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Reynolds stress budgets for both Couette and boundary layer flows are eval-
uated and presented. Data are taken from direct numerical simulations of
rotating and non-rotating plane turbulent Couette flow and turbulent bound-
ary layer with and without adverse pressure gradient. Comparison of the total
shear stress for the two flows suggests that the Couette case may be regarded
as the high Reynolds number limit for the boundary layer flow close to the wall.
The direction of rotation is chosen so that it has a stabilizing effect, whereas
the adverse pressure gradient is destabilizing. The pressure strain-rate tensor
is in the Couette flow case presented for a split into slow, rapid and Stokes
terms.

1. Introduction

The development of cheap, powerful, computers has lead to wide use of CFD
codes for the prediction of turbulent flows. These codes almost always use
turbulence models to try to capture the characteristics of the turbulent flow,
and the prediction is no better than the weakest link in computational chain.
Often the weakest link is the turbulence model. But to develop better turbu-
lence models one must have data to compare them against. In the early days
of turbulence modelling one had to rely on indirect methods to test the various
closure models. Experimental difficulties in measuring pressure and velocity
with sufficient resolution did not make direct comparisons possible.

With the development of high-speed supercomputers, and new algorithms,
Orszag (1969, 1970); Kreiss & Oliger (1972); Basdevant (1983), it became pos-
sible to simulate turbulent flows directly without resorting to large eddy simu-
lations or turbulence models. Now it became possible to evaluate any desirable
quantity and use them to test turbulence models. The channel flow simulation
by Kim et al. (1987) was the first fully resolved simulation of a pressure-driven
channel flow, and the database from the simulation has been used extensively
to evaluate various turbulence models, Mansour et al. (1988).

There are few experimental studies of Couette flow with reports of turbu-
lence statistics. In the study of Couette flow at a Reynolds number of 1300,
Bech et al. (1995), report both second and higher order statistics from both
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experiments and simulations. The agreement between the experiments and the
simulation is good for the statistics, but their simulations do not fully capture
the very large scale structures of the experiments. This is e.g. seen from the
two-point correlations which are lower in the simulation than in the experiment.
In Bech & Andersson (1994) they used three different sizes of computational
domain and observed large structures in one box, but not in the other two.
The reason behind this is unclear.

In Bech (1995) they present Reynolds stress budgets from the simulation
in Bech et al. (1995), and they look very similar to the ones presented here,
despite the higher Reynolds number in their simulation.

In the present paper the budget data for the Reynolds stresses in the Cou-
ette flow case are evaluated from the flow fields of the plane Couette flow
simulation by Komminaho et al. (1996).

Data are also presented from three different turbulent boundary layers.
One is a zero pressure gradient (ZPG) boundary layer, and two are boundary
layers subject to an adverse pressure gradient (APG). Data from the ZPG
boundary layer have not previously been presented. The simulation with a
moderate APG (APG1) has been analyzed in Skote et al. (1998), while the
strong APG case (APG2) has been presented in Skote & Henningson (2000).

The ZPG turbulent boundary layer flow has been studied in a large number
of investigations, see e.g. the assessment of data by Fernholz & Finley (1996).
Turbulent statistics close to the wall were obtained through DNS by Spalart
(1988), and were confirmed later in the experiment of a low Reynolds number
ZPG turbulent boundary layer by Ching et al. (1995). Various Reynolds stress
budgets from DNS of both ZPG and APG boundary layers were presented by
Na & Moin (1996). Near-wall limit values of an APG boundary layer were also
investigated in the DNS of Spalart & Watmuff (1993) and in the experiment
of Nagano et al. (1992).

The results from the simulations of Komminaho et al. (1996), Skote et al.
(1998) and Skote & Henningson (2000) are documented here for future use
in turbulence model development, in particular for near-wall modelling. The
present plane Couette flow data are well suited for this purpose since the con-
dition of a constant total shear is, unlike the situation in the boundary layer,
fulfilled for all Reynolds numbers. The boundary layer data can be used for
the development of low Reynolds number turbulence models.

2. Data analysis

One can write the Navier—Stokes and continuity equations in a rotating refer-
ence frame as,
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The effect of the system rotation can be seen as a volume force in the fluid,
also known as the Coriolis force and the centrifugal force. The Coriolis force
is the last term in the momentum equation, and the centrifugal force has been
included in the pressure.

Divide the flow into a mean and a fluctuating part, v’ = U + u, where the
mean part is defined as an ensemble average over N different times, and also
an average over the homogeneous directions (z and z in the Couette flow and
z in the boundary layer)

= NL,L.

J— 1 N Ly L,
u =U(y,t) Z/ / u'(z,y, z,t)dzdz. (2)
i=170 0

The Reynolds equation for the mean flow is now obtained as
ou; 0 10P 02U; 0
= (U.U:) = il e~ R+ e U 3
ot T 7, VU Y ow0m, oz, 00 Tenlihe ()
where R;; = w;u; is the velocity correlation tensor, and will here be referred

to as the 'Reynolds stress tensor’.

2.1. Couette data

Plane Couette flow is the flow between two parallel planes, moving in opposite
directions with velocity £U,, in the z-direction, at a distance 2h. The wall-
normal direction is denoted y. The system rotation 2 applied in the present
work is around the z axis.

The various statistical quantities have been evaluated and averaged from
12 different velocity fields, and the average was taken in both x and z direction.
The time between the samples was T' = 40, and they are statistically indepen-
dent for all but the very largest scales, see Komminaho et al. (1996) where
the time scale for the integral length scale (A, defined as [ Ry, (Az)dz, Ry,
being the two-point velocity correlation) was found to be more than 50.

2.2. Boundary layer data

The statistics have been produced in the same manner as in the Couette case,
except for the important difference that the flow is not homogeneous in the
streamwise (z) direction. The boundary layer is growing and developing in the
x—direction due to the increasing Reynolds number. Thus, the statistics are
unique for each streamwise position. However, here we are only dealing with
the near-wall statistics, which in the viscous scaling should be invariant under
the Reynolds number. But in the low Reynolds number flows simulated with
DNS, there is a small influence of the increasing Reynolds number. This effect
is confined to the part very close to the wall (y* < 3). In the ZPG simulation
e.g., the boundary layer undergoes a doubling of the Reynolds number, but the
budgets fall on top of each other for different streamwise positions, except for
the small increase of the values at the wall. The statistics are therefore shown
for one streamwise position in all three cases.
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FIGURE 1. Total shear stress. Couette (---). Boundary layer:
(- -) Res, =539, (—) Res, = 920.

The simulations APG1 and APG2 were performed with a pressure distri-
bution leading to a self-similar boundary layer at high Reynolds numbers. The
pressure gradient parameter 3,

0, AP

Tw dz’

&

(4)

defines the APG in these two simulations.

The Reynolds number at the position where the budgets have been evalu-
ated is shown in table 1, together with the local value of the friction velocity,
freestream velocity and pressure gradient parameter.

| Case || Res, | Reg | Uy ‘ U ‘ I6) ‘
ZPG 920 | 606 |0.048 | 1.0 | 0.0
APG1 || 1064 | 655 | 0.036 | 0.76 | 0.65
APG2 || 2573 | 1309 | 0.020 | 0.60 | 5.0
TABLE 1. Reynolds number, friction velocity, freestream ve-
locity and pressure gradient at the streamwise position where
the Reynolds stress budgets have been evaluated.

Another effect of the Reynolds number is the increasing length of the region
with constant shear stress (77). This is illustrated in figure 1, which shows
the total shear stress at two Reynolds numbers for the ZPG case, as well as
for Couette flow. From figure 1 it is clear that the total shear stress for the
boundary layer becomes more constant when the Reynolds number is increased.
Since 7 is constant for the Couette flow, it might be argued that this flow
approximates a high Reynolds number boundary layer close to the wall.
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2.3. Reynolds stress budget

The transport equations for the Reynolds stress tensor are obtained by multi-
plying (la) (after subtracting the mean equation 3) with w;, adding the cor-
responding equation with switched indices ¢, j and ensemble averaging. The
resulting equations read

DR;; 0 0
D_tj = (& + UJ%) Rij = Pij — Eij +Hij + Gij +Dij +Tij + Cij (5)
J
where
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€ij = 205 | Uj o (6b)
0
D, = »
i al'k (Vsz,k>7 (6C)
1 ou; ou
II;; = - : 2, d
! p( Ox; 8x1> (6d)
G;i = 0 1_5 + 1_5 (6e)
ij = 57— | —U;Do; —U;POjk | ,
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T, =-2 o (6f)
ij = al'k Ui Uk,
Cij = =2, (Rijeir + Ri€jn) - (6g)

Here P;; is the production due to mean field gradients, whose trace (P;;) rep-
resents twice the production of turbulent energy, the transfer of energy from
the mean flow to the turbulent fluctuations.

€45 is the dissipation rate tensor, and D;; is the diffusion tensor. They
both represent viscous effects, but whereas D;; is a molecular diffusion term
acting to even out the turbulent stresses by spatial redistribution, ¢;; act as a
destruction term of turbulent energy (and stresses).

IL;; is the pressure-strain rate correlation tensor, which is traceless and
represents inter-component transfer between Reynolds stress terms. Gj; is the
divergence of the pressure-velocity correlation, and represents transport driven
by pressure fluctuations. This split in the above two terms is not unique, there
are several different ways in which one may separate the pressure-velocity term
when deriving the RST equations, but as the investigation in Groth (1991)
shows the above separation seems to make most physical sense.

T;; is the divergence of the triple correlation tensor, acting as a spatial
redistribution term.

Cy; is the traceless Coriolis tensor, which acts as a redistributive term
among the stress components.

The transport equation for the kinetic energy, K = %Pii is

DK
—— =P —c+4D
D P —e+D, (7)
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FIGURE 2. Terms in the Couette flow Rji-budget for (a) the
non-rotating case and (b) the rotating case, 2 = —0.005. The
different terms are: (---) P11, (--) —&11, (- - -) D11, (- - - -) 1,
(—) Tu1, (+) Cr.

where P = %77“- is the turbulent energy production, ¢ = %51-2- is the viscous dis-
sipation, and D = % (Tii + Gy + Dy;) is the sum of the molecular and turbulent
diffusion of K. This term acts as a spatial redistribution of K.

In a fully developed plane Couette flow, the flow is homogeneous in the z
and z directions, and the relevant non-zero stresses are Ry1, R12, Ros and Rs3.
Figures 2-9 show the terms in the budget of these stresses, as functions of the
wall-normal distance y* = yu, /v, where u, = /7y /p is the friction velocity.
Note that in the non-rotating case the Coriolis term, Cj;, is zero. All quantities
are shown in T-units, non-dimensionalized with u2/v. The simulation flow
fields represent a plane Couette flow at a Reynolds number Re, = u,h/v = 52
(Re; = 48 for the rotating case) based on friction velocity u, and channel
half-height h. This corresponds to a Reynolds number 750 based on wall-
velocity and h. Despite this very low Reynolds number it is twice that of the
transition Reynolds number of 360, Lundbladh & Johansson (1991); Tillmark &
Alfredsson (1992); Komminaho et al. (1997). For the rotating case the rotation
is as low as {0 = —0.005, corresponding to a Rossby number of 200.

The budgets for the Reynolds stresses in the ZPG case are essentially the
same as in Spalart (1988). The moderate APG case, APG1, show very similar
profiles in the Reynolds stress budgets as the APG simulation of Na & Moin
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F1cURE 3. Terms in the Rj;-budget for boundary layer flow
(a) ZPG. (b) APGl. (c¢) APG2. The different terms are:

(--+) Pu1, (--) —€11, (- - -) D1, (- - - =) IIuy, (—) Th1.

(1996). The effects of the APG will be stronger in the APG2 case, which has
a skin friction approximately 60 % of that in APG1. In this work, in contrast
to the budgets in Spalart (1988) and Na & Moin (1996), the pressure term
is divided into pressure-strain and pressure-velocity diffusion, for comparison
with the Couette data.

In figures 2 to 9 the budgets for the Reynolds stresses are shown. The
figures include both non-rotating and rotating Couette flow as well as all three
boundary layer cases and the profiles from the ZPG case can be compared with
the Couette case with zero rotation.
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FIGURE 4. Terms in the Couette flow Rao-budget for (a) the
non-rotating case and (b) the rotating case, Q = —0.005. The
different terms are: (- -) —eaa, (- - =) Dag, (- + - -) Ilag,
(-- ) Gaz, (—) T2, (+) Coa.

2.3.1. Longitudal Reynolds stress

One may note that the maximum of the production term P;; is 0.5. This
is easily obtained by integrating the stream-wise momentum equation once,
and multiplying with Kgy]—I. The advection term is zero in the Couette flow
case negligible in the near-wall region for boundary layers. By neglecting the
advection term and assuming wall similarity, we obtain the following relation
for the turbulence production:

=2

=-2—
Pu u2 dyt dyt

wdUt AUt [ dU* dp
= (1 +— +>, (8)

dyt  pud Az’

where the pressure gradient term is non-zero only in the adverse pressure gra-
dient (APG) cases. The last term within the parenthesis can be rewritten
as By* /6. From the above relation it follows that the maximum of Pj; is
0.5 occurring at a position where dU' /dy™ = 0.5 for Couette flow and ZPG
boundary layer. This holds irrespective of the value of the Reynolds number
and the system rotation and was shown to accurately describe also the low-
Reynolds number plane Couette flow simulation of Komminaho et al. (1997)
where the Reynolds number was as low as 375.
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FIGURE 5. Terms in the Rgs-budget for boundary layer flow
(a) ZPG. (b) APG1l. (¢) APG2. The different terms are:
(--) —€22, (- - =) Daa, (- - - -) Ilaa, (- - - ) Gaa, (—) Tha.

The overall character of the different terms in the Reynolds stress budget
for R;; is the same as for the channel flow in Mansour et al. (1988). Figure 2
shows that the production term P;; is the dominant positive term in the range
y* > 5, and has a maximum of 0.5 in the buffer region, at y*© = 11, falling
to 0.10 in the centre of the channel. The location of the peak production can
be found to be yT ~ 11 also in channel and pipe flow, Sahay & Sreenivasan
(1999). The non-zero production in the central region is a consequence of the
non-zero mean shear in this region.

I1;; is negative throughout the channel, thereby transferring energy from
R11 to R22 and R33.
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Despite the very low rotation rate for the Couette flow case the effects on
some terms in the budgets are significant, away from the wall. The production
P11 is about 60% larger in the centre of the channel for the rotating case.
The dissipation €117 and the pressure-strain-rate IIy; are both 30% larger for
the rotating case, whereas the redistributive term Ti; is about 20% smaller.
Near the walls the non-rotating and rotating cases are very similar, as can be
expected since the maximum production is 0.5 in both cases.

In figure 3a the budget for the longitudal Reynolds stress is shown for the
ZPG case. The maximum of the production term P;q is 0.5 as in the Couette
case. The other terms in the budget for R;; corresponds very closely to those in
the Couette case. The adverse pressure gradient increases the production Py
as seen in figures 3b and c¢. For APG1 it is 0.6 and APG2 0.9. The increase of
the maximum is not explained by the contribution from the streamwise velocity
gradient since that part of the production term is negligible close to the wall.

The increased value of P;; is thus explained from the contribution from
the pressure gradient in equation (8). For the case APG2 we have a §7 of 86 so
that the last term within the parenthesis in equation (8) Byt /4, is about 0.58
at y* = 10, i.e. near the maximum in production. It can, hence, be seen to be
of the order one influence. Since By*/5} = ﬁy*%/Reg* we can see that the
effect of the pressure gradient term decreases with increasing Reynolds number.

The position of the maximum is shifted towards the wall, most notably in
the APG2 case (figure 3c).

Also the rest of terms show more extreme values in the APG cases, even
though the shape of the profiles remain roughly the same. The enhanced values
in the near-wall region are partly due to the decrease in the friction velocity
(which all the terms in the budget are scaled with). The lower value of w., is a
consequence of the adverse pressure gradient. One might argue that w., is not
the correct scaling in an APG flow, since the total shear stress is not constant
in this scaling. Alternative scalings, including a velocity scale dependent on
the wall normal distance that produce a constant shear stress, are discussed in
Skote & Henningson (1999) and Skote & Henningson (2000).

2.3.2. Normal Reynolds stress

In figure 4 the budget for Ras in the Couette flow case is shown. Ils5 is negative
close to the wall, and positive towards the centre. Thus it transfers energy from
the wall-normal components to the horizontal components near the wall. This
reversal of the sign was attributed to the splatting effect in the LES study of
turbulent channel flow by Moin & Kim (1982) (see also Hunt & Graham 1978).
In the turbulence modelling context this effect is normally referred to as the
wall-reflection contribution to the pressure strain. The attempts to model this
(see Gibson & Launder 1978) typically assumes a variation on a length-scale of
the order of the macro-scale. The present results and those of Aronson et al.
(1997) and Perot & Moin (1995) however show that the effect is confined to a
thin region near the wall. In some recent model development (see e.g. Sjogren
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FIGURE 6. Terms in the Couette flow Rgz-budget for (a) the
non-rotating case and (b) the rotating case, Q = —0.005. The
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& Johansson 2000) this effect is only indirectly accounted for through realizable
models.

The same trend regarding the dissipation and the pressure-strain rate can
also be seen in figures 4 and 6 for Rso and Rs3 budgets.

In figure 5a the budget for Rso in the ZPG case is shown. All the terms
show slightly lower values than in the Couette case, while the shapes of the
profiles are similar. As the pressure gradient increases, all the terms become
larger, as seen from figures 5b and c¢. A peak in the pressure-strain term has
developed in the APG2 case at the position y* = 8, and exceeds the maximum
value of the pressure diffusion. The formation of a peak is not observed in the
ZPG and APGI cases, where a plateau is developed in the pressure-strain, and
the value is lower than the pressure-velocity gradient.

2.3.3. Spanwise Reynolds stress

In the ZPG budget for the spanwise Reynolds stress, shown in figure 7a, the
values of the different terms are, as in the Roo budget, lower than in the Couette
flow. The shapes of the profiles are similar to those in the Couette case. The
pressure gradient enhances the values, but nothing else seems to be affected
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FIGURE 7. Terms in the Rg3-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:

(--) —e33, (- - -) Dss, (- - - -) a3, (—) T33.

in the APG1 case. In APG2 however, the turbulent transport is of the same
magnitude as the pressure-strain.

2.3.4. Reynolds shear stress

The budget for the Reynolds shear stress in Couette flow is presented in figure
8. The pressure strain (II;2) and pressure diffusion (G12) balance each other
at the wall. This is also the case in Mansour et al. (1988). The value of IIj5
at the wall in Couette flow is more than twice the value found in the channel
flow simulation Mansour et al., and also for ZPG flow it is higher.

The budget for the Reynolds shear stress in boundary layer flow is presented
in figure 9. The profiles are approximately the same as in the Couette case,
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FIGURE 8. Terms in the Couette flow Rjp-budget for (a) the
non-rotating case and (b) the rotating case, Q = —0.005. The
different terms are: (---) P12, (--) —€12, (- --) Dig, (- - - -) II12,
(-- ) Gz, (—) T2, (+) Cha.

except for the pressure-strain and pressure diffusion at the wall which shows
larger values in the Couette case. The outer (y* > 5) values are however the
same in the two flows.

The outer peak (at y™ = 6) of the pressure-strain equals the value at the
wall in ZPG and APG2 cases. In the weaker APG boundary layer, APGI, the
outer peak has a lower value than at the wall.

2.4. Near-wall behavior

There is a balance between dissipation and viscous diffusion on the wall. From
the data in figures 2-6 we may also compute the dissipation rate anisotropies,
eij = €ij/€ — 26;;. The limiting values of these (along with the stress anisotro-
pies a;; = R;; /K — %5”-) are given in table 2 and compared with the predictions
obtained by the algebraic dissipation rate anisotropy models of Hallback et al.
(1990) and Sjogren & Johansson (2000). The agreement is quite satisfactory
for both models in the Couette case, while the Hallback et al. model is in
better agreement with DNS data for the ZPG boundary layer. In the Hallbéck
et al. model e;; is given by

1 2 1 3
eij = [1 + oz(EHa - g)} a;; — afa;pag; — §Ha5¢j), a=7 9)
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FIGURE 9. Terms in the Ris-budget for boundary layer flow
(a) ZPG. (b) APG1. (c) APG2. The different terms are:
() Pia, (--) =€z, (- =) Dz, (- - -) g, (- - - ) Gz,
(—) Tha.

whereas in the Sjogren & Johansson model we have
1 9
€ij = (1 - §F)aij, F=1- g(IIa - IIIa) (10)
In the above expressions we have introduced the two nonzero invariants of the

anisotropy tensor,
IIa = aijaji’ (11)
IIICL = Q35 A5k Qks- (12)

The latter model gives e;; = a;; as limiting value in the two-component limit,
such as on a solid wall. This describes the situation very accurately in both
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component 1,1 22 33
Qi 0.72 _§ —0.05
€ij 0.73 _§ —0.06
(€ij)Hanbick | 0.67 -2 0.00
(eij)sisaren | 072 =2 —0.05

TABLE 2. Couette data: Limiting values for the stress
anisotropies a;; and dissipation rate anisotropies e;;, and com-
parison with models.

component 1,1 22 33
aij 0.76 -2 —0.09
€ij 0.76 -2 —0.09

(€ij)Hallbick | 0.50 -2 0.17

(eij)sjé')gren 0.76 _§ —0.09

TABLE 3. Boundary layer data: Limiting values for the stress
anisotropies a;; and dissipation rate anisotropies e;;, and com-
parison with models.

Case Res, || ubno/y™ | v/t | whoo/yt | —(wo)™/yt® | et |
ZPG 539 0.385 0.0112 0.232 0.00099 0.203
ZPG 920 0.398 0.0119 0.252 0.00102 0.223
Couette 0.414 0.0135 0.268 0.00121 0.246

TABLE 4. Limit values for y© — 0

cases. One may note that for this extremely low Reynolds number the dissipa-
tion rate is highly anisotropic also at the centreline in the Couette case.

Some important limiting values at the wall are given in table 4 and 5. The
dependence of the Reynolds number in the boundary layer is strong as seen in
table 4. All the values increase for higher Reynolds number, but they do not
reach the values of the Couette flow. Hence, one might argue that the Couette
data constitute a high Reynolds number limit for the boundary layer.

The effect of the APG on the boundary layer is quite severe as seen from
table 5. All limit values are increased when the boundary layer is subject to an
APG. The rotation in the Couette case has the opposite effect; all limit values
decreases.
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Case oyt | vty [ widy® [ =)yt | et |
APG1 6 =10.65 0.476 0.0177 0.344 0.00181 0.346
APG2 3=5.0 0.728 0.0470 0.764 0.00598 1.35
Couette 2 = —0.005 0.387 0.0124 0.243 0.00093 0.238

TABLE 5. Limit values for y©™ — 0

0 | | | | | | | | |
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 14 16 18

11,

FIGURE 10. The anisotropy invariant map. a) AIM paths for
the non-rotating (+) and rotating (-) case. b) AIM paths for
ZPG (+) ; APG1 (-); APG2 (0J).

2.5. Anisotropy tensor

The Reynolds stress anisotropy tensor a;; has, as already mentioned above,
two nonzero invariants, II, and III,. All anisotropic states can be represented
in the anisotropy invariant map (Lumley & Newman 1977) which are bounded
by the lines 8/9 + ITI, = II, and 61112 = IT>. They represent two-component
and axisymmetric turbulence, respectively.
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In figure 10a the AIM paths for both the non-rotating and rotating Couette
cases are shown. Their main characteristics are the same as for the channel
flow simulations of Moser et al. (1999). Close to the wall the turbulence is
very near the two-component limit, approaching the one-component limit near
the edge of the viscous sublayer. At y™ ~ 8 the AIM path turns towards the
isotropic state. For the present cases the Re; is so low that there is nearly no
real log-layer in the profiles with corresponding agglomeration of points in the
AIM, as observed in the higher-Re channel flow simulations.

The AIM paths for the boundary layer flows are shown in figure 10b. The
ZPG case is very similar to the Couette flow. There is some agglomeration of
points at the end of the path which is y* & 150 (for ZPG). The path for APG1
starts at a lower value of III, and represents a lower degree of anisotropy
than in the ZPG case. The end of the APGl-path is at y* =~ 100. The
differences between ZPG and APG1 are not so large in comparison with the
APG2 case, where the path starts in the lower left corner and represents much
lower degrees of anisotropy than in the other cases. This is explained by the less
structured turbulence in a strong APG boundary layer. The path for APG3
was terminated at y* a 50, and is similar to the anisotropy states from a
backward-facing step, see Le & Moin (1992).

2.6. Pressure-strain rate split

The results from a split of the pressure-strain rate is here presented for the
Couette flow. The result from taking the divergence of the Navier—Stokes
equation is a Poisson equation for the pressure,

?p 9 09 ou,

— — (ulu) — 2¢;:.05—£
Oa:ié)xi N 6331 8.%‘]‘ (uluj) QGZJkQ] 8xi (13)
with the wall boundary condition,
op 1 0% s

By splitting the source term in the Poisson equation into one part con-
taining the mean velocity gradient and one part containing only gradients of
the fluctuating part, we may derive equations for the rapid, slow and Stokes
pressure, respectively.

oU,; Ouy, 0
2.0 _ _o (Y s k b _ 1
v'p <3xk ik J) ow oy " (15)
i Ou; Ou; Op
2 (s) _ _ OUi OU; 9@ _ 1
v Oz Ox;’ 0y 0 (16)
Op 1 9%
2,(St) _ £ - - 2UQs. 1
Vop 0 dy  Re dy? v {an

The Stokes pressure is solely due to the inhomogeneous boundary condition,
and may be added to either the rapid or the slow pressure. Note that the last
term in the boundary condition for the Stokes pressure is non-zero only for
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FIGURE 11. The IIy;-split for (a) the non-rotating case and
(b) the rotating case, 2 = —0.005. The different terms are:
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FIGURE 12. The Ils-split for (a) the non-rotating case and
(b) the rotating case, = —0.005. The different terms are:
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a moving wall, e.g. Couette flow. Restricting ourself to the present case of a
channel with two homogeneous directions the rapid part simplifies further,

au o
v2pr) = _gd_ya_z —20%ws. (18)

The split into rapid, slow and Stokes pressure strain-rate can be seen in
figure 11-14 for I1y;—I1;5. The slow part of IIy; is larger than the rapid except
near the wall, y= < 10, where the mean velocity gradient is large. The rapid
part is more affected by the rotation than the slow part.

Also for the Ilso-term the slow part is larger than the rapid part, and
contribute most to the pressure strain-rate. Here the slow part is more affected
by the rotation.

For the II33-terms the rapid part contributes most, except for y* < 10,
and is also most affected by the rotation.

The Stokes part for Ilss, II33 and Il;5 is significant only in the region
y* < 10, and for Ily; it is negligible throughout the channel.
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FIGURE 13. The I33-split for (a) the non-rotating case and
(b) the rotating case, 2 = —0.005. The different terms are:
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FIGURE 14. The II;5-split for (a) the non-rotating case and
(b) the rotating case, = —0.005. The different terms are:
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The general character and amplitude of the various pressure strain rate
terms are almost identical even for Re = 375, despite the low Reynolds number.

3. Summary

We have used the Couette flow simulation data of Komminaho et al. (1996)
and the boundary layer data of Skote et al. (1998); Skote & Henningson (2000)
to compute terms in the transport equation for the Reynolds stresses. For the
Couette flow we have also presented data for a split of the pressure strain rate
term in rapid, slow and Stokes. Data was presented for both rotating (slow
stabilizing rotation) and non-rotating Couette flow. One can see a small effect
of the rotation on the limiting values at the wall in the Couette flow, but it is
small as could be expected, since it is a very slow rotation. In the centre of the
channel the budgets were strongly influenced by the rotation.

Boundary layer data were presented for one zero pressure gradient flow and
two adverse pressure gradient flows. Strong influence on the budgets from the
adverse pressure gradient were detected. The near-wall limits of turbulence
statistics were shown to increase with Reynolds number in the zero pressure
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gradient boundary layer, but they did not reach the values obtained from the
Couette flow.
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