniqueness of the two parameters in the freestream
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FIGURE 6. APG1: — m from equation (26); - - m from equa-
tion (44) with xo = —50.

velocity distribution. A specific distribution of U can be closely represented
by different values of m and xy. Thus, the imposed distribution of U can be
obtained by applying a different set of the parameters m and xg than used in
the definition of the distribution. However, the value of zy in the simulation
can be determined by looking at the resulting outer length scale, A, shown in
figure 7. The dashed line is equation (27) with zo = —50, thus a different value
than the one used in the profile for U, which is 2o = —62. By using the value
of xy = —50, the exponent m can be calculated from the expression (44). The
resulting m is shown as the dashed line in figure 6, matching approximately
the m from equation (26). Thus, even if the freestream velocity is defined with
the parameters xo = —62 and m = —0.25, the same freestream distribution is
represented by xzo = —50 (taken from the distribution of A) and m ~ —0.23
(the exact value of m is the dashed line in figure 6). These latter values of m
and x( are the apparent parameters actually felt by the boundary layer and
are called m® and z§ in table 2.

The ratio between the two velocity scales (u-/uy) is shown in figure 8 for
the two cases. The ratio is fairly constant for APG1, and even in the case of
separation the variation is not violent. This is in strong contrast to the rapid
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FIGURE 7. APG1: — A; - - equation (27) with 2y = —50.

| Case | m | xo | m® [af |
APGI1 | -0.25 | -62 | -0.23 | 50
SEP | -0.35 | -50
TABLE 2. Freestream parameters. m and xg are the values
in the simulation specifying the freestream velocity through
equation (44). z§ and m® are the actual values corresponding
to equilibrium theory.
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FIGURE 8. u,/u,. APGl: — ; SEP: - -.

separation and attachment simulated by SC and NM. The constant ratio will
have some consequences for the scaling of the velocity profiles shown in section
3.3.

The strong decrease in the skin friction before the reattachment cannot
be explained by the mean momentum equation alone. The point of reattach-
ment cannot be predicted either, but can be detected from the behavior of
the normal velocity at the freestream boundary (figure 4). In the beginning of
the computational domain the flow out of the box is generated by the strong
decrease in the streamwise velocity. Later, the flow is inward, due to the fringe
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F1cURE 9. APGI1: Streamwise velocity fluctuation in a plane
at y* = 10. The dark area represents low-speed fluid
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F1GUrE 10. SEP: Streamwise velocity fluctuation in a plane
at y* = 10. The dark area represents low-speed fluid

region, where the original, laminar boundary layer is restored. With a longer
computational box, the point of reattachment would move downstream. The
influence of the fringe is however not unphysical, since it only determines the
boundary condition at the outflow. The boundary layer has to end somewhere,
and this scenario is just one example. If a ZPG or APG layer is studied, where
the exact form of the pressure gradient is important, the upstream influence of
the fringe is important, since the equilibrium conditions are changed.

3.2.2. Structures in the flow

The streamwise velocity fluctuations form elongated structures near the wall in
a ZPG boundary layer. It is generally thought that the structures are weakened
in an APG flow. This is illustrated in figure 9, where shades of positive and
negative fluctuations are shown for the APG1 case. The figure shows the
whole computational box in the spanwise direction but the transitional part and
fringe region are excluded in the streamwise direction. The normal position is
yT = 11.8 in the beginning and y* = 9.2 at the end. The length in the
streamwise direction is about 3400 in viscous units based on u, at x = 350.
The structures are weakened at the end of the domain as compared with those
in the beginning, showing the damping effect of the APG on the structures.
The spacing between the structures increases from 100 (the same as for a ZPG
layer) at the beginning to about 130 at the end, based on the local w..

The SEP case is shown in figure 10. The normal position is also in this case
around y* = 10 and the length of the region shown is about 2400. There are
still some structures in the separated flow, though not at all as long and frequent
as in APG1. Before separation, which occurs at approximately x = 140, the
streaks are visible, but are rapidly vanishing in the beginning of the separated
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FI1GURE 11. The separated boundary layer. Only a part of the
computational box is shown. The light grey structures repre-
sent positive normal velocity and the darker ones represent
positive streamwise velocity.

region. There is notable increase in the streak formation around x = 350,
where the friction coefficient is at its lowest values, c.f. figure 3. Thus, there
are indications that streaks may reappear in a separated region if the back-
flow is strong enough. After the reattachment at x = 412 the streaks are not
immediately appearing, but are clearly visible after x = 450.

To illustrate some more features of the instantaneous flow structures in the
separated case, contour plots of constant streamwise and normal velocity are
plotted in a part of the computational box. In figures 11 and 12, the streamwise
velocity, plotted in dark grey color, show a less ordered structure than in a ZPG
boundary layer. However, the constant streamwise velocity show the same
features above the separation bubble as after the reattachment point. The
sheet formed by the constant value is bent upward over the recirculation region
and comes down again when approaching reattachment. This is in agreement
with various experimental observations, see the introduction. In figure 11, a
positive constant value of the normal velocity is shown in light grey color. The

reattachment
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FI1GURE 12. The separated boundary layer. Only a part of the
computational box is shown. The light grey structures repre-
sent negative normal velocity and the darker ones represent
positive streamwise velocity.

normal velocity is of the same disorganized form as the streamwise velocity.
An opposite effect is revealed in figure 12, where a negative value of the normal
velocity is shown. Here the structure is more ordered and forms tube-like
structures where the fluid rushes from the freestream down towards the wall.

3.2.3. Turbulence statistics

A general description of the turbulent kinetic energy and its production is
presented here. In this section the scaling of the turbulent statistics is based
on the local freestream velocity. For the APG1 case the development of the
turbulent kinetic energy is typical for an APG turbulent boundary layer. In
figure 13 contours of constant levels of turbulent kinetic energy from 0.0005 to
0.006 are shown. The peak value is at all streamwise positions around 0.006.
It is slightly larger in the beginning and decreases slowly downstream, while
the position for the peak is shifted outward from y = 4 at x = 150 to y = 18 at
x = 550. The turbulent kinetic energy development in SEP is more complicated

reattachment
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FI1GURE 14. SEP: contours of turbulent kinetic energy.

and the discussion will be made with the aid of figure 14. In figure 14 contours
of constant levels of turbulent kinetic energy from 0.005 to 0.025 are shown.
At z = 150 the boundary layer has barely separated and the energy has one
maximum of 0.0016 located far out in the boundary layer (approximately at
y = 18). Further downstream, at position z = 250, the energy maximum has
shifted outward to y = 30 with the larger value 0.025. The profile then stays
approximately the same until the maximum starts to decrease and is moving
towards the wall after x = 330. When comparing with the mean streamwise
velocity in figure 15, it is noted that the peak in turbulent kinetic energy is
located outside the recirculation zone. This was also noted by SC and Alving
& Fernholz (1996) among others, (see the introduction in the present work).
At x = 350 the profile of the energy is almost identical with the one at x = 150,
but the maximum continues to decrease downstream, even though the location
(y = 18) of the maximum is constant. The boundary layer is still subjected
to an adverse pressure gradient, and the peak located far out in the boundary
layer is a consequence of this. Nothing spectacular happens at the point of
reattachment (z = 412). The peak value is stabilized after x = 450 at a value
of 0.006, which is the same value as observed in the APG1 case.

The shear stress contribution to the production is shown in figure 16 for
SEP. Approximately the same behavior as for the energy itself is observed up to
x = 330. The maximum occurs closer to the wall, but still above the recircula-
tion region. The streamwise Reynolds stresses do contribute to the production
(not shown in the figure), but their contribution is fluctuating rapidly over
the boundary layer and is much smaller than the production originating from



DNS of separating turbulent boundary layers 143

150. 200. 250. 300. 350. 400. 450. 500. 550.
x
FiGURE 15. SEP: contours of mean velocity. Positive values
shown as solid lines, negative as dashed.
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FI1GURE 16. SEP: contours of production of turbulent kinetic

energy. Positive values shown as solid lines, negative as
dashed.

the shear stress, except close to the wall at some streamwise positions. From
figure 16 it is also observed that there is a negative production (destruction)
of turbulence kinetic energy in an area away from the wall, upstream of reat-
tachment. This was also observed in the DNS of SC. The destruction is not a
contribution from the streamwise production, but originates from positive val-
ues of the Reynolds shear stress in that region. In the DNS of NM no negative
total production in the middle of the layer occurred, even if the production of
Reynolds shear stress showed negative values both close to the wall and in the
middle of the boundary layer. The destruction, and hence the positive values
of the Reynolds shear stress, occur in the same region of the flow where the
tube-like structures in the downward normal velocity are visible, c.f. figure 12.

3.3. Comparison with analysis

To compare the DNS data with the results from section 2, the mean flow profiles
will be presented in different scalings and from different parts of the boundary
layer. From figure 1 it is observed that the back-flow is very weak compared
to the freestream velocity. The portion of the boundary layer where back-flow
exists is small compared to the portion of positive streamwise velocity. But,
the flow close to the wall is of course important, because it determines many
of the features of the flow that are crucial from an engineering aspect.

From APG1 the data is compared with the results from the analysis of
the TBLE for an attached boundary layer (section 2.1). From SEP the data
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FIGURE 17. Velocity profiles at z = 150 to = 500. a) APG1:
— DNS; - - u™ = y*. b) SEP: — DNS; - - ut = yt;
oyt = —yt
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FIGURE 18. Velocity profiles at z = 150 to x = 500. a) APG1:
— DNS; - - wP = £(y?)%. b) SEP: — DNS; - - u? = $(yP)*.

is compared with the results from the analysis of the TBLE for a separated
boundary layer (section 2.2).

3.3.1. The viscous sub-layer

The near-wall profiles are plotted in the viscous scaling in figure 17 and are
compared with the profiles given by the asymptotic versions of equations (9)
and (35). For APG1 the collapse is good as seen in figure 17a. For the case
SEP, shown in figure 17b, the profiles close to the u™ = y™ profile are the
two in the attached region at positions x = 450 and x = 500. The profiles
furthest from both asymptotes is from the positions closest to separation and
reattachment, while the lowest (closest to u™ = —y™T) is from the position with
strongest back-flow.
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FIGURE 19. Velocity profiles in pressure gradient scaling. a)
APG1: — DNS; - - $(y)? + (%)?y?. b) SEP: — DNS;

- 5P = ()Y

In figure 18 the same profiles are shown in pressure gradient scaling and
are compared with the profiles given by the asymptotic expression (36), which
is the same for the attached and separated case. The spreading is the same as
in the viscous scaling. That the profiles spread equally in the viscous scaling
as in the pressure gradient scaling is due to the fact that the ratio u./u, is
nearly constant, see figure 8. This is in strong contrast to the simulation of
NM, where the variation in u, was enhanced by the rapidly growing pressure
gradient. In their simulation, the velocity profiles collapsed much better when
scaled with w, than wu,, (see Skote & Henningson (1999)). Figure 18 shows
that the profiles are further from the asymptotic state (separation), than in
the viscous scaling (figure 17), where the profiles showed some similarity with
the asymptotic (ZPG) profile.

Velocity profiles in the pressure gradient scaling at two downstream posi-
tions are shown in figure 19, together with the theoretical expressions for the
velocity profile in the viscous sub-layer. For APG1 (figure 19a) the positions
are x = 200 and z = 450, and for SEP (figure 19b) they are x = 200 and
x = 300. Here the asymptotic curve is not shown, but the pressure gradient
dependent curves from equation (34) are shown. The DNS profiles and the
corresponding curves given by equation (34) follow each other and show that
even if the profiles are far from the asymptotic state (as shown in figure 18),
the inclusion of the pressure gradient term gives a good agreement.

In summary, figure 17 shows that the scaling with u, works for APG1 but
not for SEP. Figure 18 shows that the scaling with u,, does not work for APGI,
nor for SEP, while figure 19 shows that with the inclusion of the pressure
gradient term, the scaling with u, works well in both cases.
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FIGURE 20. a) APGI1: Velocity profile at z = 350. — DNS;
- - equation (18) with x = 0.41 and B = 1.5; --- ut =
0_—11 Iny™ +5.1. b) SEP: Velocity profile at x = 450. — DNS;
- - equation (18) with x = 0.41 and B = —-2; --- ut =
0_% Iny™ +5.1.
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FIGURE 21. a) SEP: Velocity profiles at = 150 and = = 300.
— DNS; - - equation (38) with k = 0.41 and B = —T;
cut = ﬁ Iny™ + 5.1. b) SEP: Velocity profile at reattach-
ment x = 412. — DNS; - - vP = ral2\/y_P —1.

3.3.2. The overlap region

The laws presented in section 2.1.2 are compared with data from the simulations
in figure 20. And the results from section 2.2 regarding the logarithmic region
are presented in figure 21.

For APGI the extended logarithmic law (18) gives profiles that are more
in agreement than the usual ZPG logarithmic law, see figure 20a. However, the
value of the additive constant B in equation (18), which has a value of —2 close
to separation in both DNS and experiments, had to be set to +1.5 to fit the



DNS of separating turbulent boundary layers 147

DNS data in APG1. This is true for all streamwise positions, and hence the
value of the additive constant seems to depend on the pressure gradient, and not
the Reynolds number. In the attached region of separating boundary layer, the
profile from equation (18) with B = —2 gives the best approximation, shown
in figure 20b. This is in agreement with the earlier investigation of the flow
just upstream of separation in the simulation of NM, see Skote & Henningson
(1999).

The profiles in the separated region, figure 2la, are compared with the
arctan law derived in section 2.2. The profile given by equation (38) is in much
better agreement with DNS than the corresponding ZPG law, also shown in
the figure. The additive constant is —7 for the separated case. It should
also be noted that the extended logarithmic law derived for an attached layer
under a strong APG, equation (18), gives a poor agreement with DNS data in
the separated region (not shown in the figure). At the point of reattachment
(x = 412) the profile is given in pressure gradient scaling in figure 21b. The
asymptotic version of equation (39) is in good agreement with DNS data since
u, is close to zero.

Thus, the conclusion is that the equations describing the overlap region
derived in section 2 are in qualitative agreement with DNS data, and are far
more consistent with DNS data than the corresponding ZPG laws.

However, due to the low Reynolds numbers, it is not possible to draw any
definite conclusions regarding the overlap region. To properly clarify these mat-
ters, high Reynolds number data are required, and the experiments of Alving
& Fernholz (1996) are therefore analyzed in section 4.

3.3.3. The outer part

As discussed earlier in section 2.1.3, there are many theories for describing the
profiles in the outer part. All of these are at some point dependent on either
experimental evidence or curve-fitting. An overall comparison and criticism
of each of these theories is beyond the scope of the present investigation. In
figure 22 the velocity profiles are plotted against the outer variable i for both
cases but in different scalings. For APG1 the profiles collapse in the ZPG
scaling despite the strong APG as seen in figure 22a. For the separated case
in figure 22b, the profiles are shown in the pressure gradient scaling. The
profiles are spread and do not collapse at all. However, the profiles collapse if
plotted in the separated region and in the attached region separately, which
is indicated with solid and dashed profiles. Thus, the profiles fall on a single
curve if the distinction between the separated and attached region is made.
However, since the viscous and pressure gradient velocity scales are almost
constant throughout the boundary layer, the advantage with wu, over u, is
confined to the point around separation or in a case where u, fluctuate more
than u,,.
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FIGURE 22. Velocity defect profiles at x = 200 — 500.
a) APGl. b) SEP — 2z = 250, « = 300 and z = 350.
- - x =450, x = 500 and = = 540.

4. Discussion

In this section a comprehensive discussion about the relation between our re-
sults and others is presented.

4.1. Comparison with earlier DNS

The separated turbulent boundary layer simulated by DNS presented here has
different characteristics compared to earlier DNS of a separation bubble. Efforts
have earlier been made to create a bubble that starts and ends with a ZPG
turbulent boundary layer. In the simulation presented here, the boundary
layer is everywhere subject to an APG. To obtain a bubble with such a small
extension in the streamwise direction as in the simulations of NM and SC,
requires a strongly varying pressure gradient in order to force the boundary
layer to separate and then reattach. The pressure gradient in those simulations
was imposed by a strongly varying normal velocity at the freestream edge.
This, in turn, creates a large normal gradient in the mean flow at the upper
boundary. Here, the streamwise pressure gradient does not vary as rapidly as
in the earlier DNS. However, the boundary layer reattaches upstream of the
fringe region even if no favorable pressure gradient is applied. The variation of
the normal velocity is much weaker than in NM, see figure 23. The freestream
V' varies approximately in the same way in SC as in NM.

The integrated quantities, such as the shape factor and momentum thick-
ness, cannot be compared with data from earlier DNS of separated flow by SC
and NM. This is due to the behavior of the velocity profiles at the freestream
in those simulations. At some streamwise position the maximum value of u
is located in the middle of the boundary layer, and the value at the upper
boundary is three times lower. Figure 24 shows velocity profiles at the position
of maximum back-flow from the three different simulations. The profiles from
NM and SC show a considerable velocity gradient at the upper boundary, and
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FIGURE 24. Velocity profiles. — from SEP; - - from NM; --- from SC.

the value at the upper boundary of U varies strongly in NM, as seen from
figure 23. Here the x values have been recalculated in our simulation coordi-
nates. However, the relative starting positions of the boundary layers cannot
be calculated and is here matched by letting the starting points of all three
simulations be located at x = 0. Furthermore, from figure 24 it is clear that
the back-flow is stronger in the present simulation than in NM and SC.

The strong gradient at the freestream makes it difficult to define a boundary
layer edge. In the simulation presented here, no such ambiguity about the
boundary layer edge and thickness exists. Since there was no real freestream in
SC and NM, the friction coefficient, C'y, was calculated with the value of unity
for the freestream velocity U at all streamwise positions. Comparison of the
Cy from NM and SC with our simulation is made in figure 25. It is clear from
figure 25 that our separation bubble is longer than the other two. In figure 25
the C¢ from our simulation has been calculated using the same technique as in
NM and SC, i.e. with a value of unity for the freestream velocity.
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FIGURE 25. — Cf from SEP; - - Cy from NM; --- Cf from SC.

4.2. The overlap region in experiments

To further investigate the theoretical expressions from section 2.1.2, but at a
larger Reynolds number than is possible to reach with DNS, the experimental
data from Alving & Fernholz (1996, 1995) are investigated.

In the work of Alving & Fernholz (1995) the velocity profiles showed con-
siderable departure from the law of the wall valid for ZPG flow. By using the
Perry-Schofield coordinates, modified by Dengel & Fernholz (1990), the curves
were forced to collapse. However, the procedure of determining the velocity
scale a posteriori, from the collapsed velocity profiles, make the analysis less
valuable. The measured profiles are here examined from the other standpoint,
the extended law of the wall. In figure 26 the profiles before separation and in
the separated region are shown. Upstream of separation the extended logarith-
mic law (18) with the standard value of —2 for the additive constant predicts
the profiles well. In the separated region (only one profile available) the profile
given by equation (38) gives a better prediction than equation (18). However, a
change in the additive constant in equation (18) can make the agreement with
the experimental profile equally good.

Thus, the experimental data of Alving & Fernholz confirm and strengthen
the conclusion drawn from our DNS data in section 3.3.2.

4.3. Comparison with other theories for the overlap region

A number of investigators have, with different methods, tried to obtain the the-
oretical velocity profile in APG flows, corresponding to the logarithmic profile
in a ZPG flow.

According to Tennekes & Lumley (1972), the scaling with the pressure
gradient velocity w, (with u; = 0) should lead to the same form of matching
as in the zero pressure gradient case. From this assumption a logarithmic law
is obtained in the same manner as the usual procedure of matching the outer
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FIGURE 26. Experimental data from Alving & Fernholz
(1995). a): Velocity profiles upstream of separation. - - equa-
tion (18) with x = 0.41 and B = —2. b): Velocity profiles
in the separated region. - - equation (18) with £ = 0.41 and
B = —-2. --- equation (38) with x = 0.41 and B = —7.

and inner solutions. The log law becomes,
1
u? = —In(y?) + B. (45)
K

This is clearly wrong, since the scaling with u, leads to the the half-power law,
equation (20).

According to Stratford (1959), the velocity profile should be a half-power
law close to separation. Also Yaglom (1979) showed that a dimensional analysis
gives the following expression for the velocity profile close to separation,

ut = K/ yt + K, (46)
which can be expressed in pressure gradient scaling,
uP = K\/y? + K. (47)

Yaglom (1979) also proposed a fairly complicated dependence of K and K;
on u, and u,. This dependency was introduced to extend the theory valid
at separation to the region upstream of detachment. It may not be regarded
as a sound procedure to incorporate a functional behavior in constants of an
expression valid only in an asymptotic state.

4.4. Alternative scaling of the back-flow

As suggested by Simpson (1983), the back-flow mean profiles may be scaled
by the maximum mean back-flow velocity (uy), together with the normal co-
ordinate scaled with the distance from the wall to the maximum (N). The
profiles scaled in this way are plotted in figure 27. Simpson (1983) also gives a
logarithmic profile to be valid for 0.02 < y/N < 1.0 with a constant A involved.
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FIGURE 27. SEP: Velocity profiles at x = 200, z = 250, = =
300, x = 350 and z = 400. uy and N are the maximum mean
back-flow velocity and its distance from the wall. - - profile
from equation (48)

%:A[%_ln(%)—l}—l. (48)

The constant A has been given a number of different values in numerous experi-
mental investigations by, e.g. Dianat & Castro (1989) and Devenport & Sutton
(1991). Thus, the law seems to be of limited value. For comparison, the profile
given by equation (48) is also shown in figure 27 with A = 0.3 as suggested by
Simpson (1983). The collapse of the profiles is poor, and the agreement with
equation (48) is as bad as in the DNS of a backward-facing step by Le et al.
(1997).

5. Conclusion

Direct numerical simulations of two turbulent boundary layers have been per-
formed. The flows are subject to slightly different adverse pressure gradients,
resulting in two very different flows. One is everywhere attached while the
other is separated. The case with separation still forms a boundary layer with
a clearly defined freestream edge, distinguishing it from earlier attempts to
simulate a separation bubble.

The near-wall flow was shown to be predicted by a straightforward analysis
of the turbulent boundary layer equations. The theory is based on two different
velocity scales easily extracted from the parameters of the flow. Thus, the
theory is applicable to turbulence modelling. Furthermore, it was possible to
extend the theory to the case of separation.

The velocity profile in the viscous sub-layer was shown to obey a law de-
pendent on the pressure gradient, in both the attached and separated cases. A
velocity profile for the overlap region was derived and showed better consistency
with DNS data than the corresponding law of the wall for a zero pressure gradi-
ent boundary layer. In the attached boundary layer the overlap profile consists



DNS of separating turbulent boundary layers 153

of square-root and logarithmic parts, while in the separated region it consists
of square-root and arc-tangents functions.

The near-wall streaks are weakened by the adverse pressure gradient, and
the spacing in viscous units is reduced. In the separated case streaks reappeared
in the region with strong back-flow. The turbulent structures convecting from
the region upstream of separation are lifted above the separation bubble, and
are weakened before reaching reattachment. The normal velocity towards the
wall in the vicinity of reattachment show a tube-like structure, where also
positive Reynolds shear stress results in destruction of turbulence energy.

Comparison with earlier DNS of separated turbulent boundary layers shows
that the present simulation is well resolved and has a stronger and larger re-
circulation region.
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