
Instabilities in turbulent boundary layers

By Martin Skote∗, Joseph H. Haritonidis† and Dan S.
Henningson∗‡

An investigation of a model of turbulence generation in the wall region of
a turbulent boundary layer is made through direct numerical simulations. The
model is based on the instability of a streak.

First, a laminar boundary layer disturbed by a continuous blowing through
a slot is simulated in order to reproduce and further investigate the results
reported from the experiments of Acarlar & Smith (1987). An isolated streak
with an inflectional profile is generated that becomes unstable, resulting in a
train of horseshoe vortices. The frequency of the vortex generation is equal to
the experimental results. Comparison of the instability characteristics to those
predicted through an Orr-Sommerfeld analysis are in good agreement.

Second, a direct numerical simulation of a turbulent boundary layer is
performed to point out the similarities between the horseshoe vortices in a
turbulent and a laminar boundary layer. The characteristics of streaks and the
vortical structures surrounding them in a turbulent boundary layer compare
well with the model streak. The results of the present study suggest that
the primary mechanism for the generation of horseshoe vortices in turbulent
boundary layers is related to an inflectional instability of the streaks.

1. Introduction

1.1. Detection of coherent structures

The occurrence of coherent vortices in wall-bounded turbulent flows has been
observed in a large number of investigations by different means. The experimen-
tal observations have relied on dye injections or hydrogen bubbles introduced
in the flow. Lately, low Reynolds number flows have been investigated numer-
ically through direct numerical simulations (DNS). The flow field variables are
all available at the same time and thus more sophisticated detection methods
have been developed. Robinson (1991a) used the pressure successfully for re-
vealing horseshoe vortices in a data base from a DNS of a turbulent boundary
layer. Singer & Joslin (1994) also used the pressure in a numerical simulation
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for visualizing a horseshoe vortex generated by blowing through a slot. Chong
et al. (1998) used the discriminant of the deformation rate tensor for identify-
ing flow structures in turbulent boundary layers. They found structures that
to a great extent consist of attached vortex loops. Zhou et al. (1999) used
the imaginary part of the complex eigenvalue of the deformation rate tensor to
identify hairpin structures in channel flow. The structures originated from a
vortical structure imposed in the flow. By plotting the imaginary part a clear
picture of the structure was obtained and the shape was not sensitive to the
level chosen for visualization. Jeong & Hussain (1997) and Schoppa & Hussain
(1997) used an eigenvalue based on the Hessian of the pressure for identifica-
tion of vortices in a turbulent channel flow, and used conditional sampling to
extract the precise form of the coherent structure.

1.2. Streamwise versus horseshoe vortex structures

Jeong & Hussain (1997) did not detect any horseshoe vortices in the channel
flow simulation by Kim et al. (1987). Instead they extracted a coherent struc-
ture consisting of quasi-streamwise vortices by conditional sampling. Jimenez
& Moin (1991) and Hamilton et al. (1995) observed, by shrinking the computa-
tional box, that the self-sustained turbulence is linked to the quasi-streamwise
vortices, and does not depend on the outer part of the flow. This scenario is
consistent with the model of Waleffe (1997) which states that the vortex is fed
by energy from the break up of the streak. Jimenez & Pinelli (1999) used a
method of reducing the influence of the outer flow in a numerical simulation
to show that the regeneration cycle is independent on the outer flow. Thus,
according to these findings, there is little interaction between the inner and
outer flow. Consequently, it is possible to model the regeneration of turbulence
via a self-sustaining process involving low-speed streak and quasi-streamwise
vortex, independent on the outer flow.

On the other hand, horseshoe vortices observed in boundary layer flows
reach into the outer flow. The regeneration of horseshoe vortices has been
studied numerically by Singer & Joslin (1994) and Zhou et al. (1999) and in
experiments by Acarlar & Smith (1987). Recently, Adrian et al. (2000) have
visualized hairpin vortices in a turbulent boundary layer using particle image
velocimetry (PIV). They show that hairpin packets (groups of horseshoe vor-
tices) build up the turbulent boundary layer. The number of vortices that
constitute a packet is lower in a low Reynolds number flow than in high Rey-
nolds number flows.

The size of the horseshoe vortices seems to vary within the flow and also
vary with Reynolds number. A turbulence model for Reynolds average Navier-
Stokes (RANS) calculations of turbulent flows has been developed by Perry
et al. (1994) based on size and strength of the horseshoe structures.
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1.3. Streak instability and turbulence regeneration

The vortex structures present in turbulent boundary layers seem to be related to
streak instabilities. However, the type of instability that occurs in the streaks
is not agreed upon. Robinson (1991b) proposed that a normal inflectional
instability of the instantaneous velocity profile may produce horseshoe vortices.
Singer (1992) showed that a normal inflectional instability of the velocity profile
may be responsible for the generation of secondary horseshoe vortices. Kim
et al. (1971) were the first to show that a normal inflectional instability of the
instantaneous velocity profile is of importance in the turbulence regeneration
cycle. They observed the inflectional velocity profiles in connection with the
rapid lift up of the low-speed streaks in the later part of the process of the
streak break up.

On the other hand, in the model of Waleffe (1997) the basic state is two-
dimensional and consists of the turbulent mean flow with a simple construction
of the streak imposed. He found that the dominating instability is sinuous and
that it is correlated with the spanwise inflection of the basic state. Kawahara
et al. (1998) and Schoppa & Hussain (1997) also used such a model and showed
that the varicose mode is stable. Schoppa & Hussain argued that this is con-
sistent with the absence of horseshoe vortices in their examination of the DNS
data base generated by Kim et al. (1987).

Although the references cited above form only a small part of the work
that has been put into the detection and analysis of coherent structures, there
is surprising disagreement between the studies of what is the important mech-
anisms in turbulence regeneration. In the last section of this paper we propose
a reconciliation of this apparent disagreement, partly based on the results of
the present investigation.

1.4. Present study

In this work we will pursue the horseshoe vortex dynamics. In the experiments
by Acarlar & Smith (1987), hereafter denoted AS, an artificial low-speed streak
was generated in a laminar boundary layer by blowing fluid through a slot in
the wall. The streak became unstable and horseshoe vortices were formed and
were followed downstream. In the present study we reproduce the flow stud-
ied by AS through DNS. Moreover, the hypothesis indicated by AS regarding
the instability causing the vortices is here further investigated. One of the
objectives in the AS experiment was to give insight to the mechanisms and
structures in a turbulent boundary layer. In the present work, a stronger link
to turbulence is made through comparison with a simulation of a zero pressure
gradient turbulent boundary layer.

After a presentation of the numerical method and parameters in section 2,
we present the results in section 3. The emphasis is on the results from the
laminar simulation, which is compared with the experimental results from AS.
Further investigations of the instability mechanism are made. Also comparison
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with the turbulent simulation is done, from which strong similarities between
the two cases are presented.

2. Numerical methodology

2.1. Direct numerical simulations

The code used for the simulation is developed at KTH and FFA (Lundbladh
et al. 1999). The program uses spectral methods with Fourier discretization in
the horizontal directions and Chebyshev discretization in the normal direction.
Since the boundary layer is developing in the downstream direction, it is neces-
sary to use non-periodic boundary conditions in the streamwise direction. This
is possible while retaining the Fourier discretization if a fringe region is added
downstream of the physical domain. In the fringe region the flow is forced from
the outflow of the physical domain to the inflow. In this way the physical do-
main and the fringe region together satisfy periodic boundary conditions. The
fringe region is implemented by the addition of a volume force whose form is
designed to minimize the upstream influence. Time integration is performed
using a third order Runge-Kutta scheme for the advective and forcing terms
and Crank-Nicholson for the viscous terms.

All quantities are non-dimensionalized by the freestream velocity (U) and
the displacement thickness (δ∗) at the starting position of the simulation (x =
0) where the flow is laminar. At that position Reδ∗ = Uδ∗/ν = 450 for all
simulations, except for some simulations performed at Reδ∗ = 290 for the
comparison of frequency characteristics. The length (including the fringe),
height and width of the computation box were 260 × 7 × 14 in these units.
The number of modes was 432 × 65 × 72. The size and resolution were checked
to be sufficient for all cases.

The simulations were performed with an initial objective of reproducing
some of the results obtained in the experiments of AS. In their experiments
the slot was 63.5 mm in length and 1 mm in width. The simulations were
performed with a slot with the same length but twice the width, i.e. 2 mm.
This change in geometry results in an enormous decrease in computational cost.
The slot in simulation coordinates (δ∗) is approximately 30 long and 1 wide.
The flow through the slot is set by a velocity profile resembling a channel flow
parabola in the spanwise direction and is increasing from zero to the maximum
value during the first 10 % of the slot length at the upstream end, and is
likewise terminated at the downstream end. The blowing through the slot was
continued without interruption through all of the simulations. To avoid large
transients in the beginning of the simulation we ramped up the blowing from
zero to the maximum value during an initial time of 10 (δ∗/U). The time step
was considerably decreased when the blowing through the wall is applied. The
strength of the blowing was varied from 6.5 to 20 % of the freestream velocity.

A low-speed streak is formed immediately above the slot due to the lift-up
of low-speed fluid to the flow further out in the boundary layer. A disturbance
on this streak was detected and the frequency was observed during a long period
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of time, and was then locked by letting a small (1 % of the original blowing)
additional time-periodic blowing be superimposed on the blowing forming the
streak. The frequency of the initial disturbance on the streak was locked to be
able to calculate the growth rate of the disturbance through a Fourier transform
in time.

A simulation of a turbulent boundary layer was performed to investigate
how the streak instabilities observed in the isolated streak in the laminar bound-
ary layer could be applicable to a turbulent flow. The same code was used, but
the laminar boundary layer was disturbed at the beginning of the computa-
tional box by a random volume force near the wall. The length (including the
fringe), height and width of the computation box were 600 × 30 × 34. The
number of modes was 640 × 201 × 128. The simulations were performed at
Reδ∗ = 450 for the laminar inflow before the tripping, which gives a turbulent
ReΘ : 343− 636. The resolution in plus units was ∆X+ = 19, ∆Z+ = 5.5, and
ranging from ∆Y + = 0.04 close to the wall to ∆Y + = 5.6 at the coarsest part
of the grid.

2.2. The linear stability analysis

One of the main conclusions of this work will concern the instability mechanism
of a low-speed streak leading to horse shoe-shaped vortices. Linear stability
theory will be used to describe the early stages of this instability. The distur-
bance occurring due to the instability of the streak will be denoted secondary
disturbance, since the primary disturbance is the streak itself. The velocity pro-
files close to where the secondary disturbance start to appear, below denoted
U = U(y), were analyzed by solving the Orr-Sommerfeld (O-S) equation. The
results from the O-S equation are only relevant as long as the disturbance is
small enough and variations of the base flow (streak) in the horizontal direc-
tions and time is much smaller than the length scale of the instability waves.
The O-S equation is the linearized Navier-Stokes equations for the disturbance,

φ
′′′′ − 2α2φ′′ + α4φ = iαR[(U − c)(φ′′ − α2φ) − U ′′φ]. (1)

The two-dimensional disturbance is written as a stream function,

ψ = φ(y) exp[iα(x − ct)] = φ(y) exp[i(αx − ωt)] (2)

Because the secondary disturbance is characterized by its frequency and
its growth in space in the simulations, spatial analysis of the O-S equation will
be used. In the case of spatial analysis the eigenvalue problem (1) is solved
for a given R and ω, which is real. The solution is φ(y) (eigenfunction) and
α = αr + iαi (eigenvalue). The value of −αi is the growth rate, and αr is the
streamwise wavenumber.

The results from the analysis of the O-S equation are compared with the
actual behavior of the flow in the DNS. The eigenvalue −αi is compared with
the growth rate of the disturbance. Furthermore, the eigenvalue αr is compared
with the streamwise wavenumber of the disturbance. The analysis of the time
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Figure 1. The flow field downstream of the slot. The light
grey structures represent the low-speed streaks and the darker
ones represent regions with low pressure. Contour levels are
−0.08 for the streamwise velocity fluctuations and −0.01 for
the pressure.

signal from DNS is done through a Fourier transform in time of the velocity
fields. For a given frequency, we take the maximum over the spanwise and
normal directions. Thus, the results from DNS is contained in a function û(x).
The growth rate of the disturbance is,

σ = −Re

{
1
û

d

dx
û

}
, (3)

and the streamwise wavenumber of the disturbance is,

α̃ = Im

{
1
û

d

dx
û

}
. (4)
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Figure 2. The flow field far downstream of the slot. The light
grey structures represent the low-speed streaks and the darker
ones represent regions with low pressure. Contour levels are
−0.11 for the streamwise velocity fluctuations and −0.005 for
the pressure.

3. Results

3.1. Initial observations

3.1.1. Comparison with AS experiment

The development of the streak downstream of the slot is shown in figure 1.
Only the part immediately after the slot is shown. The light grey iso-surface
represents the low-speed streak, and the dark grey represents the low pressure.
The slot ends at x = 60 and the first low-pressure structure is observed at that
point. The subsequent pressure structures develop downstream and become
stronger. Additional streaks on either side are being induced by the pressure
structure at x = 70. This will be further discussed in section 3.2. Around
x = 94 the last structure in the train of vortices is observed, and the streak
has been lifted upward. The low-pressure structure vanishes, but the streak
and the additional, induced streaks persist downstream, as seen from figure 2,
where the region downstream of the breakup is also shown. The three streaks
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Figure 3. urms at a) x = 60 b) x = 160.

continues far downstream until more complicated low-pressure structures occur
at x = 145, marked with an arrow in figure 2. Here the flow has more of a
turbulent nature, which is also seen from the rms−values shown in figure 3.
The urms profile from a position at the end of the slot is shown in figure 3
(a). This profile has a shape which is a result of an inflectional instability,
which will be further discussed in section 3.4. The urms from a position far
downstream (x = 160) is shown in figure 3 (b). This profile resembles a profile
from a turbulent boundary layer. Thus, the more turbulent like flow at the
far downstream region is revealed both in the structures themselves and in the
statistical profiles. The streak spacing is actually 100 in viscous units in this
region, further indicating attributes of a turbulent boundary layer.

In AS no spreading of the structures were observed and they argue that
this is due to the sub-critical laminar boundary layer in their experiment. On
the other hand, Singer & Joslin (1994) performed DNS at a larger Reynolds
number, and a turbulent spot was developed from a horseshoe vortex. AS do
however observe a more turbulent like profile downstream and also three elon-
gated low-speed streaks, originating from secondary streamwise vortices. Our
simulation continue further downstream than the experiment by AS, and the
persistent low-speed streaks were observed downstream until the more compli-
cated vortices appeared at x = 145, see figure 2.

The low-pressure structures seen in figure 1 are vortex loops, consisting of
swirling flow. To illustrate that the low-pressure regions consist of rotational
flow, the imaginary part of the complex eigenvalue of the deformation rate
tensor can be used (Chong et al. 1990). Because the vorticity indicates both
shear and rotation, showing vorticity can be misleading when seeking parts of
the flow where rotating structures are of interest. The imaginary part of the
eigenvalue on the other hand, indicates where ’solid-body’ rotation, or swirling,
occurs.
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In figure 4 the low-pressure structures in figure 1 are shown without the
low-speed streak to get a clearer picture of the structures themselves. The
structures in figure 5 consist of iso-surfaces of the imaginary part of the eigen-
value. The strong correlation indicate that the structures in figure 4 are due
to rapid rotation of the flow in the regions of low pressure.

Observe that the Ω-shape of the last structure in figure 5 is reminiscent of
the structure observed by Zhou et al. (1999). Also, the kink of the legs about
one-third of the length from the upstream end are present in the last structure.
Note that the background flow in the present simulation is laminar whereas
it was turbulent in the study of Zhou et al. (1999). The kinked legs and the
curled back head of the last structure in figure 5 was also observed by AS at
the same downstream position.

A secondary vortex is observed above the primary horseshoe vortex in the
two structures before the last one in figure 5. The secondary vortex is also
visible in one of the corresponding pressure structures as marked in figure 1.
The secondary vortex is visible at approximately the same position as in AS.
Zhou et al. (1999) found not only secondary horseshoe vortices developing up-
stream of the primary vortex, but also downstream, which was not observed
in the present simulation. Singer & Joslin (1994) observed different kinds of
subsidiary vortices (such as necklace or U-shaped vortices) and the initial vor-
tex generated by the blowing finally develops into a turbulent spot. In the
experiments of AS, a secondary vortex appears to originate from the position
above the legs of primary vortex. It either grows to be an independent vortex,
or agglomerates with the upstream or downstream vortex. The same behavior
is observed in the present simulations.

Thus, the secondary vortices appearing upstream, above the legs, of the
primary one are in common with many of the experimental and numerical
investigations, while the generation of downstream secondary vortices depends
on the strength and duration of blowing.

3.1.2. Near-wall turbulence

The presence of streaky structures in a near-wall turbulent flow has been ob-
served in many experiments and simulations. These structures are low speed
regions, where the streamwise velocity is lower than the mean velocity, the
mean taken in the spanwise (z) direction for each x− and y−position. They
are narrow in the spanwise direction and elongated in the streamwise direction
with a spanwise spacing of about 100 in wall units. Streaks lying at different
positions in z break down at different positions in x. Also, a new streak seems
to be born where the old one breaks down. In a number of investigations,
events referred to as burst have been observed, and are generally considered to
be part of the streak break up.
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Figure 4. Iso-surface of low pressure just downstream of the
slot. Same part of the flow field as in figure 1.

Figure 5. Iso-surface of the imaginary part of the eigenvalue
of deformation rate tensor. The figure show the eigenvalue
calculated from the same velocity field as in figure 4. Contour
level at 0.32.
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Figure 6. Turbulent boundary layer. Only a part of the com-
putational box is shown. The light grey structures represent
the low-speed streaks and the darker ones represent regions
with low pressure. Contour levels are −0.07 for the stream-
wise velocity fluctuations and −0.003 for the pressure. The
arrows point to some typical horseshoe vortices.

An instantaneous flow field from the simulation of a turbulent boundary
layer is shown in figure 6. Only a part of the computational box at approxi-
mately ReΘ = 450 is shown. The spanwise width is about 300 in wall units
and the height is 200. The light grey regions represent the low-speed streaks.
Also shown in the figure, in the dark grey color, are regions of low pressure.
The presence of horseshoe or hairpin vortices is well illustrated by this picture.
The most clearly visible ones are marked with arrows in figure 6. It is observed
that the vortices are strongly connected to the streaks, since the vortices are
positioned with their head above a streak and their leg or legs on either side of
the streak. This feature is common to both the laminar and turbulent streaks,
c.f. figures 1 and 6.



216 M. Skote, J. H. Haritonidis & D. S. Henningson

0.0

7.0

−7.07.0

Y

Z

0.0

7.0

−7.07.0

Y

Z

(a) (b)

0.0

7.0

−7.07.0

Y

Z

0.0

7.0

−7.07.0

Y

Z

(c) (d)

0.0

7.0

−7.07.0

Y

Z

0.0

7.0

−7.07.0

Y

Z

(e) (f)

Figure 7. Vertical planes in the spanwise (z) and normal (y)
directions. Arrows represent the spanwise and normal veloc-
ity. Blue through green lines represent constant streamwise
velocity from 0 to 0.5. Red lines represent constant pressure.
a) x = 30 b) x = 38 c) x = 53 d) x = 59 e) x = 60 f) x = 62

3.2. Horseshoe vortex formation

The mechanisms behind the formation of vortices from the streak is here studied
in detail in the laminar flow with an artificial streak introduced. The proposed
mechanism is that the low-speed streak makes the streamwise velocity profile
highly inflectional. The instability is very strong (with a large growth rate).
The disturbance grows downstream and higher harmonics occur. The stability
analysis is presented in section 3.4.

The results in this section are taken from the simulation at a Reynolds
number Reδ∗ = Uδ∗/ν = 450 at x = 0, which corresponds to a Reynolds
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number Reδ∗ = 490 at the beginning of the slot. The normal velocity blowing
out of the slot was Vw = 0.0657, resulting in a slot Reynolds number of ReVw

=
28.3. The blowing was introduced between x = 30 and x = 59 in the streamwise
direction, and between z = −0.48 and z = 0.48 in the spanwise direction.

3.2.1. Vortex formation above the slot

One velocity field is studied, using plots in two dimensions of different planes.
In figures 7 (a)—(f) the planes are from different positions in x, showing what
happens with the flow above the slot. The lines in the horizontal direction,
from blue to green, are the iso-lines of streamwise velocity, while the arrows
represents the normal and spanwise velocity components. The first (7a) figure
shows the undisturbed laminar boundary layer at the point where the slot
starts. The next one (7b) shows a plane further downstream. Here the injection
is visible as the strong flow out from the wall. The lines representing constant
streamwise velocity are bent outward and thus forming a low-speed streak.
The low-speed streak is formed because of the injection velocity that lifts up
low-speed fluid from the near-wall region higher up in the laminar boundary
layer. In (7c) a swirling flow is observed at either side of the low-speed streak.
As the vortical motion becomes stronger it deforms the streak as seen in (7d),
where also the vortex is strong enough to be represented with low pressure
regions at the center of the vortex. Iso-lines of constant low pressure are shown
as red lines. These low pressure regions that evolve from the center of the
vortex at either side of the streak are the legs of the first low pressure structure
seen in figure 1. The plane in (7d) is located at the end of the slot, thus no
more injection velocity can be observed. In (7e) the low pressure region is
above the streak and the motion in the region is a flow upward. The plane
in (7e) is located a short distance downstream of the plane in (7d). Thus,
immediately after the legs have appeared an upward motion is seen in (7e) in
the low pressure region now located above the streak, and hence forms the head
of the first structure. At the other side (downstream side) of the low pressure
region the motion is a downward flow, as seen in figure (7f). This downward
velocity at the downstream side of the head indicates that the low pressure
structure is a vortex loop. Since the head is observed right after the legs, the
structure is very short, which was also observed in figure 1.

3.2.2. Vortex formation downstream of the slot

Now that the flow above the slot and around the first structure has been stud-
ied, the flow further downstream will be investigated. The same technique is
used to get an idea about what happens with the flow around the well devel-
oped structure indicated as number three in figure 1. The structure in the
laminar simulation is compared with a typical structure found in the turbulent
field.

In figure 8 vertical xy−planes are shown. In figure 8 (a) the plane is located
at the centerline (z = 0) in the laminar field. The blue line is an iso-line
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Figure 8. Vertical planes in the streamwise (x) and nor-
mal (y) directions. Arrows represent the streamwise distur-
bance velocity and normal velocity components. The blue lines
represent constant streamwise disturbance velocity (low-speed
streak). The red color represent constant pressure (low pres-
sure). (a) from the laminar simulation. (b) from the turbulent
simulation at z = 1.

of constant streamwise disturbance velocity and thus represent the low-speed
streak, while the red lines are iso-lines of low pressure. The arrows indicate
the normal velocity and the streamwise disturbance velocity. The streamwise
disturbance velocity is calculated by subtracting the mean velocity (the mean
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Figure 9. Vertical planes in the spanwise (z) and normal (y)
directions. Arrows represent the spanwise and normal veloc-
ity. Blue through green lines represent constant streamwise
velocity. Red lines represent constant pressure. (a) from the
laminar simulation. (b) from the turbulent simulation at x =
196.

taken in the spanwise direction) at each point. The flow is from left to right and
arrows pointing to the left merely indicate low speed compared to the mean.
What is seen in figure 8 (a) is thus the head of the pressure structure. The
swirling flow around the head is the relative motion when the mean streamwise
velocity is subtracted. Contour levels are −0.08 for the streamwise velocity
fluctuations and from −0.05 to −0.01 for the pressure.

In figure 8 (b) a structure from the turbulent simulation is shown. The
horseshoe vortex was identified with a pressure plot as in figure 6. The structure
is representative for a turbulent structure since many can be identified in the
same instantaneous pressure field. The specific structure shown in figures 8 (b)
and 9 (b) is located approximately in the middle of the computational domain
(x = 200, z = 1), and is similar to the one in the upper right corner in figure 6.
Then a horizontal plane is cut through the center (in the spanwise direction)
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of the structure and its head is seen as the low pressure region in figure 8
(b). Contour levels are −0.04 for the streamwise velocity fluctuations and from
−0.02 to −0.01 for the pressure.

The similarities between figures 8 (a) and (b) are remarkable. In both
figures the center of rotation (relative the mean flow) is displaced from the
center of low pressure. An additional, but weaker low pressure region is found
below the head of both structures. The head of the turbulent structure in figure
8 (b) is located at y+ = 135.

In figure 9, vertical cross-stream (yz−) planes are shown. The red contours
represent low pressure and blue to yellow lines are the iso-levels of streamwise
velocity. The arrows consist of normal and spanwise velocity components. In
figure 9 (a) the legs of the structure in the laminar field are clearly visible as the
two low pressure regions, and the flow is circling around the low pressure. Also
seen are the induced vortices further out from the centerline. These induced
vortices were also observed in the experiments by AS. The plane in figure 9 (a)
is located at x = 70, thus showing the legs belonging to the structure whose
head was shown in figure 8 (a). The blue to green contour lines represent
streamwise velocity from zero to 0.5.

In figure 9 (b), a cross-stream plane from the turbulent simulation is shown.
The plane is located at x = 196 (referring to the coordinates in figure 8 (b)),
which corresponds to a distance of x+ = 184 (wall units) upstream of the head
located at x = 204 in figure 8 (b). The legs belonging to the horseshoe vortex
whose head was observed in figure 8 (b) are the two low pressure regions located
furthest from the wall, located at z = 5 and z = −3. The normal position of
the legs is y+ = 70, and they are separated with a distance z+ = 190. The
other low pressure regions close to the wall belong to streamwise vortices. The
blue to yellow contour lines represent streamwise velocity from zero to 0.7. In
figures 8 (b) and 9 (b) every second point in all directions is omitted for clarity.

The positions of the head and legs of the horseshoe vortex in the laminar
simulation are in agreement with the experimental findings in AS. The strength
of the transverse and longitudal vortices corresponding to the head and legs
were calculated in AS by assuming constant vorticity within the vortex core.
However, in the present DNS we find that the vorticity varies through the core.
For the vortical structures visualized by low-pressure in figures 8 (a) and 9
(a), the vorticity lines (spanwise and streamwise respectively) formed the same
pattern as the corresponding pressure contours. The vorticity ranged from −1
to −0.5 in the transverse vortex and from ±1.5 to 0 in the longitudal vortices.

3.3. Frequency characteristics

In the experiments by AS the frequency of the roll up was measured. Their
observations led to the conclusion that the frequency increased when the injec-
tion velocity or the freestream velocity was increased. They present the results
as a non-dimensionalized frequency (fδ∗/U) as a function of slot Reynolds
number (ReVw

≡ wVw/ν) and boundary layer Reynolds number (Reδ∗) at the
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Figure 10. Non-dimensional frequency f∗ of the disturbance
versus Reδ∗ . Symbols correspond to different injection ve-
locities. ReVw

= wVw/ν. ReVw
= 28.3 �; ReVw

= 33.6 ◦;
ReVw

= 38.7 �. Bold symbols represent experimental data
from AS.

beginning of the slot. Here w is the width of the slot. The simulations were
performed at two Reδ∗ , each with three different ReVw

, for comparison with
experimental results from AS. The Reδ∗ at the beginning of the computational
box were 450 and 290, corresponding to 490 and 330 at the point where the
slot starts.

In the present simulations the frequency was calculated using the time-
signal of the velocity from various locations in the flow. The frequency of the
disturbance was observed over the full extent of the slot at a number of posi-
tions in the normal direction. When either of the two Reynolds numbers were
changed, the frequency also changed. The frequencies for three different ReVw

at two Reδ∗ are plotted in figure 10, together with the results from AS (thick
symbols). When the frequency is plotted as a function of the two Reynolds
numbers as was done in AS, it is observed that the frequency for ReVw

= 28.3
is half of that observed by AS (figure 10). Also, reducing ReVw

further in the
simulation caused the vortex generation to cease. In the experiment by AS,
ReVw

= 28.3 was the largest slot Reynolds number for which an ordered vortex
generation was observed, while as low values as ReVw

= 11.3 were shown to
generate vortices.

Thus, the ReVw
for which vortex generation was observed in the simulations

was larger than the corresponding ReVw
in the experiments. For the value

of ReVw
= 28.3, common to both simulation and experiment, the frequency

observed in the simulation was half of that observed in the experiment. These
discrepancies might be explained by the value of the blowing velocity, which is
half the value in the simulation as compared to the experiment by AS. However,
the slot has double width in the simulation, making the slot Reynolds number
equal to the experimental value. If the blowing velocity itself, normalized by the
freestream velocity, is used as the parameter in the comparison, the frequency
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Figure 11. Non-dimensional frequency f∗ of the disturbance
versus Vw/U . Symbols correspond to different Reynolds num-
ber. Reδ∗ = 490 �; Reδ∗ = 330 ◦. Bold symbols represent
experimental data from AS.
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Figure 12. Time signal of the normal velocity component at
x = 60 and x = 70.

for various blowing velocities compare well, as seen from figure 11. Thus, the
initial guess that the slot Reynolds number in the simulation should be equal
to the experimental value to obtain the same frequency is not supported by
figure 10. Instead, it is the ratio of blowing velocity to freestream velocity that
apparently is the crucial parameter in this respect, as indicated in figure 11.
This was also suggested by AS, although they present their frequency data as
in figure 10.

From simulation data it was observed that the frequency was doubled when
going from a point above the slot to a position further downstream, as shown
in figure 12, where the time signal of the normal component (v) of the velocity
at the two downstream locations at y = 0.5 are shown. As was shown in section
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Figure 13. Velocity profile at x = 45.

3.2, the roll up the structures starts right at the downstream end of the slot
(x = 60), and the frequency of the primary structures is thus the one measured
at x = 60 and not the frequency of double value at x = 70. The doubling of the
frequency is consistent with the growth of a second harmonic of the disturbance
further investigated in the next section.

3.4. Stability analysis

In this section the laminar and turbulent simulations are treated separately. In
both cases the instantaneous velocity profile will be examined. Kim et al. (1971)
showed that the instantaneous profile in a turbulent boundary layer contained
an inflectional instability in the later stages of the low-speed streak lift-up and
the instability lead to oscillations. The O-S analysis performed by Kim et al.
showed good agreement between the growth rates and eigenfunction shape. On
the other hand, the mean velocity profile in a turbulent channel flow, deformed
by the low-speed streak modeled by a trigonometric function, was shown to be
stable to the varicose mode by Schoppa & Hussain (1997) and Kawahara et al.
(1998).

We believe the instantaneous profile gives more realistic results from the
stability analysis in the turbulent case since the growth rate is very strong and
the instantaneous profile is far from the mean profile in shape. In the laminar
case, the mean and instantaneous profiles are equivalent at the position where
the stability calculation is performed.

3.4.1. The laminar case

From the observations of their experiment, AS speculate that an inflectional
instability causes the oscillations on the low-speed streak leading to vortex roll
up. We will here show that this is the most plausible explanation.

As described in section 2.2, the spatial stability analysis is performed with
the O-S equation. The input is the Reynolds number, frequency of the distur-
bance, and the velocity profile. The three inputs are well defined and taken
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Figure 15. Normal component. a) x = 45. b) x = 55.
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from the DNS. The output is the eigenfunction, which contains information of
the disturbance shape, and the eigenvalue, which gives the growth rate and the
streamwise wavenumber.

Throughout this section the laminar simulation with Reδ∗ = 490 at the
beginning of the slot and a slot Reynolds number of ReVw

= 28.3 will be
considered. In figure 13 the velocity profile at x = 45 and z = 0, corresponding
to the center of the slot, is shown. The profile is highly inflectional and the
O-S analysis will give a large value of the growth rate.

Figures 14 and 15 show the eigenfunction from the O-S together with the
rms−value of the velocity from DNS at positions x = 45 and x = 55. The
eigenfunctions are calculated using the instantaneous velocity profile at the
two x−positions as basic states. The rms−value from DNS is calculated over
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one period of the disturbance, which was T = 14.8 (in units of δ∗/U) and the
corresponding frequency was Ω = 0.425.

The eigenfunction in the streamwise direction is shown in figures 14 (a)
and (b), together with the corresponding urms from the DNS. The solid line
is DNS data and the dashed line is from the O-S analysis. The wall normal
coordinate is scaled with the boundary layer thickness. The sharp peak in the
profile is due to the shear layer instability. At both x-positions the shape is well
predicted. The double inner peak observed in the urms profile is over predicted
by the O-S analysis at x = 45 and is lacking at x = 55.

The eigenfunction in the normal direction is shown in figures 15 (a) and
(b), together with the corresponding vrms from the DNS. The profiles are well
predicted by the linear O-S analysis. However, the second, outer peak is over
predicted by the linear O-S analysis. Observe that vrms is not zero at the wall
due to the injection through the slot.

The results shown in figures 14 and 15 are based on an instantaneous
two-dimensional approximation of the basic state. The agreement between
the calculated eigenfunctions and the rms−profiles found in the fully three-
dimensional DNS is remarkable, indicating that the instability mechanism is
determined mainly by the local flow conditions.

The growth rate from DNS data is calculated from the Fourier transform in
time of velocity fields as a function of x. When comparing the growth rate and
streamwise wave number from the O-S analysis with the corresponding values
from DNS data, the DNS data has to be smoothed since taking derivatives
directly will give spurious oscillations.
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Figure 17. ◦ The growth rate from the O-S analysis. —
Smoothed DNS data (curve fit). · · · Linear approximation to
DNS data.

The growth rate from the DNS data, denoted by σ, is calculated from the
development in time of the maximum value of the velocity in the downstream
direction. The maximum value is extracted for different frequencies from the
Fourier transform in time. The transformed velocity is,

û(x, y, z, ω) =
∫ ∞

−∞
u(x, y, z, t)e−iωtdt (5)

By taking the maximum over y and z and specifying which frequency of interest,
only the x-dependency is left, û = û(x).

In figure 16 the maximum of û in the first and second harmonics are shown.
The maximum occurs at the centerline. By showing the logarithm of the maxi-
mum as in figure 16, a curve fit is possible, shown as the dash-dotted line. Also
in figure 16 the linear approximations to both the first and second harmonics
are shown as the dotted lines. The slope for the second harmonic is twice the
slope for the first.

Now, the growth rate is calculated from equation (3), which can be written
as,

σ =
1
|û|

d

dx
|û| =

d

dx
(ln |û|) . (6)

The linear approximation to the maximum of û in the first harmonic (shown
in figure 16) is used for calculating the growth rate, which becomes a constant
and is shown as the dotted line in figure 17. By using the curve fit of û instead
of the linear approximation, the growth rate becomes as the solid line shown in
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mation to DNS data.

figure 17. The circles are the corresponding growth rates calculated from O-S
using the instantaneous velocity profiles.

The real part of the eigenvalue (αr) from the O-S analysis, is shown in
figure 18 as circles. To calculate the corresponding αr from DNS, which is
denoted α̃, equation (4) is used. This equation also involves derivatives in
the downstream direction which cause spurious oscillations. To equivalently
smooth the α̃, equation (4) is rewritten, by noting that û = eiΘ, in the form,

α̃ = Re

{
dΘ
dx

}
. (7)

Thus, it is a matter of smoothing Θ, which is defined by

Θ = −i ln û. (8)

The resulting smoothed α̃ is shown in figure 18. The linear approximation
becomes a constant and is also shown in the figure.

3.4.2. The turbulent case

So far, the the detailed analysis of the low-speed streak in an otherwise lam-
inar boundary layer has confirmed some of the results from the experiment
of AS. Furthermore, a thorough analysis of the origin of the instability of the
streak was made with linear stability analysis. The simulations also showed
the development of more complicated structures further downstream, where
the statistics resembled turbulence.
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Figure 19. Time signal of the streamwise velocity component
at x = 170, y = 0.4, z = −6.5.

These results, together with the striking resemblance of the streak devel-
opment between figures 6 and 1 lead to the hypothesis that, at least to some
degree, the break up of streaks in a turbulent field is governed by the same
mechanisms as for the isolated streak in the laminar boundary layer.

To qualitatively show that the instabilities of the streaks in a turbulent
boundary layer is of the same normal inflectional type as in the laminar case, the
O-S analysis was performed with a velocity profile from the turbulent velocity
field.

When a horseshoe structure in the turbulent field has been identified, it can
be followed backward in time, if velocity fields from earlier times are available.
Since the life cycle of a structure is long (over T = 150 δ∗/U), the requirement
for data storage is demanding. As the structure is followed backward in time,
it is found further upstream and is weaker. At some point in time and space
the structure vanishes. Thus, at this point the birth of the structure can
be investigated. By examining the time signal of the velocity from points
just upstream of the first appearance of the structure, the frequency of the
disturbance leading to the vortex formation can be determined. One example
of a time signal of the streamwise velocity is shown in figure 19. The instability
wave appears at time 15588.

The point (x = 170, y = 0.4, z = −6.5) where the velocity signal was
examined is located just upstream of the first appearance of a structure. The
newly born structure is shown in figure 20. The figure shows the low pressure
signature of the structure at the time 15596 (referring to figure 19).

The velocity profile was extracted from the turbulent field at a point where
the disturbance was small compared to further downstream, i.e. before roll up
of the vortex. In this particular case the point was located at (x = 170,
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Figure 20. Iso-surface of pressure at time 15596. Contour
level at −0.004. The height of the box shown is 4.5, corre-
sponding to 80 in wall units.

z = −6.5) at the time 15584. This profile was used together with the observed
frequency in the O-S equation.

To compare the DNS data with the eigenfunctions from the O-S analysis,
the rms−profiles were extracted by collecting statistics during a simulation
over one period of the disturbance. The rms−profiles were taken from the
same position as where the frequency of the disturbance was observed for the
longest period of time. This position is (x = 170, z = −6.5) in the example
discussed above. The time interval over which the rms−profiles were taken
was 15584—15596.

This whole procedure was performed for three independent structures, each
separated in time over 2000 (δ∗/U). All three of the structures could be traced
back to their point of roll up, and the analysis of the velocity profiles gave
similar results.

Furthermore, the O-S analysis showed that the resulting eigenfuctions are
not sensitive to changes in Reδ∗ and frequency (ω). The independence of Rey-
nolds number is explained by the inviscid nature of the inflectional instability.
The insensitivity on ω shows that the time-scale of the disturbance is not im-
portant for the instability mechanism. This points towards an instability of a
Kelvin-Helmholz character.

One example of the velocity profile just before roll up is shown in figure 21.
The frequency in this case was ω = 0.78 and the O-S analysis gave a growth rate
of −αi = 0.024. The eigenfunctions from the O-S analysis were then compared
to rms−values taken over one period of the disturbance. The results from this
analysis are shown in figures 22 (a) and (b). In the streamwise component
(22a), the double peak is predicted by the linear analysis, even though the
outer peak is located further out in the urms profile. In the normal component
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Figure 21. Velocity profile from a turbulent boundary layer.
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Figure 22. (a) Streamwise component. (b) Normal compo-
nent. — rms−value of velocity. - - Eigenfunction from the
O-S equation.

(22b), the inner peak is located slightly closer to the wall in the predicted
profile. Also a tendency to a second peak is seen, though the vrms profile has
a much stronger peak.

Although we have only investigated three randomly picked events, the re-
sults are promising and a larger investigation with an objective method for
detecting structures, followed by tracing them back in time to their point of
origin and the associated inflectional velocity profile, could provide statistical
evidence of the horseshoe vortex formation. This is however beyond the scope
of the present investigation. The method described here is not suitable since
it is too time and storage consuming for any larger statistical evaluation.

4. Discussion and conclusions

A DNS of a laminar boundary layer disturbed by a continuous blowing thr-
ough a slot in the wall has been performed. The objectives were to reproduce
and further investigate the results reported from the experiments of Acarlar &
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Smith (1987). The blowing of fluid from the slot creates a low-speed streak
which exhibits a disturbance wave growing downstream. This secondary dis-
turbance was shown to originate from a normal inflectional instability in the
streamwise velocity profile. An anlasysis using the Orr-Sommerfeld equations
gave qualitative agreement in the growth rate and streamwise wavenumber
with the corresponding values extracted from the DNS velocity fields. The
non-linear effects gave rise to higher harmonics at the end of the slot where
the first low-pressure structure was found. The structure consist of a vortex
loop that evolves downstream to form a horseshoe vortex. After the horse-
shoe vortex breaks down the low-speed streak persist together with additional
streaks formed by the horseshoe vortex. Further downstream more complicated
structures appear and the streak spacing is 100 in wall units.

The frequency of the vortex generation was shown to scale with the ratio
between the blowing velocity and freestream velocity. Good agreement with
the experimental data was obtained.

Also a DNS of a zero pressure gradient turbulent boundary layer was per-
formed, and horseshoe vortices were observed using low-pressure identification.
The similarities between structures in the turbulent field and the ones origi-
nating from the low-speed streak in the laminar simulation were presented.

The inflectional instability considered in the present work is of a different
type from those investigated in Waleffe (1997), Kawahara et al. (1998) and
Schoppa & Hussain (1997), who model the turbulent velocity profile as a mean
flow with the streaky structure deforming the profile, rather than the instanta-
neous profile considered here. They showed that it is the sinuous mode which
is unstable, whereas the laminar streak investigated here does not show the
characteristics of such an instability. Furthermore, it has been shown by Bot-
taro & Klingmann (1996) for streak instability of Görtler flow, that the growth
rate of the sinuous mode scales with the spanwise derivative of the mean flow,
just as in the model of Waleffe and in the secondary instability calculations of
Andersson et al. (2000). Thus it is reasonable to assume that the sinuous insta-
bility depends primarily on the appearance of the spanwise inflection. Reddy
et al. (1998) further showed that the sinuous instability is inhibited by the
appearance of normal shear.

We show in this work, as it has been implied in others (e.g. Robinson
1991b), that the appearance of an unstable normal velocity profile (in many
cases associated with a normal inflection point) is a precursor to the appearance
of horseshoe vortices. In terms of a streak instability, Bottaro & Klingmann
(1996) among others, have shown that this is related to the varicose mode. Thus
the sinuous streak instability is correlated with a basic state with a spanwise
inflection and the varicose mode with a basic state with a normal inflection.

It is reasonable to assume that both types of streak instabilities are of
importance in a turbulent boundary layer, the sinuous type for the regenaration
of near-wall turbulence, as shown by Jimenez & Moin (1991) and Hamilton
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et al. (1995), and the varicose type for the production of horseshoe vortices
populating the region away from the wall.
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