
The performance of a spectral simulation code
for turbulence on parallel computers with

distributed memory

By Krister Alvelius and Martin Skote

Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden

The performance of a pseudo spectral turbulence simulation code on var-
ious supercomputers, with either shared memory or distributed memory, is
presented. The communication with the memory is intense, and careful consid-
eration of the two memory configurations is needed to obtain high performance.
The investigations of the performance show that the scaling with the number
of processors is excellent for both memory systems. Also, vector processors
are compared with super scalar processors, and the performance is generally
higher for the vector processor since the code vectorizes well. However, the
computers with the scalar processors, and distributed memory, have a much
larger number of processors which gives an overall better performance for the
total machine. The numerical code, with e.g. 24 · 106 degrees of freedom, was
run at 3.5 Gflop/s on 64 processors on an IBM SP2 machine.

1. Introduction

Direct numerical simulation (DNS) of turbulent flows is a major field for the
use of super computers world-wide, and has throughout the years been an
important factor in driving the process of developing super computers. This is
an area which efficiently makes use of all available memory of the computer, and
the scaling with the number of processors is excellent. Also the communication
between the processors is relatively intense. The performance of DNS codes is
hence an important measure of a computers ability to handle real problems of
physical interest.

1.1. Scientific background

The nature of turbulence is very complex. A turbulent flow consists of both
large and small scale motions that fluctuate in time and space. The incom-
pressible flow of e.g. air can be described by the Navier-Stokes (NS) equations
together with suitable boundary conditions. They are non-linear equations,
which generally need to be discretized in order to yield a solution. In these
equations the non-linear term generates turbulent motions and the viscous
term dissipates flow fluctuations. The viscous dissipation of turbulence adjusts

237

238 K. Alvelius & M. Skote

itself to the production, which determines the smallest scales in the flow, η,
usually referred to as the Kolmogorov micro length scale. The viscous term
becomes large in the presence of large velocity gradients associated with small
scale motions. It does, however, only scale linearly with the magnitude of the
velocity field, while the scaling of the non-linear term is quadratic. Therefore,
an increased magnitude in the velocity causes the smallest scales to become
even smaller (through the cascading action of the non-linear terms) to yield
increased velocity gradients and a larger dissipation which balances the pro-
duction by the non-linear terms.

The size of the largest scales, l, is usually determined by the geometry of
the flow domain. The size of the range of scales in the flow is measured by
the Reynolds number (Re ∼ (l/η)4/3) which depends on the type of flow, the
magnitude of the flow velocities, the domain size and the kinematic viscosity.

In a DNS of a turbulent flow all scales (l – η) need to be captured by
the numerical method. Since turbulent flows are always three-dimensional,
even moderate Reynolds numbers give a significant degree of freedom for the
resulting discrete dynamic system that needs to be solved. In addition there is
a span of timescales that needs to be resolved. The time step is determined by
the smallest turbulent timescales and stability requirements of the numerical
method. Typically a large number of discrete time integrations needs to be
performed in order to include one large time scale in a simulation. In order
to obtain statistically converged results it is also necessary to integrate the
solution over many large time scales.

DNS have, until recently with the development of modern computers,
been an impossible task even for small Reynolds numbers. Therefore, re-
searchers have been led to study the averaged equations instead, which give
much smoother solutions and significantly reduces the computational effort.
This approach introduces an unknown quantity, the Reynolds stress tensor,
which needs to be modelled. Development of such models, with different de-
grees of complexity, has been an important task for turbulence researchers.
Calibrations of models are essential and can be performed in e.g. windtunnel
experiments. It shows that the modelled quantities behaves differently in dif-
ferent flow situations. Although it is relatively easy to obtain high Reynolds
numbers in the windtunnel experiments, they sometimes fail to give accurate
descriptions of complex quantities in the flow. Also, they cannot give a total
description of the flow situation since the complete velocity field is not available.

The DNS of turbulent flows gives the time development of the complete ve-
locity field and allows the study of any particular flow phenomenon you choose
in detail. This can be used to increase the understanding of the underlying
mechanism, resulting in better turbulence models. Also a new method, large
eddy simulation (LES), similar to that of DNS, have been developed in recent
years where only the smallest scales are modelled in the flow and the large
scales are resolved. This method has been found to be successful in computing
real engineering flows with complicated geometries, using only simple models

Turbulence simulations on parallel computers 239

��

U�y�

z x

y

U�y�

z x

y

Figure 1. The flow configurations of plane channel flow and
boundary layer flow.

for the unknown subgrid-scale stresses, since the main effect of the domain
geometry on the flow enters through the large scales which are resolved. The
numerical implementation of this method is similar to that of DNS. In par-
ticular, when developing models for the subgrid-scale quantities, DNS data is
essential since the modelled quantities fluctuate in time and space, and the
whole velocity field has to be available at a single instant.

Both in DNS and in experimental investigations it is important to know
what effects that are important in the flow in order to be able to make correct
conclusions. Therefore the flow should be constructed so that effects that you
are not interested in are negligible or controllable. One such important test
case is the plane channel flow (figure 1) where only effects of plane mean shear
and of the solid walls are present. In DNS it is also important to have a sim-
ple geometry which simplifies the numerical implementation and improves the
accuracy in the numerical discretization. This is true in the plane channel flow
which has no curvature and only needs grid stretching in the non-homogeneous
wall normal direction. In addition to the shear and wall effects in the plane
channel flow, the effect of curvature can be studied by adding system rotation
to the governing equations.

The boundary layer flow (figure 1) on a flat plate is another example of
a simple flow with a solid wall and plane shear. In this case a free boundary
gives a more complicated flow, e.g. the boundary layer grows downstream.
The flow can be studied in various aspects. The fully turbulent flow, as well as
transitional flow, where a breakdown from laminar to turbulent flow occurs, is
of great importance in many industrial applications. There is still no complete
picture of the mechanisms behind this breakdown, and further investigations
are needed. Both the transitional and turbulent flows can be studied with ad-
ditional complications such as external pressure gradients or three-dimensional
mean flow.

Both the turbulent channel flow and the fully turbulent boundary layers
can be studied for gaining data used for calibration and development of tur-
bulence models. But the data are not only used for modeling purposes, the
instantaneous turbulent structures can be thoroughly studied since the whole
flow field is accessible at each time step.

240 K. Alvelius & M. Skote

1.2. The numerical discretization

Ideally, the plane channel is considered to be infinitely long and infinitely wide,
with the flow driven by a mean pressure gradient in the streamwise direction.
In the numerical simulation periodic boundary conditions is imposed in the
streamwise and spanwise directions. In the wall normal direction a non-slip
condition is applied at the solid walls.

For the boundary layer flow the downstream direction must be treated in a
different way. The boundary layer is increasing (getting thicker) downstream,
and that direction can thus not be considered periodic. It is possible to create
a periodic flow if a so called fringe region is added downstream of the physical
domain, figure 2. In the fringe region the flow is forced from the outflow of
the physical domain to the inflow. In this way the physical domain and the
fringe region together satisfy periodic boundary conditions. The fringe region
is implemented by the addition of a volume force which form is designed to
minimize the upstream influence.

Figure 2. Computational box with the fringe region. — the
strength of the volume force in the fringe region. - - the bound-
ary layer thickness.

The periodic boundary conditions make it possible to use Fourier repre-
sentation of the velocity field, which gives an accurate description of the spa-
tial derivatives in the discretization direction. Compared to a finite difference
method, which typically gives only a second-order approximation of the spatial
derivatives, the numerical accuracy is significantly increased. The wall normal
direction is discretized using Chebyshev polynomials. Hence, spectral meth-
ods are used in all spatial directions, which gives an overall highly accurate
discretization of the governing equations.

The time integration is discretized with a second order Crank-Nicolson
scheme for the linear terms and a four stage third-order Runge-Kutta scheme
for the non-linear terms. The Crank-Nicolson method is implicit and hence
absolutely stable, whereas the Runge-Kutta method is explicit, which imposes
a restriction on the time step to yield stable solutions. The time step is deter-
mined by the CFL number and adjusts itself automatically to the actual flow
situation.

Turbulence simulations on parallel computers 241

it � it� �

RK

linear

getxy

putxy

z

nonlin

getxz

putxz

y

Main Storage

Figure 3. The main structure of the program.

Instead of solving for all three velocity components and the pressure, a
vorticity-velocity formulation is used, in which the fluctuating pressure is elim-
inated. In this formulation only two equations need to be solved instead of the
original four equations (the NS equations and the continuity equation).

The discretization results in a tri-diagonal equation system in spectral
space for each of the two variables, which needs to be solved at each Runge-
Kutta step. The non-linear terms in the equations are calculated in physical
space, using fast Fourier transforms (FFT) in the transformations between
spectral and physical space. The velocity field is represented on a 3/2 times
finer mesh in the streamwise and spanwise directions in physical space com-
pared to spectral space. This results in a 3/2-dealiasing method which is energy
conserving.

The numerical code is written in FORTRAN and consists of two major
parts (figure 3), one linear part (linear) where the actual equations are solved
in spectral space, and one non-linear part (nonlin) where the non-linear terms
in the equations are computed in physical space. The actual flow variables are
stored at an intermediate level with spectral representation in the streamwise
(x) and spanwise (z) directions and physical representation in the wall normal
(y) direction. All spatial derivatives are calculated in the spectral formulation.
The main computational effort in these two parts is in the FFT.

In the linear part one xy-plane is treated separately for each z variable. The
field is transformed in the y direction to spectral space, a solution is obtained
and then transformed to physical space in the y direction. This is performed

242 K. Alvelius & M. Skote

with an loop over all z values where the subroutine linear is called for each z.
The xy-planes are transferred from the main storage with the routine getxy to
the memory where the actual computations are performed. The corresponding
storing of data is performed with putxy.

In the non-linear part the treatment of the data is similar to that in the
linear part. One xz-plane is treated separately for each y variable. The field
is transformed in both the x and z directions to physical space where the
non-linear terms are computed. Then the field is transformed in the x and z
directions to spectral space. This is performed with a loop over all y values
where the subroutine nonlin is called to at each y. The xz-planes are trans-
ferred from the main storage with the routine getxz to the memory where
the actual computations are performed. The corresponding storing of data is
performed with putxz.

1.3. Computer background

The super computers used for large computations can be divided in two major
groups with respect to the memory configuration. The computers can also be
divided in two groups when considering the architecture of the processor. Thus
there are four different combinations that constitute the type of computer.

The two memory configurations are shared and distributed memory. In
the former a common memory is used by all the processors. In the latter case,
every processor has its own memory and data must be sent and received if used
by another processor. The two types of processors are scalar and vector. The
scalar (or super-scalar) processor has registers for data as a scalar quantity
and can perform operations on this data fast. There is a small memory set, the
cache, in the processor to keep easy access to the data being processed. The
data transfer between main memory and the cache is slow, therefore optimized
usage of the cache is important. The vector processor has registers for data as a
vector quantity and perform operations on the scalar elements of the vector, all
at the same time. The processor itself thus operates in parallel. The transfer
of data from the main memory is fast if there is no memory contention.

The distributed memory computers typically have many processors (≈ 200)
with e.g. 256 Mbyte of memory each, resulting in a larger total memory than
a vector computer with typically 4 to 8 Gbyte memory. The forthcoming
computers often have a shared memory for a small number of processors but
with a (from necessity) overall distributed memory.

The code used for the computations has to be adjusted when ported from
one group to another. The four groups are listed in table 1, together with the
computers that have been used in the present study. At the time of the present
investigation the Cray J90, IBM SP2 and Fujitsu VPP300 have 32, 152 and
3 processors respectively and are located at PDC, KTH in Stockholm. The
Cray C90 and T3E have 7 and 232 processors respectively and are located at
NSC in Linköping. The Cray T90 has 14 processors and is located at SDSC in

Turbulence simulations on parallel computers 243

San Diego. The SGI Origin 200 has 4 processors and is the property of Joseph
Haritonidis at OSU in Columbus.

shared memory distributed memory
scalar processor SGI Origin 200 Cray T3E, IBM SP2
vector processor Cray J90, C90, T90 Fujitsu VPP300

Table 1. The four categories of super-computers

The optimization and tuning of the code have different features for the
different groups. They can be opposed to each other, e.g. tuning for a vector
processor will make the code unsuitable for a scalar processor and vice versa.

The code used for the numerical simulation of turbulence was earlier op-
timized for vector processors and shared memory computers. In resent years
distributed memory and scalar processors have become a common architecture
for super computers. Therefore a lot of effort has been put into the redesign of
the code to perform well on such computers.

Most of the time in the code is spent in the FFT. The vector and scalar
optimization is therefore concentrated to this part of the code. There are two
different versions of the FFT to be used on the two types of processors.

The parallelization on a shared memory system is fairly straightforward
and is very efficient. The MPI (Message-Passing Interface) has been used to
parallelize the code on the distributed memory systems. A lot of effort has
been put into keeping the memory requirement low as to make it possible to
perform large simulations.

1.4. Examples of simulations

In order to illustrate the complexity of the flow and give examples of the com-
putational effort two examples are given, one for the turbulent boundary layer
flow and one for the rotating channel flow.

1.4.1. Turbulent boundary layer

As an example of a flow field from a simulation of a turbulent boundary layer,
see figure 4 where contour lines of the downstream velocity component are
shown in a plane perpendicular to the wall. The downstream direction is de-
noted x and the wall normal direction y (observe the different scaling in the two
directions in the figure). The simulation starts with a laminar boundary layer
and is then tripped to turbulence by a random volume force near the wall. All
the quantities are non-dimensionalized by the freestream velocity (U) and the
displacement thickness (δ∗) at the starting position of the simulation (x = 0)
where the flow is laminar and Reδ∗ ≡ Uδ∗/ν = 400. The length (including the
fringe), height and width of the computation box were 450 × 24 × 24 in these
units. The number of modes was 480 × 161 × 96.

244 K. Alvelius & M. Skote

 0. 50. 100. 150. 200. 250. 300. 350. 400.
 0.

 5.

 10.

 15.

 20.

y

x

Figure 4. Contour lines of the velocity in the downstream
direction (x).

To obtain a flow field as the one in figure 4, the simulation need to run for
2500 time units (δ∗/U), starting from a laminar field. The flow traveled through
the box approximately 5 times during this period of time, and is sufficient for
the turbulence to be adjusted to the imposed boundary conditions such as a
pressure gradient. To obtain sufficiently smooth statistical data, the simulation
runs for another 2000 time units. Thus the simulation was run for a total of
4500 time units. The time step determined by the CFL number is 0.02, and
the CPU-time for one processor on the Cray J90 is 280 seconds, and 66 seconds
on the Cray C90. Thus a simulation of this kind needs 63 · 106 CPU seconds
on the J90 which is equivalent to 24 CPU-months. If the simulation is run
on eight processors on the J90, or two on the C90, the simulation takes three
months on either machine. If the time spent in the queuing system is included,
at least half a year must be expected before the simulation is completed.

In figure 4 the laminar flow is visible at the beginning of the box, then a
rapid transition to turbulence occurs and the turbulence is fully developed at
x = 150. At x = 400 the fringe region starts, the turbulence is suppressed and
the flow is forced back to its initial laminar profile. The velocity at the upper
boundary, the freestream velocity, is not constant due to an adverse pressure
gradient applied through the boundary conditions. The boundary layer is in-
creasing in thickness rapidly in the downstream direction due to the decrease of
the freestream velocity. If a strong enough adverse pressure gradient is applied,
the boundary layer would separate from the wall. This is what happens on the
wing of an aircraft when the stalling angle of attack is approached. Separation
also occurs on the rear window of a car and increases the drag. The evaluation
of the turbulent statistics from this and similar simulations are presented in
Skote et al. (1998).

Turbulence simulations on parallel computers 245

0 5 10 15 20

0

1

2

3

4

5

6

7

8

9

z

x

Figure 5. Contours of constant streamwise velocity in a ro-
tating channel flow for a plane in the streamwise and spanwise
directions at the distance y = δ/2 from unstable wall, where
2δ is the channel width.

1.4.2. Rotating channel flow

In rotating channel flow, the extra Coriolis term in the governing equations has
a strong effect on the development of the large structures. It has either a stabi-
lizing or a destabilizing effect depending on the sign of the mean velocity gra-
dient. On the unstable side, the Coriolis force makes negative streamwise fluc-
tuating velocities and positive wall-normal fluctuating velocities enforce each
other. This effect, which actually is strongest for relatively low rotation rates,
produces long structures in the flow (figure 5). The periodic boundary condi-
tion requires that the computational domain needs to substantially longer than
the largest flow structure if the results is to be unaffected by the domain size.
If the domain is too short the numerical artifact of the periodicity condition
will, through resonant effects, enforce the long structures and the true behavior
of the flow is not captured. Typically, for this case, the computational domain
needs to be approximately five times as long compared to the non-rotating flow
case, which significantly increases the computational effort.

The present simulation was performed with 384 × 129 × 240 number of
modes, which gives a computational effort of the same order as for the boundary
layer example above. The length of the largest scales (figure 5) actually suggests
that the computational domain should be at least twice as long for this case,
which implies that 768×129×240 grid points have to be used in the simulation.

2. Results

The main aim of optimizing a code is to obtain an overall high performance.
This is a complicated matter and different parts of the code might need different
treatment. This suggests that the different parts should first be optimized
separately. In the present paper the various choices of the compiler options are
omitted, and results are only presented for the optimal choice.

246 K. Alvelius & M. Skote

The investigations presented here is divided in four sections. In section 2.1
the vectorization is discussed. The FFT is investigated in section 2.2 for the two
types of processors through a model problem using the different FFT routines.
Section 2.3 is devoted to the parallelization on the two memory configurations.
Also here a model problem was created to try out the different techniques for
MPI. And finally in section 2.4, the performance of the MPI and the overall
performance of the code is presented for the two distributed memory computers
IBM SP2 and Cray T3E.

For the shared memory computers with vector processors, the vectorization
and parallelization have been tested only for the complete code. The code was
already parallelized and optimized for vector processors (Lundbladh et al. 1992,
1994), and the results are only included for comparison with the main result
concerning the parallelization on distributed memory computers.

Two different sizes of the problem has been tested, table 2. Test case two is
too large to be run on the shared memory computers used in this investigation.

case size number of points
one 128 × 97 × 128 1.6 · 106

two 512 × 193 × 256 25.3 · 106

Table 2. Numerical mesh for the two test cases

The goal when optimizing a numerical code is to minimize the computa-
tional (CPU) time. An usual measure of the performance of a code is the num-
ber of floating point operations that is performed per CPU second (flop/s).
If two codes do a different number of floating point operations for the same
computation it is not really relevant to directly compare the respective perfor-
mance in flop/s but rather in the computational time. The different versions
of the code presented here have a negligible difference in computational work
(flop) for the same tasks. The main differences involve moving data in the
memory and changing the order of computation which give no contribution
to the computational work. Therefore, either the computational speed or the
computational time may be compared whichever is found most suitable.

2.1. Vectorization

Due to the spectral representation in Fourier series the degree of vectorization
is very high. The vectorization is dependent on the size of the problem, a large
problem will in a natural way contain long vectors. For small problems the size
of the vectors can be increased by arranging the arrays in the code in a proper
way. This is done by letting the vectors contain more than one plane. The
arrays are collected from the main memory by the routines getxy and getxz
as shown in figure 3. In figure 6 the vectors are shown in the y- or z-direction.
In the linear part the xy-planes are treated, thus the length of the vectors is
determined by how many z-positions are gathered at the same time by the
routine getxy. In the non-linear part the length is determined by the number

Turbulence simulations on parallel computers 247

}
}

Short vector #1

#2

#3

#4

#5

#6

Long vector #1

Long vector #2

y or z

x

Figure 6. The short vectors contain one xz− or xy-plane.
The vector length is increased by treating more than one plane
at a time. The long vector is constructed by letting the short
vectors be stored concurrently in the x-direction. The third
direction (z or y) is omitted in the figure.

of y-positions gathered at the same time by getxz. The degree of vectorization
is crucial for some computers to perform well. The FFT is written in such a
way that the vector registers are used to a full extent. The memory used by
the code is increased significantly when using longer vector lengths due to the
increased size of the two-dimensional working area.

We have tested vector processors from Cray and Fujitsu (table 3). For
the specific problem size (case one in table 2) the optimal vector length was
obtained when six planes were used at the same time on J90, eight on C90,
sixteen on T90 and four on VPP300. When running a smaller problem, the
optimal number of planes is higher and when running a larger, it is less. It
should be mentioned that the performance is highly dependent on the problem
size. The size used here gives a very high efficiency on the C90 (over 50 % of
peak performance) while the VPP300 efficiency is only 24 %. However, the code
performance was 800 Mflop/s (36 %) on the VPP300 for a different problem
size. The J90 is not so dependent on the problem size and performs at 100
Mflop/s for different problem sizes if the tuning parameters are set to obtain
the optimal vector length.

J90 C90 T90 VPP300
peak processor
performance 220 952 1700 2200
one plane 93 361 501 303
optimized

vector length 100 522 710 525
Table 3. The speed on different vector machines for one pro-
cessor for case one.

248 K. Alvelius & M. Skote

2.2. The FFT

The FFT package is an extended version of the FFTPACK from netlib. The FFT
is applied in all three physical directions in the transforms between physical
space and spectral space. The transforms are performed on the two-dimensional
matrix, where the main difference between the treatment in the three directions
is with respect to the memory. The x-transform is performed on the first
index, which yields unit stride memory access, while the y- and z-transforms
are performed on the second index. The treatment of the y- and z-transforms
are hence similar and we shall therefore only investigate the behavior of the x-
and z-transforms.

2.2.1. The original version for vector processors

The FFT that is used for the transform in the x- and z-directions consists
of two one-dimensional FFT:s. In the forward transform they are a real to
half-complex in x followed by a half-complex to complex in z. The real data
in physical space is stored in two matrices with odd points in x in the first
matrix and the even points in x in the second, see figure 7. After transforming
in the x-direction, the real and imaginary Fourier components are stored in
the two matrices respectively. Then the z-transform is applied to get the full
two-dimensional transform. The data is stored all the time with the x-direction
column-wise and the z-direction row-wise. The access to data in FORTRAN is
row-wise, thus the elements in the x-direction are positioned one after another.
However, when performing the z-transform the elements are separated by nx/2,
i.e. the vector stride is nx/2. This means that different memory locations are
accessed all the time. For vector processors the access to memory is fast and
the most important issue is that no bank-conflicts occur.

2.2.2. Scalar processor

As described above, the FFT was originally written for a vector processor. This
feature of the FFT is a disadvantage when running on scalar processors. The
changes needed in the code for scalar processing was to a great extent already
accomplished by the original author, Anders Lundbladh. The alternative FFT
was however only fast in the x-direction, where the changes consisted of re-
ducing the amount of data used at the same time. An outer loop in x was
introduced as to process data from one row at a time instead of the whole
plane (or several planes if the vectorization tuning parameters are used.) To
accomplish a faster transform in the z-direction, the z-transform was rewritten
to process data for one line at a time, in much the same way as was already
done in the x-direction. To perform the transform in this manner, the data
need to be transposed before transformed, see figure 8, otherwise the vector
stride will prevent the data from lying concurrently.

In the table 4 the original (modified in the x-direction), modified (in the
z-direction) and library FFT are compared. Both the x- and z-direction are
transformed for a 512 × 256 grid corresponding to case two in table 2. The

Turbulence simulations on parallel computers 249

library FFT is faster than the in-house FFT. But the data transfer due to
the library FFT usage of complex variables decreases the performance con-
siderably. Also the modified approach with transposing before the transform
in the z-direction gives a faster FFT but the transposing itself decreases the
performance. The three different transforms performs approximately the same
number of operations (flop), thus the difference in performance (Mflop/s) is
due to better efficiency. The number of flops correspond to the formula in the
book by Canuto et al. (1988), flop≈5Nlog2N for one one-dimensional FFT. The
decrease of the performance when including the transpose and data transfer re-
spectively, is due to the fact that these redistributions of data do not include
any operations (flop). Since the original version do not require any additional
rearranging of the data, it is the fastest method for the FFT. Thus, the only
difference between the FFT for scalar and vector processors is the treatment
in the x-direction.

The routines written by the authors for the transpose are substantially
faster than the library routines on the T3E, due to the E-registers which can
be used explicitly in the code. Also on the SP2 the library transpose is slower
than the ones written in FORTRAN, probably due to the generality of the
library routines.

T3E SP2
peak processor
performance 600 640

original 59 177
modified 64 180
modified

incl. transpose 55 100
library 66 209
library

incl. transfer 54 82

Table 4. The performance of the FFT given in Mflop/s av-
eraged in both the x- and z-directions.

2.3. Parallelization

The computation of each xy-plane (in linear) and xz-plane (in nonlin) is
independent of the other planes. Therefore, parallelization of the code is per-
formed by distributing different planes in the loops to the different processors,
which then runs in parallel. Since the major part of the computation is spent
in the linear and nonlin subroutines, the code should parallelize efficiently.
In the following, nproc denotes the number of processors.

250 K. Alvelius & M. Skote

Even
points in x

nz

nx�� � �

Odd
points in x

nz

nx�� � �

Figure 7. The structure of the data in physical space. On
this data the transform in the x-direction is performed.

Real
numbers in �

nx�� � �

nz

Imaginary
numbers in �

nx�� � �

nz

Figure 8. The structure of the data in half-complex form
after transposing the data. On this data the transform in the
z-direction is performed in the modified method.

2.3.1. The maximum speed up

The maximum possible speed up of the code when using several processors is
determined by the part of the program that do not allow for parallel computing.
Ideally, if the the whole program runs in parallel, the maximum speed up
equals the number of processors. Some parts of a code are always impossible
to divide between the processors. Let a denote the portion of the code that is
parallelizable, and b the portion that only can be run on one processor. The
maximum possible speed up of the code is then

a + b

a/nproc + b
= { a

a + b
= q} =

1
q/nproc + (1 − q)

. (1)

This is usually referred to as Amdahls law. As q approaches unity the maximum
speed up goes to nproc. It is desirable to have the portion b of the code that
only runs on one processor small.

Figure 9 shows that the speed up is far from linear for large values of nproc

if q is not very close to unity. In the limit of infinite number of processors the
computational time is completely determined by the part of the code that do
not run in parallel and the maximum speed up approaches 1/(1 − q).

Turbulence simulations on parallel computers 251

10 20 30 40 50 60

10

20

30

40

50

60

Speed up

nproc

���

����

����

�

Figure 9. The maximum speed up for q = 1, 0.99, 0.95, 0.9.

2.3.2. Shared memory

The parallelization and optimization of the code for shared memory systems
was done in the original version of the code. The two main loops in the code,
over the linear and non-linear parts, were splitted as to account for the par-
allel computing. The parallel processing requires extra two-dimensional local
variables, one for each processor in the computation, in order for the different
processors not to use the same memory position. A compiler directive must be
included in the code because within the loops there are subroutine calls. As can
be seen from figure 10 the scaling is excellent on the Cray C90 and J90. When
q in Amdahls law (1) is calculated from the measured performance, it gets a
value of 0.99. On the Origin 200, with a scalar processor, the measured perfor-
mance was 53 Mflop/s on one processor and 181 on four, which corresponds to
a value of q as low as 0.94.

1 2 4 8
0

300

600

900

1200

1500

nproc

Mflop/s

Figure 10. Mflop/s rates for different number of processors
for case one. — J90; - - C90; · · · maximum speed up with
q = 1 in Amdahls law (1).

252 K. Alvelius & M. Skote

2.3.3. Distributed memory

On distributed memory machines, e.g. IBM SP2 and Cray T3E, the whole
field needs to be divided among the different processors. There are three possi-
ble spatial directions which can be distributed among the different processors.
The x-direction is not suitable to divide since it would give significant com-
munication between the processors in both the linear and nonlinear part of
the code. The number of y-discretization points in Chebyshev polynomials is
often not even divisible with the number of processors. The discretization in
the z-direction by the Fourier series can easily be chosen to obtain a number
of discretization modes which is divisible with the number of processors. Also
the communication with the main storage is more frequent in the linear part.
The whole field is hence divided in the z-direction between the different pro-
cessors (figure 11a), which yields easy access to the complete field in the linear
part since the two dimensional field is available locally on the processor. In
the nonlinear part, however, the local two dimensional storage needs to collect
data from all the other processors. This is performed with the MPI standard.

The message passing

Two different methods of moving the data with MPI between the processors
have been investigated. The first method transposes the whole field at once
before the non-linear calculations, so that it becomes divided in the y-direction
between the different processors. This makes the two dimensional field available
locally at each processor. Before the linear calculation, the data is transposed
back to its original position. The transposing of the data requires additional
memory, since the whole field is stored twice, and additional moving of data
from one field to another. In the second method the main storage is kept at its
original position on the different processors. In the non-linear part each pro-
cessor collects the two dimensional data from the other processors, on which it
performs the computations, and then redistributes it back to the main storage.
In this way no extra memory is needed. Figure 11b shows an example of the
data gathering for one processor. The two methods are described more thor-
oughly in Appendix A

The amount of communication

The main communication between the processors is in the non-linear part,
where five variables are collected from the main memory and three variables
are stored to the main memory. Thus a total of eight variables have to be sent.
Each processor performs calculations on approximately ny/nproc xz-planes.
The amount of data that needs to be collected from the other processors is for
each plane nx(nz − nz/nproc). This gives that for all variables each processor

Turbulence simulations on parallel computers 253

�a�

y

z
x

ip � �
ip � �

ip � �
ip � �

�b�

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

y

zip � � ip � � ip � � ip � �

Figure 11. a) The distribution of the main storage on four
processors ip = 1, ..., 4. b) The gathering of data in the nonlin-
ear part (nonlin) of the code for processor number two. The
completely shaded area is local on the processor and need not
to be received from the others, and the half-shaded area is sent
to processor number two. The x-direction is omitted for clar-
ity.

needs to collect

Ntot =
ny nx nz

nproc

(
1 − 1

nproc

)
(2)

real numbers from the other processors at each Runge-Kutta iteration. The
amount of data that each processor needs to send is equally large.

The IBM SP2 communicates with a high performance switch which has
a bandwidth of 110MByte/s and a latency of 25 − 30µs. The MPI on the
Cray T3E has a bandwidth of 320MByte/s and a latency of 12.8µs. In order

254 K. Alvelius & M. Skote

to reduce the effect of the latency and use the bandwidth optimally, the data
should be arranged in large groups when sent.

2.4. Performance on the SP2 and T3E

The main computational work in the code is in the FFT which was treated in
the previous chapter. The performance of the two methods of redistributing
data described in section 2.3.3 is investigated by using a model problem of the
same structure as the code. The performance of the code can then be measured,
using the most efficient FFT and message passing method.

The y-direction is not generally even divisible with the number of proces-
sors, i.e. ny/nproc is not an integer. Therefore, in the last y-loop count not all
processors are active and the loop is not completely parallelizable. If nproc is
relatively small compared to ny (as is the case with e.g. the Cray C90 and J90)
the effect from this on the performance is small. When nproc is of the same
order as ny (as may be the case for e.g. the IBM SP2 and the Cray T3E) this
effect may be of importance.

2.4.1. Performance of the MPI

The most important feature of the message passing is that it should be fast,
i.e. the time spent in moving data between processors should be small so that
the speed up of the code is not limited by the message passing. It is also
interesting to study how the efficiency of the data transfer depends on the
number of processors. The speed up is of course dependent on how much work
is performed between the data redistributions. The test problem was set up so
that a clear difference could be seen between the two methods.

In figure 12 the two methods are compared for the two cases, table 4.
They show that for case two method two is faster than method one for both
computers (method one was not possible to run with less than 4 processors due
to the large memory requirement). However, for case one method one is faster
on the T3E while method two still is faster on the SP2. Hence, method one
is better than method two only on the T3E for a small problem (case one) on
many processors. However, the size corresponding to case one would not need
to run on more than 16 processors in a real application, thus method two is
the one to prefer in the code. It is also observed that the SP2 performs better
for the small case while the T3E performs better for the larger case.

In the following only results using method two of the data communication
will be presented since method one was found not to be useful due to the lower
performance, especially on the SP2, and the larger amount of required memory.

If we take into account that the y-loop is not even divisible with the number
of processors, the maximum possible speed up of the test problem code is

ny(
Int

(
ny

nproc

)
+ 1

) . (3)

Turbulence simulations on parallel computers 255

2 4 8 16 32 64
0

0.5

1

1.5

2 4 8 16 32 64
0

0.02

0.04

0.06

0.08

0.1

0.12(a) (b)

1
time

nproc

1
time

nproc

Figure 12. Performance on — T3E - - SP2; x Method 1 o
Method 2. a) Case one. b) Case two.

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

2 4 8 16 32 64
0

0.02

0.04

0.06

0.08

0.1

0.12(a) (b)

1
time

nproc

1
time

nproc

Figure 13. Performance on — T3E - - SP2; o Method 2.
Curves with no circles are the optimal speed up. a) Case one.
b) Case two.

In figure 13 the performance of the test problem is shown together with the
optimal speed up from (3). The T3E is slightly closer to the optimal speed
up performance than the SP2, indicating that the message passing performs
better. We also have a closer adherence to the optimal curves for the larger
case (for both T3E and SP2) which is associated with larger data sets which
increases the performance of the message passing.

Bandwidth

It is a well known fact that the bandwidth, or the data transfer rate, decreases
considerably from the maximum values quoted in section 2.3.3 if the amount of
data which is sent decreases below a certain level, e.g. one Mbyte on the T3E.

256 K. Alvelius & M. Skote

2 4 8 16 32 64
0

10

20

30

40

50

60

70

2 4 8 16 32 64
0

100

200

300

400

500

600(a) (b)

kbyte

nproc

kbyte

nproc

Figure 14. Size of data package. a) Case one b) Case two.

The size of the individual data package sent from one processor to another is

Size =
nx nz

nproc
. (4)

This quantity is plotted for different number of processors in figure 14. For
both cases the size is well below one Mbyte for all values of nproc which would
affect the bandwidth. The size decreases with increasing number of processors
and consequently the data transfer rate for each individual processor should
decrease. Although the performance of each processor decreases, the effective
time of the message passing should actually decrease since the amount of data
that is sent becomes smaller.

If it is assumed that the parallelization is optimal, i.e. q = 1 in Amdahls
law (1), the time spent on data transfer, tMPI, is derived as the difference
between total time and the total time for one processor divided by the number
of processors,

tMPI = tnproc
− tnproc=1

nproc
, (5)

where tnproc
is the program CPU time for one processor when a total of nproc

processors is used. As already noted in (3) the speed up is not linear in nproc but
depends on both nproc and ny. Using this approach a more accurate estimate
is obtained,

tMPI = tnproc
−

Int
(

ny
nproc

)
+ 1

ny
tnproc=1. (6)

In figure 15 the performance of the test cases is plotted for the two comput-
ers together with inverse of the time tMPI. Due to memory limitations on the
T3E case two was not possible to run on a single processor and the time tMPI

is not available. From figure 15 it is clear that the time of the message passing
indeed decreases with increasing values of nproc, except for the small case on
the T3E which actually obtains relatively high performance at few processors.

Turbulence simulations on parallel computers 257

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16 32 64
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35(a) (b)

1
time

nproc

1
time

nproc

Figure 15. Performance on — T3E - - SP2; corresponding
curves with no rings show the MPI performance. a) Case one.
b) Case two.

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16 32 64
0

5

10

15

20

25(a) (b)

kbyte

nproc

kbyte

nproc

Figure 16. Total amount of data sent. a) Case one b) Case two.

For the larger case the message passing takes a smaller amount of time com-
pared to the total time and the increase in performance of the message passing
with nproc seems to be stronger.

The amount of data that is being sent by each processor is given by equation
(2), and is shown in figure 16. To get the data transfer rate, the amount of
data is divided by the time spent on the transfer tMPI. As the communication
is very intense between the processors, i.e. each processor needs to both send
and receive data from all other, the maximum possible transfer rate of receiving
data for each processor is only half of the bandwidth.

The rate is plotted in figure 17 for both cases. For case one the T3E
performs better with regards to the bandwidth for a small number of processors.
Also, the rate decreases with increasing number of processors, due to the smaller
package size observed in figure 14, and the difference between the two computers
disappear. In case two the rate is overall higher due to larger data packages
and it also shows a slight increase at the highest values of nproc.

258 K. Alvelius & M. Skote

2 4 8 16 32 64
0

10

20

30

40

50

60

70

2 4 8 16 32 64
0

5

10

15

20

25

30(a) (b)

Mbyte
s

nproc

Mbyte
s

nproc

Figure 17. Data transfer rate per processor. — T3E - - SP2.
a) Case one. b) Case two.

The theoretical data transfer rate as a function of message buffer size can
be found in a Cray manual. The low data transfer rate is surprising since the
theoretical values for the T3E are much higher. If case one is considered for two
processors, the theoretical value is 230 Mbyte/s. Since this value is for point-to-
point communication, the value has to be divided by two to be compared with
our case where all the processors are both sending and receiving. The measured
rate for our test case one is 70 Mbyte/s on two processors. If the MPI derived
data type used in the communication is changed to a standard vector type,
and sent to another vector of the same type, the performance increases to 114
Mbyte/s, which is very close to the expected theoretical value. If now the case
one on 64 processors is considered the theoretical value is 25 Mbyte/s, whereas
the measured value is 3 Mbyte/s. If the same number of bytes is sent between
only two processors, the rate increases to 12 Mbyte/s, which again is half of
the theoretical value. In this case there is no difference in the performance if a
standard vector is used instead of a MPI derived data type. The low bandwidth
is thus explained by two different effects. For a small number of processors,
when the data packages still are relatively large, the low bandwidth is due
to the MPI derived data type which slows down the communication. For a
large number of processors, the explanation is the decrease of communication
efficiency (network contention) when many processors are being used.

2.4.2. Performance of the code

The complete code has been run with the optimal FFT and method two for the
message passing for the two cases. Since the non-linear part is not completely
parallelizable the factor q in Amdahls law depends on nproc and is difficult
to give directly. Most time of the code is spent in the linear and non-linear
parts. If it is assumed that they take the same computational time on one
processor and that the remaining computational time is negligible the following

Turbulence simulations on parallel computers 259

4 8 16 32 64
0

500

1000

1500

2000

2500

3000

3500

16 32 64
0

500

1000

1500

2000

2500

3000

3500
(a) (b)

Mflop
s

Case
one

nproc

Mflop
s

Case
two

nproc

Figure 18. Mflop/s rates for different number of processors.
— T3E - - SP2 · · · maximum speed up.

expression can be derived for the optimal speed up,

2
1

nproc
+ 1

ny

(
Int

(
ny

nproc

)
+ 1

) . (7)

This formula, with nproc = 8 and ny = 97, gives when using Amdahls law (1),
a q of value 0.99, corresponding to the measured values in figure 10. In figure
18 the performance of the code is shown as Mflop/s together with the optimal
speed up given by (7). The speed up is better for case two than case one.
The scaling is better on the T3E for both cases, which was noticed also for the
model problem. We actually obtain an optimal performance for the larger case
on the T3E. However, the overall performance is better on the SP2, which is
approximately twice as fast as the T3E. This was also observed in the model
problem for the FFT (see table 4).

Hence, for both the large and small cases, the scaling is better for the T3E
associated with the higher performance of the message passing, and the overall
performance is better for the SP2, mainly due to the higher performance of the
FFT.

For case one it is possible to compare the performance with the vector
computers (see figure 10). One processor on the C90 corresponds approximately
to four processors on the J90, four processors on the SP2 and eight on the T3E.

3. Conclusions

To be able to implement a code on a parallel computer with distributed memory,
a lot of effort must be put into programming the communication between the
processors efficiently. The most sensible approach seems to be through a model
of the code with the same structure of the variables. By using a test problem,
the different options of communication can be tested and evaluated before
implementing the communications in the code.

260 K. Alvelius & M. Skote

The MPI routines might be working in different ways on different comput-
ers, depending on the implementation. The code might be working perfectly
on one machine, but this does not imply that the code can be expected to run
efficiently, or be working at all, on another. Portability of codes seems to have
been lost.

It is concluded that it is possible to achieve high performance on super
scalar machines, with computational speeds comparable and higher than those
of the traditional vector machines. The code seems to scale efficiently with the
number of processors and therefore a high performance might be obtained by
using many processors in the simulation. The lower scaling on the smaller case
is not critical since it does not need to be run on many processors in a real
computation.

Another important issue is the availability of the computer, i.e. how long
time the user have to spend queuing before a job begins and how many pro-
cessors you may use. In some cases the job may be subjected to timesharing
with other jobs which reduces the performance.

Acknowledgments

Computer time was provided by the Center for Parallel Computers (PDC) at
the Royal Institute of Technology (KTH), the The National Supercomputer
Center in Sweden (NSC) at Linköping University, and The San Diego Super-
computer Center (SDSC) at the University of California. In addition we thank
Prof. Joseph Haritonidis at the Ohio State University (OSU) for letting us use
his Origin 200.

Appendix A.

The first method

The first method was developed by Högberg (1998) and is based on the
MPI ALLTOALLV command. When the problem size and the number of
processors have been determined, vectors describing where to send data, and
from where to receive data, are set up for each processor individually. When
these vectors are available MPI ALLTOALLV is the only command needed
for all communications. Every processor has two data vectors, one for xz-
planes and one for xy-planes. The size of these vectors depends on the prob-
lem size and the number of processors. Other vectors contain information
about how many planes each processor handles, and information about where
to take data for sending and where to put received data. These vectors are used
with MPI ALLTOALLV to transpose the whole field that has been distributed
among the processors. The main drawback of this method is that data is stored
twice, which will increase the memory requirements compared to the second
method.

Turbulence simulations on parallel computers 261

� �� �

Figure 19. The first left neighbor in the four processor case.

The second method

The sending and receiving data is performed with the commands MPI SEND
and MPI RECV, which are used in the modified getxz and putxz routines.
When parallelized, the original y-loop, which goes from 1 to ny, is changed
to a loop that goes from 1 to Int[(ny − 1)/nproc] + 1. In this modified loop,
the number of y-planes treated at the same time is nproc, except for the last
loop count where the remaining y-planes are treated. At each loop count each
processor sends and receives data to and from all other processors. This is
achieved by an inner loop, from 1 to nproc − 1, in which all processors sends
data to another (all different) processor.

Let ip be the number of a processor. Processors ip and ip − 1 are said to
be neighbors (figure 19). In particular processor 1 is a neighbor to processor
nproc. At each loop count ii, which goes from 1 to nproc − 1, each processor
sends data to its neighbor number ii to the left, i.e. processor ip sends data to
processor ip − ii.

At each MPI SEND command the data that is sent is defined through
a special vector in the MPI standard, describing the number of elements in
the data set, the length of one element and the distance (stride) between two
elements. A corresponding vector is constructed to define where the data is to
be stored with the MPI RECV command. These vectors are determined by the
number of discretization modes in each direction and the number of processors.

On the IBM SP2 the MPI SEND is implemented as a standard send that is
not able to complete until the receive has started. Since all processors start with
sending and none is receiving a deadlock occurs. In this case a non-blocking
standard send, MPI ISEND, together with a test, MPI WAIT, are used. If this
method is used on the Cray T3E instead of the standard send no change in the
performance is detected.

References

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral
Methods in Fluids Dynamics. Springer.

Högberg, M. 1998 Private communication.

262 K. Alvelius & M. Skote

Lundbladh, A., Henningson, D. S. & Johansson, A. V. 1992 An efficient spectral
integration method for the solution of the Navier-Stokes equations. FFA-TN
1992-28, Aeronautical Research Institute of Sweden, Bromma.

Lundbladh, A., Schmid, P. J., Berlin, S. & Henningson, D. S. 1994 Simula-
tion of bypass transition in spatially evolving flows. Proceedings of the AGARD
Symposium on Application of Direct and Large Eddy Simulation to Transition
and Turbulence, AGARD-CP-551.

Skote, M., Henkes, R. A. W. M. & Henningson, D. S. 1998 Direct numerical
simulation of self-similar turbulent boundary layers in adverse pressure gradients.
Flow, Turbulence and Combustion 60, 47–85.

