
Near-wall damping in model predictions of
separated flows

By Martin Skote∗ and Stefan Wallin†

Data from the near-wall region of an attached and a separated turbulent bound-
ary layer are used for the development of near-wall damping functions utilized
in turbulence modelling. The model considered is an explicit algebraic Rey-
nolds stress model. The data are taken from two direct numerical simulations.
The turbulent boundary layer equation is analyzed in order to extend the va-
lidity of existing wall damping functions to turbulent boundary layers under
severe adverse pressure gradients.

1. Introduction

Two turbulent boundary layers subject to adverse pressure gradients (APG)
were investigated through direct numerical simulation (DNS) by Skote & Hen-
ningson (2000). The two APG distributions are quite similar, but the influence
of the APG on the flow is strong, creating two very different boundary layer
flows. One is everywhere attached (APG1), and the other is separated for a
long streamwise section (SEP).

The data are here used for assessing the near-wall scaling of wall damp-
ing functions used in turbulence modelling. The particular model studied is
the fully self-consistent explicit algebraic Reynolds stress model (EARSM) de-
veloped by Wallin & Johansson (2000), which can, in contrast to standard
eddy-viscosity two-equation models, be successfully damped in the vicinity of
a wall in zero pressure-gradient boundary layers by employing the standard van
Driest damping function.

A relevant velocity scale is crucial for the correct behaviour of wall damp-
ing functions used in turbulence models. For a zero pressure gradient (ZPG)
boundary layer, the damping functions and boundary conditions in the loga-
rithmic layer are based on a theory in which the friction velocity,

uτ ≡
√

ν
∂u

∂y

∣∣∣∣
y=0

, (1)

is used as a velocity scale. However, in the case of a boundary layer under
an APG, uτ is not the relevant velocity scale, especially not for a strong APG
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and low Reynolds number. In the case of separation this is clear since uτ

becomes zero. Wall damping functions based on y+ ≡ yuτ/ν are, thus, not
appropriate. Other possibilities than y+ that are used in near-wall damping
functions are Rey ≡ √

Ky/ν or the turbulent Reynolds number Ret ≡ K2/νε
(see e.g. Wilcox (1993)). These alternatives do not have the singularity caused
by that uτ becomes zero.

The scaling laws developed in many previous studies have been in a form
not suitable for turbulence models. Instead, the aim for the scaling of the veloc-
ity profile has often been to create a tool for different prediction methods based
on the simplified turbulent boundary-layer equations (TBLE). The motivation
for the thorough scaling analysis performed here is that the turbulence mod-
elling can be improved if the correct scaling is used. However, the scalings are
entirely motivated by the TBLE itself, i.e. turbulence modelling is disregarded
when performing the scaling analysis of the TBLE.

Many of the earlier theoretical analyses were not performed with the same
objectives as we have today. Hence, the results, though interesting in many
aspects, perhaps lack a natural potential for direct application to the final goal
— to calculate and predict a turbulent boundary layer flow.

Some basic ideas concerning the velocity scale in the inner part of the
turbulent boundary layer under an APG are presented in section 2. It is shown
that the total shear stress varies linearly in a turbulent boundary layer under
an APG, if the Reynolds number is not large compared with the APG. The
linear behaviour leads to a velocity scale dependent on the normal coordinate,
replacing the friction velocity as a velocity scale.

The new velocity scale is used in the wall damping of the EARSM model
in section 3. Comparison with the damping based on Rey proposed by Wallin
& Johansson (2000) is made, and an example of the performance of EARSM
with the improved damping is given.

2. Scalings in the near-wall region

When neglecting the non-linear, advective terms in the equations describing
the mean flow, the equation governing the inner part of the boundary layer is
obtained. This equation can, when using the inner length and velocity scales
ν/uτ and uτ be written,

0 = − ν

u3
τ

1
ρ

dP

dx
+

d2u+

dy+2 − d

dy+
〈u′v′〉+, (2)

where 〈u′v′〉 is the Reynolds shear stress. If the term involving the pressure
gradient is smaller than the other terms, the equation reduces to the equation
governing the inner part of a ZPG boundary layer. However, for strong APG
cases at finite Reynolds numbers, this term cannot be neglected. Equation (2)
can be integrated to give an expression for the total shear stress,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1
ρ

dP

dx
y+. (3)
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For a zero pressure gradient case, equation (3) predicts a constant shear stress
of unity. For an APG case with a freestream distribution of the form U ∼ xm,
the last term in equation (3) can be shown (Skote et al. 1998) to decrease with
increasing Reynolds number.

When considering a strong APG or separation, A singularity occurs when
uτ becomes zero, which can be avoided by introducing the velocity scale,

up ≡
(

ν
1
ρ

dP

dx

)1/3

. (4)

First equation (3) is formulated as

τ+ = 1 +
(

up

uτ

)3

y+. (5)

The velocity scale up has to be used instead of uτ if the last term in equation
(5) becomes very large which happens if uτ � up, i.e. the boundary layer
is close to separation. This was noted by Stratford (1959), Townsend (1961)
and Tennekes & Lumley (1972). By multiplying equation (5) by (up/uτ )2, the
following expression for τp ≡ τ/u2

p as a function of yp ≡ yup/ν is obtained,

τp = yp +
(

uτ

up

)2

. (6)

Equation (6) has the asymptotic form τp = yp when separation is approached.
Thus, in this rescaled form, the singularity is avoided.

For the ZPG case, the scaling of the total shear stress with uτ gives a
self-similar profile (τ+ = 1). From equations (5) and (6) it is observed that
neither uτ nor up as velocity scale results in a self-similar expression. However,
equation (3) can be formulated as

τ∗ ≡ 1
u2∗

(
ν

∂u

∂y
− 〈u′v′〉

)
= 1, (7)

where u∗ is a velocity scale that depends on y and can be expressed in either
plus or pressure gradient units,

u2
∗ = u2

τ +
u3

p

uτ
y+ = u2

τ + u2
py

p. (8)

Thus, by scaling the total shear stress with u∗, a self-similar expression is
obtained (τ∗ = 1). The velocity scale u∗ reduces to uτ if up becomes zero, i.e.
for a ZPG boundary layer. If instead uτ becomes zero, i.e. a boundary layer
at separation, the velocity scales becomes u∗ = up

√
yp.

For the special case with uτ = 0, the velocity scale u∗ is zero at the
wall. This is natural since the velocity gradient is zero at the wall. Previous
investigators of the mixing length theory have also observed the importance of
u∗, see Granville (1989) for references.
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From u∗ it is possible to define the length scale ν/u∗, and thus a normalized
normal coordinate, y∗ ≡ yu∗/ν which can be written,

y∗ =
√

(y+)2 + (yp)3. (9)

If a separated flow is considered, the definition of uτ has to be reconsidered.
In the separated region, ∂u

∂y is negative. Thus, the definition of uτ in equation
(1) involves a square root of a negative number. Instead, the definition will be
changed so that the square root will be taken of a positive number.

To proceed with the analysis of the equations, the definition of the friction
velocity will have to be changed to

uτ ≡
√

−ν
∂u

∂y

∣∣∣∣
y=0

. (10)

In the case of a separated flow, the change of sign of the wall shear stress
leads to a u∗ as,

u2
∗ = −u2

τ +
u3

p

uτ
y+ (11)

The velocity scale u2
∗ is in the case of separation negative for y+ < (uτ/up)3,

because the shear stress is negative at those values of y+. Hence, the length
scale ν/u∗ has to be used with a restriction to positive values of u2

∗. This leads
to a y∗ of the form,

y∗ =
√

max{0,−(y+)2 + (yp)3}. (12)

3. Evaluation of turbulence models

The aim with this part of the work is to investigate how predictions of turbu-
lent boundary layer flow is affected by the complication of a severe APG and
separation. In the near-wall part of the flow, turbulence models often utilize
damping functions. Their purpose is to damp various physical quantities in the
neighborhood of a wall. One important step towards better model predictions
in APG flows is the refinement of the damping functions.

The results regarding the near-wall flow reported in Skote & Henningson
(1999) and Skote & Henningson (2000) can be utilized in turbulence model
predictions directly as, so called, wall-function boundary conditions. Here we
are instead interested in resolving the turbulent boundary layer all the way to
the wall and thus the wall damping functions become important.

A short description of the DNS and the turbulent boundary layer flows is
given in section 3.1. The specific turbulence model used in the present work
(EARSM), is described in section 3.2. A priori tests done with DNS data from
both simulations are presented in section 3.3, together with the development
of damping functions. The relation between two length scales used in the near-
wall damping is analyzed in section 3.4. In section 3.5 some examples of the
performance of the EARSM model is shown, using the data from DNS.
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Figure 1. APG1: — U ; · · · Cf ×100. SEP: - - U ; −·− Cf ×
100. S and R denote the points of separation and reattachment
respectively for SEP.

APG1 SEP
x = 150 x = 300 x = 412 x = 450

U 0.73 0.51 0.46 0.45
uτ 0.0287 0.0165 0.0024 0.0166
up 0.0117 0.0086 0.0074 0.0071

Table 1. Some parameters of the turbulent boundary layers
at different downstream positions.

3.1. Description of the test cases

The data from the two turbulent boundary layers considered in the present
work were taken from a DNS performed by Skote & Henningson (2000).

The freestream velocity (U) for the two simulations, APG1 and SEP, are
shown in figure 1, together with the skin friction (Cf ). As seen from the figure,
a small change in the freestream velocity has a great impact on the skin friction.
In APG1, the boundary layer is subject to a strong APG, but is everywhere
attached. In SEP the boundary layer is separated for a large portion of the
computational domain.

The simulations start with a laminar boundary layer at the inflow (x = 0)
which is triggered to transition by a random volume force near the wall. The
flow is fully turbulent at x = 100.

The downstream coordinate x is scaled with the displacement thickness (δ∗)
at the starting position of the simulation (x = 0), where the flow is laminar
and Reδ∗ = 400.

Table 3.1 serves as a comparison of the two cases at the downstream posi-
tions investigated in the present work.
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3.2. The basic models

In two-dimensional mean flows, the fully self-consistent explicit algebraic Rey-
nolds stress model may be formulated based on any (quasi-)linear pressure-
strain model (see Wallin & Johansson (2000) and Girimaji (1997) for de-
tails). Neglecting the advection and diffusion of the Reynolds stress anisotropy
aij ≡ 〈u′

iu
′
j〉/K − 2δij/3 results in an implicit and non-linear relation

0 =
(

A3 + A4
P
ε

)
aij + A1Sij − (aikΩkj − Ωikakj)

+ A2

(
aikSkj + Sikakj − 2

3
aklSlkδij

)
. (13)

where Sij ≡ τ/2(Ui,j + Uj,i) and Ωij ≡ τ/2(Ui,j − Uj,i) are the symmetric and
antisymmetric parts of the velocity gradient tensor normalized by the turbulent
time scale τ ≡ K/ε.

In a two-dimensional mean flow the solution for the anisotropy becomes

a12 = β1S12 + 2β4S11Ω12

a11 = β1S11 + β2

(
S2

11 + S2
12 −

1
3
IIS

)
− 2β4S12Ω12

a22 = −β1S11 + β2

(
S2

11 + S2
12 −

1
3
IIS

)
+ 2β4S12Ω12

a33 = β2

(
−1

3
IIS

)
(14)

where the β coefficients are functions of the flow invariants IIS ≡ SijSji and
IIΩ ≡ ΩijΩji and the model coefficients A1−4 in equation (13). Two different
EARSMs will be considered; the ”W&J” model, Wallin & Johansson (2000),
based on a recalibrated LRR (Launder et al. 1975) pressure-strain rate model
and the ”Gir” model, Girimaji (1997), based on the linearized SSG (Speziale
et al. 1991) pressure-strain rate model. The corresponding A1−4 coefficients
are given in table 3.2. The ”W&J” model results in that the β2 coefficient is
zero and as a consequence a33 = 0.

In two-dimensional mean flows the β coefficients are given by

β1 = −A1N

Q
, β2 = 2

A1A2

Q
, β4 = −A1

Q
, (15)

where the denominator is

Q = N2 − 2IIΩ − 2
3
A2

2IIS . (16)
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A1 A2 A3 A4

W&J (Recalibrated LRR) 1.20 0 1.80 2.25
Gir (Linearized SSG) 1.22 0.47 0.88 2.37

Table 2. The values of the A-coefficients for different quasi-
linear pressure-strain models.

N is given by

N =

{ A3

3
+

(
P1 +

√
P2

)1/3

+ sign
(
P1 −

√
P2

)
| P1 −

√
P2 |1/3, P2 ≥ 0

A3

3
+ 2

(
P 2

1 − P2

)1/6
cos

(
1
3

arccos

(
P1√

P 2
1 − P2

))
, P2 < 0

(17)
where

P1 =
(

A3
2

27
+

(
A1A4

6
− 2

9
A2

2

)
IIS − 2

3
IIΩ

)
A3

P2 = P 2
1 −

(
A3

2

9
+

(
A1A4

3
+

2
9
A2

2

)
IIS +

2
3
IIΩ

)3

. (18)

3.3. Near-wall treatments

In the model proposed by Wallin & Johansson (2000) the correct near-wall be-
haviour for zero pressure-gradient boundary layers was obtained by modifying
the β coefficients using a damping function of the van Driest type. The original
form was based on y+, but an alternative suggestion of the damping function
was based on yT = yT (Rey) in order of avoiding the singularity in separated
flows. The function yT was constructed to be similar to y+ for y+ < 100 in
zero pressure-gradient boundary layers. In this section the different near-wall
scalings will be assessed by comparing model predictions using y+, yT as well
as y∗.

In a two-dimensional mean flow the near-wall corrections for the ”W&J”
model reads

β1 = f1β
∗
1

β2 = f2
1 β∗

2 + (1 − f2
1 )

3B2 − 4
max (IIS , IIeq

S )

β4 = f2
1 β∗

4 − (1 − f2
1 )

B2

2max (IIS , IIeq
S )

(19)

where β∗
1 , β∗

2 and β∗
4 are the ”high-Re” uncorrected coefficients given by (15)

and the damping function

f1 = 1 − exp(−y+/A+) (20)
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Figure 2. APG1 at x = 150: (a) ◦ DNS; — non-
damped ”W&J”; · · · non-damped ”W&J” with β4 = 0;
- - non-damped ”Gir”; -·- non-damped ”Gir” with β4 = 0.
(b) ◦ DNS. Damped ”W&J” with the scaled coordinate in f1

as — y+; - - y∗; · · · yT . -·- damped ”W&J” with y+ and A+ =
11.

and the model coefficients

IIeq
S = 5.74 B2 = 1.8 (21)

For the damped expressions the turbulent time scale used for normalizing
the velocity gradient tensors must be limited by the viscous scale, such as

τ ≡ max
(

K

ε
,Cτ

√
ν

ε

)
(22)

where Cτ = 6.0 is used.
For the Girimaji (1997) model based on the linearized SSG model no near-

wall corrections are present and, thus, only the non-damped ”Gir” model will
be tested.

3.3.1. APG1

In this section different modelling assumptions are tested by using DNS data
from the attached APG boundary layer (APG1). The anisotropies are calcu-
lated from equation (14) with Sij and Ωij computed from DNS data. The
resulting anisotropies are then compared with those taken directly from the
DNS.

The shear anisotropy a12 is plotted for one streamwise position (x = 150) in
figure 2. The behaviour is approximately the same at all streamwise positions
for APG1. The anisotropy taken directly from DNS data is shown with circles.
The non-damped models ”W&J” and ”Gir” are shown in figure 2a. Both
models overpredict the asymptotic value at large y+, which is around -0.3 in
the DNS data. The failure to correctly predict the asymptotic value is due
to that the basic, undamped, models do not correctly respond to the pressure
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gradient. The error enters mainly through the non-linear term in equation (14a)
and the best result is actually obtained with β4 = 0 for the ”W&J” model, as
shown in figure 2a with the dotted line. Setting β4 = 0 should, however,
not be considered as an alternative for improving the model behaviour since
the β4 term results from a formal approximation of the basic Reynolds stress
transport model. Moreover, the β4 term gives important contributions for the
normal anisotropy components.

Near the wall, damping with f1 becomes important. The a12 profiles from
the damped ”W&J” model are shown in figure 2b. The standard van Driest
damping, equation (20), with the standard value of A+ = 26, does not give
the correct near-wall damping (the solid line in figure 2b). Thus, the standard
van Driest damping, which gives a good agreement for a ZPG boundary layer,
must be improved in order to give reasonable results for an APG flow. The
most straight forward correction is to change the value of A+ in equation (20).

The damped profiles give very different results depending on the value of
A+. The value of A+ = 11 was observed to give the best agreement with the
DNS data, (the dash-dotted profile in figure 2b), and by setting β4 = 0 almost
perfect agreement with DNS was obtained.

There are many relations between A+ and the ratio up/uτ proposed in the
literature. Kays (1971) proposed the relation,

A+ =
26

1 + 30.18
(

up

uτ

)3 , (23)

which gives a value of A+ = 8.6 for APG1. This value is far from the standard
value of 26, but does not agree with the best fitted value of 11 for APG1. In
the experimental work of Nagano et al. (1992) however, the formula (23) gave
good predictions. Cebeci (1970) proposed the relation,

A+ =
26√

1 + 11.8
(

up

uτ

)3
, (24)

which gives a value of A+ = 19.4 for APG1. This value is closer to 26, but far
from the value of 11. Granville (1989) proposed a relation which is similar to
equation (24), with a factor of 12.6 instead of 11.8, which gives very similar
values of A+ as the relation (24).

A list of other relations is included in the work of Granville (1989). How-
ever, the above relations were derived from a mixing length hypothesis, which
states that the Reynolds shear stress is linked to the velocity gradient through,

−〈u′v′〉+ = (l+)2
(

du+

dy+

)2

, (25)

with
l+ = κy+f1 or l+ = κy∗f1, (26)
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and f1 as in equation (20). The coordinate y∗ is given in equation (9). The
second form of l+ above (26b) was, among others, used by Granville (1989).
However, he let a factor α reduce the influence of the pressure gradient,

y∗ =

√
(y+)2 + α

(
up

uτ

)3

(y+)3 (27)

There is some discrepancy regarding the value of α in the literature. Perry et al.
(1966) proposed a varying α from 0.65 to 0.9, while Granville (1989) specified
0.9 and McDonald (1969) 0.7. When Sk̊are & Krogstad (1994) investigated the
formula (26b), they had to change the value of κ from 0.41 to 0.78 to fit with
experimental data through the logarithmic layer. In the present investigation,
the influence of α and κ will not be considered important, since the goal is not
to create a mixing length theory, but to use the best damping function for the
EARSM model.

In the EARSM model, the relation between the Reynolds shear stress and
the velocity gradient is more complicated than equation (25), and an analysis
is not as straightforward. The damping with f1 as in equation (20), which
was developed from the mixing-length theory, has proved to work well for the
EARSM model for channel flow and ZPG boundary layer flow. For the APG
boundary layer flow however, the damping of both the mixing-length theory,
equation (25), and the EARSM has to be developed. To further investigate this
idea for the EARSM model, where no mixing length exists, the viscous scaling
of the normal coordinate in f1 is substituted with the y∗, defined in section 2.

Arguing that uτ no longer is the relevant velocity scale, the scaled normal
coordinate y+ in equation (20) may be changed to y∗. A different length scale
was proposed by Wallin & Johansson (2000), and their scaled normal coordinate
yT , is defined as,

yT = Cy1

√
Rey + Cy2Re2

y, (28)

where Rey =
√

Ky/ν, Cy1 = 2.4 and Cy2 = 0.003.
Thus, the damping function f1 can be expressed as,

f1 = 1 − exp(−y∗/A+), (29)

or
f1 = 1 − exp(−yT /A+). (30)

The formulation of f1 as in equation (29) was actually used for the mixing
length damping by Cebeci & Smith (1968).

A third possibility would be to use yp. However, to change from y+ to yp

cannot give any improvement since they are linearly dependent of each other.
Thus, the same f1 profile can be obtained by using y+ or yp if the constant A+

is adjusted.
In figure 2b, the ”W&J” model damped with f1 based on the scaled normal

coordinates y∗ and yT are shown. They work almost equally well and the
original value of A+ = 26 was kept.
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Figure 3. APG1 at x = 150: (a) ◦ DNS; — non-
damped ”W&J”; · · · non-damped ”W&J” with β4 = 0;
- - non-damped ”Gir”; -·- non-damped ”Gir” with β4 = 0.
(b) ◦ DNS. Damped ”W&J” with the scaled coordinate in f1

as — y+; - - y∗; · · · yT . -·- damped ”W&J” with y+ and A+ =
11.
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Figure 4. APG1 at x = 150. (a) a11. (b) a33. ◦ DNS;
— non-damped ”W&J”; - - non-damped ”Gir”; · · · damped
”W&J” with the scaled coordinate in f1 as yT ; -·- same as the
previous profile but with B2=1.52.

Since the dependency of A+ on the pressure gradient and Reynolds number
(up/uτ ) seems difficult to describe correctly, the rescaled functions (29) and (30)
are good alternatives for achieving proper damping in APG flows.

The good results obtained with β4 = 0 for a12 is not consistent with the
results for a22, shown in figure 3. Here, the β4 coefficient is important to get
agreement with DNS data for large values of y+. Both the ”W&J” and ”Gir”
models predict the asymptotic value of a22 well. The profiles from the damped
”W&J” model are shown in figure 3b. The alternative length scales y∗ and yT

with A+ = 26 are also here very similar and give clear improvements compared
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Figure 5. APG1 at x = 150: (a) f1 using — y+ and A+ = 11;
- - y∗ and A+ = 26; · · · yT and A+ = 26; -·- y+ and A+ = 26.
(b) — y+; - - y∗; · · · yT ; -·- yp.

to the y+ scaling. The best fit is obtained by using y+ with A+ = 11 also in
this case.

The anisotropies a11 and a33 are shown in figure 4a and b. For a11 the
”W&J” model gives better agreement with DNS data at large y+ than the
”Gir” model. The damped ”W&J” model gives profiles with the same trend
as for a12 and a22, i.e. the alternative length scales y∗ and yT with A+ = 26
work equally well as y+ with A+ = 11. Only the yT damped profile is shown
(dotted line) in figure 4a . For a33 (figure 4b), the non-damped ”W&J” model
predicts a value of zero. However, the ”Gir” model does not give a better
prediction even though it is non-zero. The damped ”W&J” model results in a
profile (dotted line) that gives a poor agreement with DNS data close to the
wall. The wall values of a11 and a33 are controlled by the B2 coefficient, and by
modifying that to 1.52 almost perfect agreement is obtained (see figure 4). The
original value B2 = 1.8 was calibrated from channel flow and the different value
obtained for this case indicates that there are a pressure-gradient dependency
in B2.

The damping functions are shown in figure 5a. The function based on y+

with the optimal value of A+ = 11, and the functions based on y∗ and yT

reach unity after approximately y+ = 40. Thus, the damping has no effect for
y+ over approximately 40. The change from the original shape (with y+ and
A+ = 26) is large. In figure 5b the scaled normal coordinates are shown as a
function of y+. From figure 5b it is noted that yp is proportional to y+, which
is obvious since both uτ and up are independent on y.

In conclusion, the change from y+ to y∗ or yT , is recommended in favour
of keeping the y+ scaling where the value of A+ has to be changed for different
APG layers. A specific value has to be obtained for each APG and also for
each downstream position if the range of Reynolds numbers is large. The value
of A+ = 11 is only valid for the APG1 case presented here. For a less severe
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Figure 6. SEP at x = 300: (a) ◦ DNS; — non-damped
”W&J” · · · non-damped ”W&J” with β4 = 0; - - non-
damped ”Gir”; -·- non-damped ”Gir” with β4 = 0. (b) ◦
DNS. Damped ”W&J” with the scaled coordinate in f1 as
— y+; - - y∗; · · · yT . -·- damped ”W&J” with y+ and A+ =
11.

APG, the value of A+ has to be increased, whereas the scaling with y∗ or yT

can be kept intact. In the extreme case of uτ = 0, the formulation with y∗ or
yT is still valid, whereas the y+ formulation encounters a singularity, no matter
what value of A+ being used. The extreme case of ZPG is the limit where the
value of A+ is 26 in y+ formulation and the formulation with y∗ is equivalent
with the y+ damping since y∗ = y+ for a ZPG boundary layer.

3.3.2. SEP

From the case with separation (SEP), three positions will be investigated. The
positions are taken from the separated region (x = 300), at the reattachment
point (x = 412), and in the recovery region (x = 450). The profiles are pre-
sented as functions of y+ at all positions. Observe that the friction velocity is
defined from (1) and (10), so it is everywhere positive.

At x = 300 the boundary layer is separated. At this position the non-linear
term in the model expression for a12 does not give the same strong contribution
to the distribution of a12 as in the APG1 case (see figure 6a).

The difference between the ”W&J” and ”Gir” models is supressed at this
position where the boundary layer is separated, as seen from figure 6a.

The near-wall behaviour is entirely different from an attached layer. The
non-damped profiles reach up to a positive value of 0.3 at the wall, due to that
S12 is negative in a separated case. S12 at x = 300 is shown in figure 9a as the
solid line. The two other profiles are the S12 for x = 412 and x = 450. Both
in the APG1 case and in the SEP case in the attached region (x = 450), the
non-damped profiles reach a value of −0.3 at the wall, because S12 is positive
at those positions.
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Figure 7. SEP at (a) x = 412. (b) x = 450. ◦ DNS; — non-
damped ”W&J”. Damped ”W&J” with the scaled coordinate
in f1 as - - y∗; · · · yT ; -·- y+.

The damped ”W&J” model at x = 300 is shown in figure 6b. Since the
pressure gradient is more severe in this case (SEP), we do not expect the same
value of A+ to give the good agreement as for APG1 (remember that A+

depends strongly on up/uτ ). Actually, the value of A+ = 26 (solid line) gives
better agreement than A+ = 11 (dash-dotted line) in this case, as seen in figure
6b.

When using yT in the expression for f1, no much difference from the case
of y+ together with A+ = 11 can be detected, see figure 6b. The y∗ damping
(dashed line in figure 6b) gives a better agreement near the wall. This is due to
that y∗ is zero close to the wall where the back-flow occurs, see equation (12).

At x = 412 the boundary layer is at its reattachment point. The DNS
data and profiles from the EARSM are shown in figure 7a. At this position
the non-damped profile from the ”W&J” model stretches up to zero instead of
approaching a constant value at the wall. This is due to that S12 goes to zero
at the wall (zero wall shear stress). S12 at x = 412 is shown in figure 9a as
the dashed line. Note that the boundary layer is much thinner in the viscous
scaling at x = 412 due to the low value of uτ at reattachment.

It is interesting to note in the DNS data that a12 is negative also in the
separation bubble where S12 is negative. That means that an effective eddy
viscosity is actually negative, which an algebraic model cannot reproduce. This
effect is probably due to transport of the anisotropy in the thin near-wall layer.

At x = 450 the boundary layer is attached, and the near-wall behaviour is
the same for as for APG1. The value of −0.3 is obtained with the non-damped
”W&J” model, shown with the solid line in figure 7b. There is not much
difference between the three different versions of the damping function, shown
in figure 7b. The value A+ = 26 was used for the damped model predictions
in figures 7a and b. However, the damping is insensitive to the the value of
A+ at both positions x = 450 and x = 412. The damping is insufficient for
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Figure 8. a12 = f1β1S12. SEP at (a) x = 412. (b) x = 450.
◦ DNS; — undamped ”W&J” (f1 = 1). Damped ”W&J” with
the scaled coordinate in f1 as - - y∗; · · · yT ; -·- y+.

all versions of f1, and the reason is that the non-linear terms have influence in
this region.

The general near-wall behaviour is the same for both positions x = 450 and
x = 412, except for the important fact that also the non-damped profile at the
wall is zero at x = 412, due to that the boundary layer is at its reattachment
point. Even though the non-damped profiles are ’naturally’ damped due to the
value of zero at the wall, the damping works just as bad as for the position
x = 450.

Thus, at both positions x = 450 and x = 412 (figures 7a and b), it is
observed that the damping does not work very well. However, since the equa-
tion (14) is dependent on both the linear and non-linear terms, the effect of
the damping is complicated. To isolate the effect of the damping of the linear
term, only the first part of the expression for a12 is shown in figure 8a and
b. The damping works very well on the linear part, especially for the position
where the boundary layer is attached, figure 8b. The damping based on y∗ or
yT gives as good agreement as y+.

The different versions of the function f1 (20, 29, 30) are shown at two
downstream positions in figure 9b. The formulation with y+ yields very differ-
ent shapes at the two positions, whereas y∗ and yT give profiles close to each
other. Note that f1 based on y∗ is zero up to y+ = 1 at x = 412.

The damping functions at x = 412 are shown in figure 10a. The function
based on y+ increases very slowly while the functions based on y∗ and yT

reach unity after approximately y+ = 8. In figure 10b, the scaled normal
coordinates are shown as a function of y+. The largest difference between
the three coordinates are found at this position where reattachment occurs
(x = 412).



174 M. Skote & S. Wallin

0 50 100 150
−6

−4

−2

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

x = 412S12

y+

f1

y+

Figure 9. SEP: (a) S12 at — x = 300; - - x = 412;
· · · x = 450. (b) f1 at x = 412 and x = 300, using — y+;
- - y∗; · · · yT .
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Figure 10. SEP at x = 412: (a) — y+; - - y∗; · · · yT . (b) f1

using — y+; - - y∗; · · · yT .

3.4. Similarities between the y∗ and yT scalings

Let us try to analyze why the y∗ and yT scalings behave similar. The yT

relation is written in terms of Rey according to (28). The dominating term, at
least for small Rey, is the

√
Rey term so essentially yT ∼ √

Rey. The
√

Rey

term is simply motivated by that Rey ∼ y2 since K ∼ y2 and the wanted
behaviour is yT ∼ y in the very near-wall region (the viscous sub-layer).

In the log region of the boundary layer there is another relation between
Rey and the y∗ scaling that may be derived from the following. Let us first
rewrite Rey by using that 〈u′v′〉 = Ka12 as

Rey ≡ y
√

K

ν
= y+

√
K+ =

1√−a12
y+

√
−〈u′v′〉+ (31)
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Figure 11. Computed skin friction coefficient Cf of the flat
plate APG1 boundary layer compared to DNS data: — W&J
EARSM with yT damping; – – W&J EARSM with y+ damp-
ing; - - - Girimaji EARSM with yT damping; – - – Chien K−ε;
– - - – Hanjalić RST.

Away from the viscous sub-layer, the viscosity may be neglected and then
−〈u′v′〉+ ≈ 1 + (up/uτ )3y+ (see equation 5). By using the relation (9) the
Reynolds number may be related to y∗ as

Rey ≈ 1√−a12

√
(y+)2 +

(
up

uτ

)3

(y+)3 =
y∗

√−a12
(32)

Since a12 is rather constant (and independent of the pressure gradient) away
from the wall there is a linear relation Rey ∼ y∗ in the log layer and Ret and
y∗ could be expected to respond similarly to pressure gradients.

However, the leading order term in the yT scaling is proportional to
√

Rey

and, thus, yT ∼ √
y∗. The

√
Rey dependency is adopted considering the

viscous sub-layer where the assumption of neglected viscosity in (32) is basically
wrong. This analysis, thus, only gives a qualitative explanation of the relation
between y∗ and yT but gives an idea of why the two scalings behave similarly.

3.5. Performance of the EARSM model

The APG1 boundary layer was computed with a boundary layer solver using
different turbulence models. The DNS data at x = 150 were used as inflow
condition to the boundary layer computations.

The turbulence models tested are the Wallin & Johansson (2000) EARSM
with the wall-damping function based both on y+ and yT , the corresponding
EARSM based on the linearized SSG model (Girimaji 1997) with the Wallin &
Johansson wall-damping function based on yT , the Chien (1982) eddy-viscosity
K − ε model, and the Hanjalić et al. (1995) RST model. All three EARSMs
are solved together with the Wilcox (1994) low-Reynolds number K−ω model.
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Figure 12. Computed mean velocity profiles at x = 350 for
APG1 compared to DNS data. ◦ DNS data; — W&J EARSM
with yT damping; – – W&J EARSM with y+ damping; - - -
Girimaji EARSM with yT damping; – - – Chien K − ε; – - - –
Hanjalić RST.

Figure 11 shows the computed skin friction coefficient compared with DNS
data. After an initial transient the computed skin friction levels out to some
asymptotic behaviour. The transient is caused by inconsistency between the
inflow data and the turbulence model. In the computations the coefficient
β ≡ δ∗

τw

dP
dx was kept constant which leads to a reduced effect of the transient.

Even though, the extent of the transient is rather large since the Reynolds
number is relatively low. Computations with a given pressure gradient resulted
in a separated flow for the y+ based models, which will not be reported here.

There are two models that significantly deviates from the other models.
These are the Chien K−ε and the Wallin & Johansson EARSM with the wall-
damping function based on y+. The wall-damping function in the Chien model
is also based on y+. The other models do not use wall-damping functions based
on y+ and it is a reasonable assumption that the y+ scaling is the major cause
of the deviations. That is clearly seen if one compares the two computations
using the Wallin & Johansson EARSM where the only difference between these
two is the wall length scaling (y+ or yT ).

Figure 12 shows the computed velocity profile compared with DNS data.
Also here it is observed that the models with y+ based near-wall damping com-
pares bad with the DNS data while the other models are reasonably accurate.
Also here one can notice the difference between the two computations using
the Wallin & Johansson EARSM.

4. Conclusion

The viscous sub-layer in the near-wall boundary layer is largely governed by
transport and non-equilibrium phenomena, which, in principle, only can be
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captured by full Reynolds stress models. Eddy-viscosity models as well as alge-
braic Reynolds stress models must, thus, be modified by more or less empirical
near-wall damping functions in order to have the correct near-wall asymptotic
behaviour.

Near-wall damping functions based on y+ become singular in separation or
reattachment points and it was shown that the y+ scaling also behaves badly
in attached boundary layers with adverse pressure gradients. An alternative to
y+ was suggested by Wallin & Johansson (2000) and is basically yT ∼ √

Rey

where Rey≡yuτ/ν. It was found by use of the DNS data (APG1 and SEP)
that the yT scaling is reasonably similar to the pressure-gradient corrected
analytical scaling y∗ even close to separation.

In a general three-dimensional CFD method the formulation in terms of yT

is more attractive since that can be derived in every grid point by using local
field variables and the wall distance. The use of Y ∗ involves the skin friction
of the nearest wall and also the local pressure gradient. Moreover, in general
three-dimensional cases the skin friction, pressure gradient, and external flow
are not in general aligned which introduces additional complications.

When damping the a12 component of the anisotropy with a van Driest type
of wall damping function it was found that the model predictions were much
improved by using yT or y∗ compared to y+ but there was still a significant
deviation from the DNS data for the APG1 case. It is obvious that there are
other aspects of damping the a12 anisotropy in adverse pressure gradients than
the wall distance scaling which could not be resolved within this study.

Comparisons between the Wallin & Johansson EARSM based on a LRR-
type of pressure-strain model and the Girimaji EARSM which is based on the
linearized SSG show no major differences. The only significant difference is
that the a33 anisotropy component is non-zero for the Girimaji model whereas
it is zero for the Wallin & Johansson model away from the viscous sub-layer.
However, the deviation from the DNS data is about the same for both models.
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