
An efficient spectral method for simulation of
incompressible flow over a flat plate

By Anders Lundbladh∗†, Stellan Berlin†, Martin Skote†,
Casper Hildings∗†, Jaisig Choi‡, John Kim‡

and Dan S. Henningson∗†

An efficient spectral integration technique for the solution of the Navier-Stokes
equations for incompressible flow over a flat plate is described and implemented
in a computer code using the FORTRAN language. The algorithm can either
be used for temporal or spatial simulation. In the latter case, a fringe region
technique is used to allow a streamwise inflow and outflow of the computational
domain. At a constant distance from the flat plate an artificial boundary is
introduced and a free-stream boundary condition applied. The plate parallel
directions are discretized using Fourier series and the normal direction using
Chebyshev series. Time integration is performed using third order Runge-
Kutta method for the advective and forcing terms and Crank-Nicolson for the
viscous terms. The version of the code described in this report can be run
on parallel computers with shared memory. A slightly different version also
exists which utilizes MPI (Message-Passing Interface) for parallelization on
distributed memory computers.

∗Aeronautical Research Institute of Sweden,Box 11021, SE-161 11 Bromma, Sweden
†Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden
‡Department of Mechanical and Aero Space, UCLA, 405 Hilgard Ave, LA, CA 90095, USA

265

Contents

1. Introduction 269

2. The numerical method 270

2.1. Derivation of the velocity-vorticity formulation 270

2.2. Boundary condition 271

2.3. Forcing for temporal simulation 272

2.4. Forcing for spatial simulation 273

2.5. Temporal discretization 274

2.6. Horizontal discretization – Fourier expansions 278

2.6.1. Normal velocity and normal vorticity equations 278

2.6.2. Horizontal velocities and wavenumber zero 279

2.6.3. Solution procedure with boundary conditions 280

2.7. Normal discretization – Chebyshev expansion 283

2.7.1. Chebyshev tau method-CTM 285

2.7.2. Chebyshev integration method-CIM 286

2.7.3. Integration correction 287

2.8. Pressure 288

3. Implementation 289

3.1. Program structure of bla 290

3.1.1. Coarse program structure, step 1 - 4 290

3.1.2. Step 1, initialization 290

3.1.3. Step 2, computations in physical space 291

266

An efficient spectral method for simulation 267

3.1.4. Step 3, computations in Fourier-Chebyshev space 292

3.1.5. Step 4, output 292

3.2. Data structure 293

3.2.1. Complex numbers and FFTs 293

3.2.2. Main storage, boxes, drawers, and planes 293

3.2.3. Naming conventions 294

4. Operation 294

4.1. Compiling 295

4.2. Generation of initial velocity fields with bls 297

4.3. Generation of non-similarity base flows 297

4.4. Execution of bla 298

4.4.1. Storage requirements 298

4.4.2. Tuning 298

4.5. Post processing 299

4.5.1. Post processing velocity files with pre and ritpre 299

4.5.2. Post processing velocity files with rit 299

4.5.3. Post processing velocity files with cmp 300

4.5.4. Post processing plane files with rps 300

4.5.5. Post processing velocity files with fou 300

4.5.6. Postprocessing amplitude files with pamp1, pamp2,
pampw, pampw, pampw2 and pext1 300

4.5.7. Postprocessing xy-statistics files with pxyst 300

5. File formats 301

5.1. bls.i file 301

5.2. bla.i file 304

5.3. Velocity file 312

5.4. Pressure file 313

5.5. Amplitude file 313

5.6. Wave amplitude file 314

268 A. Lundbladh et al.

5.7. Extremum file 314

5.8. Plane velocity file 315

5.9. xy-statistics file 315

5.10. Free-stream velocity table file 316

5.11. wave.d forced wave file 316

5.12. basic.i Base flow profile file 317

Acknowledgments 317

References 317

Appendix A. Release notes 320

Appendix B. Scaling of variables 321

Appendix C. Investigation of the fringe method 322

C.1. Channel flow 322

C.2. Boundary-Layer Flow 324

C.3. Boundary-Layer with Pressure Gradient 328

C.3.1. Qualities of the fringe 328

C.3.2. Spatial evolution of a disturbance 328

Appendix D. Examples, user created files 332

D.1. Example par.f, bls.i, bla.i file for a simple simulation 332

D.2. Example par.f, bla.i file for a simulation of a turbulent
boundary layer under an adverse pressure gradient. 333

An efficient spectral method for simulation 269

1. Introduction

Solution of the Navier-Stokes equations for the simulation of transition and
turbulence requires high numerical accuracy for a large span of length scales.
This has prompted a development of accurate spectral methods. Unfortunately
even with these methods computations require an immense amount of computer
time and memory. In the present report we use spectral methods to derive an
accurate algorithm of the flat plate boundary layer flow geometry. The basic
numerical method is similar to the Fourier-Chebyshev method used by Kim
et al. (1987).

The original algorithm (Lundbladh et al. 1992a) solved the incompressible flow
equations in a channel flow geometry. To allow simulations of the flow over a flat
plate a free-stream boundary condition is required, and for spatial simulations
a fringe region technique similar to that of Bertolotti et al. (1992) is described.

For further details about spectral discretizations and additional references see
Canuto et al. (1988).

The original channel code and the implementation of the present numerical
method has been used in a number of investigations.
In channel flow:
Henningson et al. (1990), Lu & Henningson (1990), Lundbladh & Johansson
(1991), Schmid & Henningson (1992), Lundbladh (1993), Henningson et al.
(1993), Lundbladh & Henningson (1993), Schmid & Henningson (1993), Elofs-
son & Lundbladh (1994), Kreiss et al. (1994), Lundbladh et al. (1994a), Schmid
et al. (1994), Henningson (1995), Reddy et al. (1998).
In boundary layer flow:
Lundbladh et al. (1992b), Berlin et al. (1994), Henningson & Lundbladh (1994),
Lundbladh et al. (1994b), Henningson & Lundbladh (1995), Högberg & Hen-
ningson (1998), Schmid et al. (1996), Nordström et al. (1999), Hildings (1997),
Berlin & Henningson (1999), Berlin et al. (1998a), Berlin et al. (1999), Berlin
et al. (1998b), Bech et al. (1998), Skote et al. (1998).

270 A. Lundbladh et al.

2. The numerical method

2.1. Derivation of the velocity-vorticity formulation

The starting point is the non-dimensionalized incompressible Navier-Stokes
equations in a rotating reference frame, here written in tensor notation,

∂ui

∂t
= − ∂p

∂xi
+ εijkuj(ωk + 2Ωk) − ∂

∂xi
(
1
2
ujuj) +

1
R
∇2ui + Fi, (1)

∂ui

∂xi
= 0, (2)

with boundary conditions at the flat plate and at the free-stream boundary,
which are discussed in the next subsections.

The first equation represents conservation of momentum and the second equa-
tion incompressibility of the fluid. Here (x1, x2, x3) = (x, y, z) are the stream-
wise, normal and spanwise coordinates, (u1, u2, u3) = (u, v, w) are the respec-
tive velocities, (ω1, ω2, ω3) = (χ, ω, ϑ) are the corresponding vorticities, and
p is the pressure. The streamwise and spanwise directions will alternatively
be termed horizontal directions. Ωk is the angular velocity of the coordinate
frame around axis k. In practise the most often used case is rotation around
the spanwise axis, thus let Ω = Ω3 be the rotation number. Fi is a body force
which is used for numerical purposes that will be further discussed below. It
can also be used to introduce disturbances in the flow. The Reynolds number is
defined as R = U∞δ∗/ν, where U∞ is the undisturbed streamwise free-stream
velocity at x = 0 and t = 0, δ∗ is the displacement thickness of the undisturbed
streamwise velocity at x = 0 and t = 0, and ν is the kinematic viscosity. The
size of the solution domain in physical space is xL, yL and zL in the streamwise,
normal and spanwise directions, respectively.

A Poisson equation for the pressure can be obtained by taking the divergence
of the momentum equation,

∇2p =
∂Hi

∂xi
−∇2(

1
2
ujuj), (3)

where Hi = εijkuj(ωk + 2Ωk) + Fi. Application of the Laplace operator to
the momentum equation for the normal velocity yields an equation for that
component through the use of equations (3) and (2). One finds

∂∇2v

∂t
=

(
∂2

∂x2
+

∂2

∂z2

)
H2 − ∂

∂y
(
∂H1

∂x
+

∂H3

∂z
) +

1
R
∇4v. (4)

An efficient spectral method for simulation 271

This equation can, for numerical purposes, be written as a system of two second
order equations:

∂φ

∂t
= hv +

1
R
∇2φ,

∇2v = φ, (5)

where

hv =
(

∂2

∂x2
+

∂2

∂z2

)
H2 − ∂

∂y

(
∂H1

∂x
+

∂H3

∂z

)
. (6)

An equation for the normal vorticity can be found by taking the curl of the
momentum equation. The second component of that equation reads,

∂ω

∂t
= hω +

1
R
∇2ω, (7)

where

hω =
∂H1

∂z
− ∂H3

∂x
. (8)

Note that the equations for φ, v and ω have similar form, and can thus be
solved using the same numerical routine. Once the the normal velocity v and
the normal vorticity ω have been calculated the other velocity components can
be found form the incompressibility constraint and the definition of the normal
vorticity.

2.2. Boundary condition

The boundary conditions in the horizontal directions are periodic but we need
to specify boundary conditions at the plate and in the free-stream, to solve
equations (5) and (7). The natural no-slip boundary conditions read

v(y = 0) = 0,
∂v(y = 0)

∂y
= 0, ω(y = 0) = 0. (9)

For disturbance generation and control by blowing and suction through the
plate, an arbitrary time dependent velocity distribution,

v(y = 0) = vBS(x, z, t), (10)

can be used.

The flow is assumed to extend to an infinite distance perpendicularly to the
flat plate. However, the discretization discussed below can only handle a finite
domain. Therefore, the flow domain is truncated and an artificial boundary
condition is applied in the free-stream.

The simplest possible is a Dirichlet condition i.e.,

ui(y = yL) = Ui(y = yL), (11)

272 A. Lundbladh et al.

where Ui(x, y) is a base flow that is normally chosen as a Falkner-Skan-Cook
flow. An arbitrary pressure gradient, to for instance create a separation bubble,
can be imposed by choosing Ui accordingly.

The desired flow solution generally contains a disturbance and that will be
forced to zero by the Dirichlet condition. This introduces an error compared
to the exact solution for which the boundary condition is applied at an infi-
nite distance from the wall. The error may result in increased damping for
disturbances in the boundary layer.

Some improvement can be achieved by using a Neumann condition,
∂ui

∂y
|y=yL

=
∂Ui

∂y
|y=yL

. (12)

This condition can be shown to be stable if there is outflow at the boundary
or the inflow is weaker than O(1/R). This restriction is usually fulfilled if the
boundary is placed on a sufficiently large distance from the wall, so that the
disturbance velocity is small.

A generalization of the boundary condition used by Malik et al. (1985) allows
the boundary to be placed closer to the wall. It is an asymptotic condition
that decreases the error further and it reads,[

∂ûi

∂y
+ |k|ûi

]
y=yL

=

[
∂Ûi

∂y
+ |k|Ûi

]
y=yL

, (13)

where ˆ denotes the horizontal Fourier transform with respect to the horizontal
coordinates, k2 = α2 + β2 and α and β are the horizontal wavenumbers (see
equation 29). Thus this condition is most easily applied in Fourier space. The
boundary condition exactly represents a potential flow solution decaying away
from the wall. It is essentially equivalent to requiring that the vorticity is zero
at the boundary. Thus, it can be applied immediately outside the vortical part
of the flow.

2.3. Forcing for temporal simulation

A localized disturbance or wave of relatively short wavelength which travels
downstream in a slowly growing boundary layer is surrounded by a boundary
layer of almost constant thickness which grows slowly in time. This forms the
basis of the temporal simulation technique.

Following the ideas of Spalart & Yang (1987) we assume that the boundary
layer streamwise velocity is U(x, y) and introduce a reference point xr = x0+ct
where c is a reference speed. We now assume that the undisturbed boundary
layer in the vicinity of the disturbance has the velocity distribution U(y, t) =
U(xr, y) , V (y, t) = 0. Since the boundary layer is now parallel (as there is
no dependence on x), it is possible to apply periodic boundary conditions in
the horizontal directions. However, whereas U(x, y) (with the corresponding

An efficient spectral method for simulation 273

V given by continuity) is a solution to Navier-Stokes or at least the boundary
layer equations, this is not true for {U(y, t), V (y, t)}. Thus to ensure the correct
development of the boundary layer profile over extended periods of time it
is necessary to add a (weak) forcing to balance the streamwise momentum
equation,

F1 =
∂U(y, t)

∂t
− 1

R

∂2U(y, t)
∂y2

= c
∂U(x, y)

∂x
− 1

R

∂2U(x, y)
∂y2

, (14)

where the right hand side should be evaluated at the reference coordinate xr.
The reference speed should be chosen as the group speed of the wave or the
propagation speed of the localized disturbance for best agreement with a spa-
tially developing flow. To fully justify the periodic boundary conditions in the
case of a wave train, the wave itself should be slowly developing.

2.4. Forcing for spatial simulation

The best numerical model of a physical boundary layer, which is usually devel-
oping in the downstream direction rather than in time, is a spatial formulation.
To retain periodic boundary conditions, which is necessary for the Fourier dis-
cretization described below, a fringe region is added downstream of the physical
domain, similar to that described by Bertolotti et al. (1992). In the fringe region
disturbances are damped and the flow returned to the desired inflow condition.
This is accomplished by the addition of a volume force which only increases
the execution time of the algorithm by a few percent.

The form of the forcing is :

Fi = λ(x)(Ui − ui), (15)

where λ(x) is a non-negative fringe function which is significantly non-zero
only within the fringe region. Ui is the same flow field used for the boundary
conditions, which also contains the desired flow solution in the fringe. The
streamwise velocity component is calculated as,

Ux(x, y) = U(x, y) + [U(x + xL, y) − U(x, y)] S
(

x − xmix

∆mix

)
, (16)

where U(x, y) is normally a solution to the boundary layer equations. Here
xmix and ∆mix are chosen so that the prescribed flow, within the fringe re-
gion, smoothly changes from the outflow velocity of the physical domain to the
desired inflow velocity. S is given below. The wall normal component Uy is
then calculated from the equation of continuity, and the spanwise velocity Uz

is set to zero for simulations where the mean flow is two dimensional. For three
dimensional boundary layers Uz is computed from a boundary layer solution in
fashion analogous to that for Ux. This choice of U ensures that for the undis-
turbed laminar boundary layer the decrease in thickness is completely confined

274 A. Lundbladh et al.

to the fringe region, thus minimizing the upstream influence. A forced distur-
bance to the laminar flow can be given as inflow condition if that disturbance
is included in Ui.

A convenient form of the fringe function λ is as follows,

λ(x) = λmax[S
(

x − xstart

∆rise

)
− S

(
x − xend

∆fall
+ 1

)
]. (17)

Here λmax is the maximum strength of the damping, xstart to xend the spatial
extent of the region where the damping function is non-zero and ∆rise and
∆fall the rise and fall distance of the damping function. S(x) is a smooth step
function rising from zero for negative x to one for x ≥ 1. We have used the
following form for S, which has the advantage of having continuous derivatives
of all orders.

S(x) =

0 x ≤ 0
1/[1 + exp(1

x−1 + 1
x)] 0 < x < 1

1 x ≥ 1
. (18)

To achieve maximum damping both the total length of the fringe and λmax

have to be tuned. The actual shape of λ(x) is less important for the damping
but it should have its maximum closer to xend than to xstart. The damping
is also strongly effected by the resolution of the disturbance that should be
damped. An investigation of how the fringe parameters effect the disturbance
in the fringe can be found in Appendix C.

For maximum computational efficiency the simulated flow has to be considered
when the fringe parameters are tuned. Assuming that the achieved damping is
sufficient, a short fringe reduces the box length and therefore the required CPU
time per iteration. However, if the flow gradients introduced in the fringe region
are larger than those in the physical domain that may decrease the time step
and consequently increase the necessary number of iterations. Note that the
boundary layer growth causes outflow through the free-stream boundary. The
streamwise periodicity requires that all that fluid enters in the fringe region.

Analysis of Navier-Stokes equations with a fringe forcing term yields that there
is an additional part of the disturbance associated with the pressure whose
decay is not dependent on λ. For a boundary layer, this solution decays appre-
ciably over a downstream distance equal to the boundary layer thickness, and
thus the fringe region must be some factor (say 10 to 30) times this thickness
to get a large decay factor, see Nordström et al. (1999).

2.5. Temporal discretization

The time advancement is carried out by one of two semi-implicit schemes. We
illustrate them on the equation

∂ψ

∂t
= G + Lψ, (19)

An efficient spectral method for simulation 275

an/∆tn bn/∆tn cn/∆tn

RK3 8/15 0 0
3-stage 5/12 -17/60 8/15

3/4 -5/12 2/3
RK3 8/17 0 0
4-stage 17/60 -15/68 8/17

5/12 -17/60 8/15
3/4 -5/12 2/3

Table 1. Time stepping coefficients.

which is on the same form as equation (5) and (7). ψ represents φ or ω, G
contains the (non-linear) advective, rotation and forcing terms and depends
on all velocity and vorticity components, L is the (linear) diffusion opera-
tor. L is discretized implicitly using the second order accurate Crank-Nicolson
(CN) scheme and G explicitly by a low storage third order three or four stage
Runge-Kutta (RK3) scheme. These time discretizations may be written in the
following manner : (G and L are assumed to have no explicit dependence on
time)

ψn+1 = ψn + anGn + bnGn−1 + (an + bn)
(

Lψn+1 + Lψn

2

)
, (20)

where the constants an and bn are chosen according to the explicit scheme used.
The two possibilities for the RK3 schemes are shown in the table 1. Note that
the RK3 schemes have three or four stages which imply that a full physical
time step is only achieved every three or four iterations. The time used for the
intermediate stages are given by t = t + cn, where cn is given in table 1.

To obtain some insight into the properties of these discretizations they will be
applied to the two dimensional linearized Burgers’ equation with a system ro-
tation. The eigenvalue analysis yields a necessary condition for stability which
must be augmented by an experimental verification. Putting the equation into
the form of equation (19) yields :

ψ =
[

u
w

]
,

G =
[

u0∂/∂x + w0∂/∂z 2Ω
−2Ω u0∂/∂x + w0∂/∂z

] [
u
w

]
,

L =
1
R

[
∂2/∂x2 + ∂2/∂z2 0

0 ∂2/∂x2 + ∂2/∂z2

]
. (21)

It can be seen as an approximation to equation (1). The dependence of ψ on
both the streamwise and spanwise coordinate directions have been included in

276 A. Lundbladh et al.

order to indicate how multiple dimensions enter into the stability considera-
tions.

We will for simplicity use Fourier discretization in the spatial directions. The
Chebyshev method acts locally as a transformed Fourier method and thus the
stability properties derived here can be applied with the local space step. An
exception to this occurs at the endpoints where the transformation is singular.
It can be shown that the Chebyshev method is more stable there. A numerical
study of a 1-dimensional advection equation using the Chebyshev discretization
yields that the upper limit of its spectrum along the imaginary axis is about 16
times lower than the simple application of the results from the Fourier method.
This allows a corresponding increase of the time step when the stability is
limited by the wall normal velocity at the free-stream boundary.

Fourier transforming in x and z yields:

ψ̂t =
[

iαu0 + iβw0 2Ω
−2Ω iαu0 + iβw0

]
ψ̂ − α2 + β2

R
ψ̂, (22)

where α and β are the wavenumbers in the x- and z-directions, respectively.
This equation can be diagonalized to yield the equation,

ût = i(αu0 + βw0 ± 2Ω)û +
α2 + β2

R
û. (23)

We assume that the absolute stability limit will first be reached for the largest
wavenumbers of the discretization αmax and βmax, which corresponds to a
wavelength of 2 ·∆x and 2 ·∆z, respectively. ∆x and ∆z are the discretization
step lengths in physical space. The following parameters are useful for our
analysis,

µ = ∆t[2|Ωk| + (αmax|u0| + βmax|w0|)]

= ∆t

[
2|Ωk| + π

(|u0|
∆x

+
|w0|
∆z

)]
, (24)

λ =
1
R

∆t(α2
max + β2

max)

=
1
R

π2∆t

(
1

∆x2
+

1
∆z2

)
. (25)

The parameter µ is usually called the spectral CFL number, in analogy with
the stability theory for finite difference equations. Henceforth it will be termed
simply the CFL number. Using the RK3-CN time discretization we have the

An efficient spectral method for simulation 277

 0.0 0.5 1.0 1.5 2.0

µ

λ

Figure 1. Contours of constant amplification factor for the
RK3-CN method. Contour spacing is 0.05 with dashed lines
indicating that the amplification factor is below unity.

following three stages in each time step for the model equation (23),

ûn+1 = ûn + iµa1û
n − λ

2
a1(ûn+1 + ûn),

ûn+2 = ûn+1 + iµ(a2û
n+1 + b2û

n) − λ

2
(a2 + b2)(ûn+2 + ûn+1), (26)

ûn+3 = ûn+2 + iµ(a3û
n+2 + b3û

n+1) − λ

2
(a3 + b3)(ûn+3 + ûn+2).

The absolute stability regions, i.e. the regions where all solutions to the above
difference equations are bounded in the µ – λ plane, can now be found by
calculating the roots of the associated characteristic polynomials. Contours of
constant absolute values of the roots are given in figure 1. Figure 1 shows the
curves for the RK3-CN method. Note that higher values of λ (lower Reynolds
number) stabilizes the method, i.e. increases the CFL number (µ) that is
allowed for an absolutely stable solution. In the limit of infinite Reynolds
number the RK3-CN method approaches the limit

√
3, a result which also can

be arrived at through the standard analysis of the RK3 scheme alone. The
analysis for the four stage method is analogous and the stability limit is

√
8.

If the time advancement scheme (20) is applied to equations (5) and (7) we
find (for the moment disregarding the boundary conditions),

(1 − an + bn

2R
∇2)φn+1 = (1 +

an + bn

2R
∇2)φn + anhn

v + bnhn−1
v ,

∇2vn+1 = φn+1, (27)

278 A. Lundbladh et al.

and

(1 − an + bn

2R
∇2)ωn+1 = (1 +

an + bn

2R
∇2)ωn + anhn

ω + bnhn−1
ω . (28)

2.6. Horizontal discretization – Fourier expansions

The discretization in the horizontal directions uses a Fourier series expansions
which assumes that the solution is periodic.

The streamwise and spanwise dependence of each variable can then be written

u(x, z) =

Nx
2 −1∑

l=−(Nx
2 −1)

Nz
2 −1∑

m=−(Nz
2 −1)

û(α, β) exp[i(αlx + βmz)], (29)

where αl = 2πl/xL and βm = 2πm/zL, and Nx and Nz are the number of
Fourier modes included in the respective directions. Note that the indices
on the discrete wavenumbers α and β are sometimes left out for notational
convenience and that k2 = α2 + β2.

2.6.1. Normal velocity and normal vorticity equations

Expanding the dependent variables of equation (27) in Fourier series gives(
1 − an + bn

2R
(D2 − k2)

)
φ̂n+1 =

(
1 +

an + bn

2R
(D2 − k2)

)
φ̂n

+ anĥn
v + bnĥn−1

v ,

(D2 − k2)v̂n+1 = φ̂n+1, (30)

where D signifies a derivative in the normal direction. Note that the above
equations are two linear constant coefficient second order ordinary differential
equations in y. A similar equation can also be derived from equation (28).
These three equations can be written as follows,

(D2 − λ2)φ̂n+1 = f̂n
v , (31)

(D2 − k2)v̂n+1 = φ̂n+1, (32)

(D2 − λ2)ω̂n+1 = f̂n
ω , (33)

where

λ2 = k2 + 2R/(an + bn), (34)

f̂n
v = p̂n

v − 2Ran

an + bn
ĥn

v , (35)

f̂n
ω = p̂n

ω − 2Ran

an + bn
ĥn

ω, (36)

An efficient spectral method for simulation 279

and

p̂n
v = −

[
D2 − λ2 +

4R

an + bn

]
φ̂n − 2Rbn

an + bn
ĥn−1

v

= −f̂n−1
v −

[
2R

an−1 + bn−1
+

2R

an + bn

]
φ̂n − 2Rbn

an + bn
ĥn−1

v , (37)

p̂n
ω = −

[
D2 − λ2 +

4R

an + bn

]
ω̂n − 2Rbn

an + bn
ĥn−1

ω

= −f̂n−1
ω −

[
2R

an−1 + bn−1
+

2R

an + bn

]
ω̂n − 2Rbn

an + bn
ĥn−1

ω . (38)

We will denote the quantities p̂n
ω and p̂n

v the partial right hand sides of the
equations.

2.6.2. Horizontal velocities and wavenumber zero

Having obtained v̂ and ω̂ we can find û and ŵ using equation (2) and the def-
inition of the normal vorticity component, both transformed to Fourier space.
We find

û =
i

k2
(αDv̂ − βω̂), (39)

ŵ =
i

k2
(αω̂ + βDv̂). (40)

Similarly, we can find the streamwise and spanwise component of vorticity in
terms of ω̂ and φ̂,

χ̂ =
i

k2
(αDω̂ + βφ̂), (41)

ϑ̂ =
−i

k2
(αφ̂ + βDω̂). (42)

These relations give the streamwise and spanwise components of velocity and
vorticity for all wavenumber combinations, except when both α and β are equal
to zero. In that case we have to use some other method to find û0, ŵ0, χ̂0 and
ϑ̂0 (the zero subscript indicates that k = 0). The appropriate equations are
found by taking the horizontal average of the first and the third component of
equation (1). Due to the periodic BC all horizontal space derivatives cancel
out, i.e.,

∂u0

∂t
= H1 +

1
R

∂2u0

∂y2
, (43)

∂w0

∂t
= H3 +

1
R

∂2w0

∂y2
. (44)

280 A. Lundbladh et al.

After a time discretization we find,

(D2 − λ2)ûn+1
0 = f̂n

01, (45)

(D2 − λ2)ŵn+1
0 = f̂n

03, (46)

where

f̂n
0i = p̂n

0i −
2Ran

an + bn
Ĥn

0i, (47)

and

p̂n
0i = −

(
D2 − λ2 +

4R

an + bn

)
ûn

0i −
2Rbn

an + bn
Ĥn−1

0i

= −f̂n−1
0i (ψ0) −

(
2R

an−1 + bn−1
+

2R

an + bn

)
ûn

0i −
2Rbn

an + bn
Ĥn−1

0i . (48)

Here the 0 index in Ĥ0i refers to the zero wavenumber in both horizontal
directions. Note that the above system contains the same type of equations as
the system (32), and can thus be solved using the same numerical algorithm.
Once û0 and ŵ0 are calculated, the streamwise and spanwise components of
vorticity for k = 0 can be found as follows,

χ̂0 = Dŵ0, ϑ̂0 = −Dû0. (49)

2.6.3. Solution procedure with boundary conditions

A problem with the above equations is that the boundary conditions do not
apply to the quantities for which we have differential equations. To remedy
this, each of the equations can be solved for a particular solution with homo-
geneous boundary conditions. Then a number of homogeneous solutions with
non-homogeneous boundary conditions are found for the same equations. Fi-
nally the boundary conditions are fulfilled by a suitable linear combination of
particular and homogeneous solutions. Explicitly we proceed as follows:

An efficient spectral method for simulation 281

For all k =
√

α2 + β2 �= 0 and each of the two symmetries (symmetric and
antisymmetric with respect to reflections around y = yL/2) we solve :

(D2 − λ2)φ̂n+1
p = f̂n+1

v φ̂n+1
p (yL) = 0 (50)

(D2 − k2)v̂n+1
p = φ̂n+1

p v̂n+1
p (yL) =

{
v̂BS

2 symmetric
− v̂BS

2 antisymmetric
(51)

(D2 − λ2)φ̂n+1
h = 0 φ̂n+1

h (yL) = 1 (52)

(D2 − k2)v̂n+1
ha = φ̂n+1

h v̂n+1
ha (yL) = 0 (53)

(D2 − k2)v̂n+1
hb = 0 v̂n+1

hb (yL) = 1 (54)

(D2 − λ2)ω̂n+1
p = f̂n+1

ω ω̂n+1
p (yL) = 0 (55)

(D2 − λ2)ω̂n+1
h = 0 ω̂n+1

h (yL) = 1, (56)

where the subscripts p, h, ha and hb indicate the particular and the homoge-
neous parts. v̂BS is only non-zero for cases with blowing and suction through
the plate. Note that only one boundary condition is needed for each second
order equation since the assumption of symmetry (or antisymmetry) takes care
of the other. v̂n+1

p (yL) = 0 when the symmetric and antisymmetric solutions
are added and all the other solutions are zero at y = 0. Equations (52) and
(56) have zero right hand sides and the same boundary conditions. The so-
lution coefficients are therefore identical and so are also their symmetric and
antisymmetric coefficients. Thus, four calls of the the equation solver can be
reduced to one.

To fulfill the the remaining boundary conditions we first construct v̂p1, v̂h1 and
v̂h2,

v̂n+1
p1 = v̂n+1

p + Cp1v̂
n+1
ha v̂n+1

p1 (yL) = 0 v̂n+1
p1 (0) = vBS/2 (57)

v̂n+1
h1 = v̂n+1

ha /
∂v̂ha

∂y
(y = yL) v̂n+1

h1 (yL) = 0 v̂n+1
h1 (0) = 0 (58)

v̂n+1
h2 = v̂n+1

hb + Ch2v̂
n+1
ha v̂n+1

h2 (yL) = 1 v̂n+1
h2 (0) = 0, (59)

where Cp1 and Ch2 are chosen to fulfills the boundary condition ∂v/∂y = 0 at
the lower wall for each of the two symmetries of v̂p1 and v̂h2. As the symmetric
and antisymmetric parts of ∂v̂h1/∂y cancel at the lower wall their sum vh1

fulfills ∂vh1/∂y = 0.

Now the solutions (vp1, ωp), (vh1, ω = 0), (vh2, ω = 0) and (v = 0, ωh) fulfill all
the physical boundary conditions at the lower wall. The total normal velocity
and vorticity is then given by

v̂n+1 = v̂n+1
p1 + Cv1v̂

n+1
h1 + Cv2v̂

n+1
h2 , (60)

ω̂n+1 = ω̂n+1
p + Cωω̂n+1

h , (61)

282 A. Lundbladh et al.

where Cv1,Cv2 and Cω are chosen such that the boundary conditions at the up-
per boundary are fulfilled. The u and w velocities are found from the definition
of the normal vorticity and the incompressibility constraint.

In general we have to find u and w first to evaluate the boundary conditions.
Thus with the C’s unknown we find :

ûn+1 = ûn+1
p1 + Cv1û

n+1
h1 + Cv2û

n+1
h2 + Cωûn+1

h , (62)

ŵn+1 = ŵn+1
p1 + Cv1ŵ

n+1
h1 + Cv2ŵ

n+1
h2 + Cωŵn+1

h , (63)

where (up1, wp1), (uh1, wh1), (uh2, wh2) and (uh, wh) are found from (vp1, ωp),
(vh1, ω = 0), (vh2, ω = 0) and (v = 0, ωh) using equation (39) and (40).

Assuming the boundary conditions are linear we can write them as :

Li(û, v̂, ŵ) = D̂i; i = 1, 2, 3. (64)

Here Li is the linear operator for the ith boundary condition. This can include
derivatives in the wall normal direction. The operator may also depend on the
wave number (for example when the boundary condition contains horizontal
derivatives). Note that the expression for evaluation Li may include ω̂ as
this is equivalent to horizontal derivatives. D̂i is the data for the boundary
condition, the most common form of which is is either zero (homogeneous
boundary conditions) or the operator Li applied to a base flow.

Finally inserting the expressions (60), (62) and (63) into equation (64) and
moving all terms containing the particular solution to the right hand side, we
get a three by three linear system of equations which is easily solved to find
the C’s.

For k = 0 we solve

(D2 − λ2)ûn+1
p0 = f̂n

01 ûn+1
p0 (0) = ulow; ûn+1

p0 (yL) = uupp (65)

(D2 − λ2)ŵn+1
p0 = f̂n

03 ŵn+1
p0 (0) = wlow; ŵn+1

p0 (yL) = wupp (66)

(D2 − λ2)ûn+1
h0 = 0 ûn+1

h0 (0) = 0; ûn+1
h0 (yL) = 2 (67)

(D2 − λ2)ŵn+1
h0 = 0 ŵn+1

h0 (0) = 0; ŵn+1
h0 (yL) = 2, (68)

where ulow, uupp, wlow and wupp denote the lower and upper wall velocities.
Computations in a moving reference frame can increase the time step. If the
boundary condition at the upper wall is in the form of Dirichlet type (specified
velocity) then

û0 = ûp0, (69)

ŵ0 = ŵp0. (70)

An efficient spectral method for simulation 283

For other types of upper wall boundary conditions we find the complete solution
from :

û0 = ûp0 + Cuûh0, (71)

ŵ0 = ŵp0 + Cwŵh0, (72)

where Cu and Cw are chosen so that û0 and ŵ0 fulfill the boundary conditions.

The above equations are all in Fourier space, where the non-linear terms hv, hω,
H1 and H3 become convolution sums. These sums can be efficiently calculated
by transforming the velocities and vorticities using FFTs to physical space,
where they are evaluated using pointwise products.

2.7. Normal discretization – Chebyshev expansion

The typical equation derived above is a second order constant coefficient ODE
of the form

(D2 − κ)ψ̂ = f̂ ψ̂(0) = γ−1, ψ̂(yL) = γ1. (73)

First map the interval [0, yl] to [−1, 1] by setting y′ = 2y/yL − 1. Then

(D
′2 − ν)ψ̂ = f̂ ψ̂(−1) = γ−1, ψ̂(1) = γ1, (74)

where ν = κy2
L/4. In the following we have for simplicity dropped the prime.

This equation can be solved accurately if the dependent variable ψ̂, its second
derivatives, the right hand side f̂ and the boundary conditions are expanded
in Chebyshev series, i.e.,

ψ̂(y) =
Ny∑
j=0

ψ̃jTj(y), (75)

D2ψ̂(y) =
Ny∑
j=0

ψ̃
(2)
j Tj(y), (76)

f̂(y) =
Ny∑
j=0

f̃jTj(y), (77)

ψ̂(1) =
Ny∑
j=0

ψ̃j = γ1, (78)

ψ̂(−1) =
Ny∑
j=0

ψ̃j(−1)j = γ−1, (79)

where Tj are the Chebyshev polynomial of order j and Ny the highest order of
polynomial included in the expansion. If the Chebyshev expansions are used

284 A. Lundbladh et al.

in equation (74), together with the orthogonality properties of the Chebyshev
polynomials, we find the following relation between the coefficients

ψ̃
(2)
j − νψ̃j = f̃j j = 0, ...Ny. (80)

By writing the Chebyshev functions as cosines and using well known trigono-
metric identities, one finds relations between the Chebyshev coefficients of ψ̂
and those of its derivative that can be used for differentiation and integration
(see Canuto et al. (1988))

ψ̃
(p)
j =

Ny∑
m=j+1

m+j odd

mψ̃(p−1)
m j = 1, ...Ny, (81)

ψ̃
(p−1)
j =

1
2j

(cj−1ψ̃
(p)
j−1 − ψ̃

(p)
j+1) j = 1, ...Ny, (82)

where the superscript p indicates the order of the derivative and cj = 2 for
j = 0 and cj = 1 for j > 0. In the first differentiation relation one observes
that an error in the highest order coefficients of ψ̃(p−1) influences all coefficients
of its derivative ψ̃(p). This problem is what is supposed to be avoided by
the Chebyshev integration method discussed below. In the second relation we
assume that ψ̃

(p)
j = 0 for j > Ny and note that ψ̃

(p−1)
0 is an integration constant

needed when the function ψ̂(p−1) is found by integrating ψ̂(p). Note also that
the integration procedure introduces a truncation error, since an integration
of a Chebyshev polynomial would result in a polynomial of one degree higher.
The coefficient ψ̃

(p−1)
Ny+1 which would have multiplied TNy+1 is in the present

truncation set to zero.

If the relations (82) are used together with relation (80) a system of equations
can be derived for either coefficients ψ̃j or ψ̃

(2)
j . The second approach, called

the Chebyshev integration method (CIM), was proposed by Greengard (1991)
to avoid the ill conditioned process of numerical differentiation in Chebyshev
space. It was implemented in the original channel code by Lundbladh et al.
(1992a) and is also included in the present implementation. However, we have
found that using this method, subtle numerical instabilities occur in some cases
and we therefore recommend to solve for the coefficients of the function itself,
ψ̃j . Such a Chebyshev tau method (CTM), almost identical to that used by
Kim, Moin & Moser, is also implemented and is so far found to be stable. We
first present the CTM, then the CIM and finally we discuss the instabilities
observed in computations with the CIM. Note that the instabilities have oc-
curred only a few times and that the results otherwise are the same for the two
methods.

An efficient spectral method for simulation 285

2.7.1. Chebyshev tau method-CTM

If the recursion relation (82) is used to express equations (80) in the coefficients
ψ̃j , one arrives at the system of equations (83 below). A more detailed deriva-
tion can be found in Canuto et al. (1988), but observe the sign errors therein.
We have

− cj−2ν

4j(j − 1)
ψ̃j−2 +

(
1 +

νβj

2(j2 − 1)

)
ψ̃j − ν

4j(j + 1)
ψ̃j+2

=
cj−2

4j(j − 1)
f̃j−2 − βj

2(j2 − 1)
f̃j +

βj+2

4j(j + 1)
f̃j+2, j = 2, . . . , Ny (83)

where

βj =
{

1 0 ≤ j ≤ Ny − 2
0 j > Ny − 2 . (84)

Note that the even and odd coefficients are uncoupled. Since a Chebyshev
polynomial with an odd index is an odd function, and vice versa, the decoupling
of the systems of equations is just a result of the odd and even decoupling of
equation (74) itself. The same can be achieved for the boundary conditions
(78) and (79) if they are added and subtracted,

Ny∑
j=0

j even

ψ̃j =
γ + γ−

2
,

Ny∑
j=1

j odd

ψ̃j =
γ − γ−

2
. (85)

These boundary conditions together with the equations (83) constitute a linear
system of Ny + 1 equations that can be solved for the coefficients ψ̃j (j =
0, . . . , Ny). The structure of the equations involving the even coefficients forms
a tridiagonal system and so does the equation for the odd coefficients. The
boundary conditions fill the top row of both systems and make the systems
only quasi-tridiagonal, but it only takes 16Ny operations to solve both systems.

The system (83) has in fact been truncated to only contains Ny − 1 equations
and two equations have been replaced by boundary conditions. That truncation
introduces what is usually called the tau error. In solution algorithms that
solve for the three velocity components of the Navier-Stokes equations and the
pressure, the coupling between the equations for the velocities and that for the
pressure requires corrections of the tau error (Kleiser & Schumann 1980). We
have chosen to eliminate the pressure in the Navier-Stokes equations and solve
for the normal velocity and the normal vorticity. As those equations do not
couple in the same way, we do not have to correct the tau error.

2.7.2. Chebyshev integration method-CIM

Instead of solving for the coefficients ψ̃j , the CIM solves for the coefficients of
the Chebyshev series for the second derivative, ψ̃

(2)
j . The major advantage is

286 A. Lundbladh et al.

supposed to come in the calculation of derivatives of the solution ψ̂. Derivatives
are needed in the calculation of the remaining velocities and vorticities using
equations (39)-(42). In the CIM the second derivative is already calculated and
the first derivative and the function itself can be found by the numerically well
conditioned process of integration.

If the relations (82) are used to write (80) in terms of ψ̃
(2)
j the result is the

following system of equations,

j = 0 : ψ̃
(2)
0 − νψ̃0 = f̃0

j = 1 : ψ̃
(2)
1 − ν(ψ̃(1)

0 − 1
8 ψ̃

(2)
1 + 1

8 ψ̃
(2)
3 = f̃1

2 ≤ j ≤ Ny − 2 : ψ̃
(2)
j − ν 1

4j

[
cj−2ψ̃

(2)
j−2

j−1 − ψ̃
(2)
j

(
1

j−1 + 1
j+1

)
+

ψ̃
(2)
j+2

j+1

]
= f̃j (86)

j = Ny − 1 : ψ̃
(2)
Ny−1 − ν 1

4(Ny−1)

[
ψ̃

(2)
Ny−3

Ny−2 − ψ̃
(2)
Ny−1

(
1

Ny−2 + 1
Ny

)]
= f̃Ny−1

j = Ny : ψ̃
(2)
Ny

− ν 1
4Ny(Ny−1) (ψ̃

(2)
Ny−2 − ψ̃

(2)
Ny

) = f̃Ny
.

The equations for odd and even coefficients decouple and so do the boundary
conditions on the form (85). However, we now need to rewrite them with the
aid of (80) to contain the coefficients of ψ̃(2) that we are now solving for. We
find that the first sum in (85) takes the form,

ψ̃0 + ψ̃
(1)
0 + 1

4 ψ̃
(2)
0 − 1

12 ψ̃
(2)
1 − 7

48 ψ̃
(2)
2 +

∑Ny−2
j=3

3ψ̃
(2)
j

(j−2)(j−1)(j+1)(j+2)

− (Ny−6)ψ̃
(2)
Ny−1

4(Ny−3)(Ny−2)Ny
− ψ̃

(2)
Ny

2(Ny−2)(Ny−1)Ny
= γ1. (87)

Thus, the solution of equation (74) is found by solving the system of equations
for the second derivative of ψ̃ (87) together with the boundary conditions (87)
and the corresponding one at y = −1. We now have two more equations than
for the tau method and the solution to the full system is a set of Ny + 1
coefficients of the second derivative and the two integration constants ψ̃

(1)
0

and ψ̃
(2)
0 representing the zeroth order Chebyshev coefficient of Dψ̂ and ψ̂

itself, respectively. The function ψ̂ is then found by two integrations, which in
Chebyshev space can easily be constructed using the relations (82). The same
quasi-tridiagonal form of the equation systems for the odd and even coefficients
appears as for the CTM and the same solution routine can be used.

2.7.3. Integration correction

When the solution for ψ̂(2) is found by the CIM and integrated to obtain ψ̂(1)

and ψ̂ the same truncation is used for both the derivatives and ψ̂ itself. They
are all represented with Ny + 1 non-zero Chebyshev coefficients. This means

An efficient spectral method for simulation 287

that the truncations are not compatible, since the derivative of a function
represented as a finite Chebyshev series should have one coefficient less than
the function itself. For example, if the coefficients ψ̃j are used to construct
those for the derivative, using the recurrence relation (81), the result will not
be the same as the coefficients ψ̃

(1)
j . There will be a slight difference in half of

the coefficients for the derivative, the size depending on the magnitude of the
coefficient ψ̃Ny

. The expression for the difference can be derived as follows. We
write ψ̂ explicitly using the coefficients ψ̃

(1)
j and the relation (82),

ψ̂ = ψ̃0T0 +
Ny−1∑
j=1

1
2j

(cj−1ψ̃
(1)
j−1 − ψ̃

(1)
j+1)Tj +

1
2Ny

ψ̃
(1)
Ny−1TNy

. (88)

Now (81) is applied to the Chebyshev coefficients in (88) to calculate the deriv-
ative Dψ̂. Let ψ̃D

j be its new coefficients. We find that these new coefficients

will not equal ψ̃
(1)
j and the following relation is found between them,

ψ̃D
j = 2

cj

∑Ny
q=j+1

q+j odd

(cq−1ψ̃
(1)
q−1 − ψ̃

(1)
q+1)+

1
cj

ψ̃
(1)
Ny−1

= ψ̃
(1)
j q + Ny odd, (89)

ψ̃D
j = 2

cj

∑Ny
q=j+1

q+j odd

(cq−1ψ̃
(1)
q−1 − ψ̃

(1)
q+1)

= ψ̃
(1)
j − 1

cj
ψ̃

(1)
Ny

q + Ny even. (90)

Thus, we have a method of correcting the coefficients ψ̃
(1)
j so that they represent

Dψ̂ with the same truncation as ψ̃j represent ψ̂. A similar correction can be
derived for the coefficients ψ̃

(2)
j of the second derivative. After some algebra

we find,

ψ̃D2

j = ψ̃
(2)
j − 1

cj

(
1 +

(Ny − 1)2 − j2

4Ny

)
ψ̃

(2)
Ny−1 j + Ny odd, (91)

ψ̃D2

j = ψ̃
(2)
j − 1

cj
ψ̃

(2)
Ny

j + Ny even, (92)

where ψ̃D2

j are the corrected Chebyshev coefficients for D2ψ̂.

When the horizontal components of velocity and vorticity are found using the
relations (39) to (42), we need φ̂, Dv̂ and Dω̂. The above corrections are there-
fore needed in order for the velocity and vorticity fields to exactly satisfy the
incompressibility constraint (2). Note that an error in the highest Chebyshev
coefficients will by the above correction scheme affect all other coefficients of
the first and second derivative. Exactly what was supposed to be avoided by
the integration method.

288 A. Lundbladh et al.

The CTM and CIM methods are equally efficient and give the same results
with the exception of a few very rare cases. We have found that numerical
instabilities may occur when the wall normal resolution is very low and the
velocity and vorticity fields are not divergence free. We have also found that it
in those cases is enough to make the vorticity divergence free to stabilize the
calculations. With integration correction or the CTM method, both velocity
and vorticity are completely divergence free. However, for one channel flow
case so far, and more frequently in the boundary layer, a numerical instability
occurs with the integration correction but not without.

Fortunately the instability causes the calculation to blow up in a few time steps
and before that the results are the same as for a stable version of the code.
With sufficient wall normal resolution (which is required anyhow) and without
the integration correction the boundary layer code has been found completely
reliable. The CTM method is, however, to prefer.

2.8. Pressure

By expressing the Navier-Stokes equations in the form of equations (4) and
(7), the pressure need not to be taken into account. However, it might be
of interest to solve for this quantity as well as the velocity components. The
pressure can, for example, be used for detecting regions of rapid motion in a
turbulent boundary layer.

The Poisson equation for the pressure derived above, equation (3), is written
as

∇2(p + E) =
∂Hi

∂xi
, (93)

where E = 1
2uiui and Hi = hi + Fi = εijkuj(ωk + 2Ωk) + Fi. Note that the

term Fi does not contain the disturbances in the fringe region for the spatial
simulations and is zero for the temporal boundary layer. This equation has a
similar form as the equations for φ, v and ω and can thus be solved using the
same numerical routine.

The boundary conditions at the wall (y = 0) and at the upper boundary (y =
yL) are derived from the normal component of the Navier-Stokes equations.
The boundary condition with non-zero wall velocities becomes

∂

∂y
(p + E)

∣∣∣∣
y=0

=
[

1
R
∇2v + h2 − ∂v

∂t

] ∣∣∣∣
y=0

. (94)

The term ∂v
∂t is included for the case of flow control like blowing/suction from

the wall. For a wall with zero velocities the boundary condition becomes

∂

∂y
(p + E)

∣∣∣∣
y=0

=
1
R

∂2v

∂y2

∣∣∣∣
y=0

. (95)

An efficient spectral method for simulation 289

At y = yL the boundary condition becomes
∂

∂y
(p + E)

∣∣∣∣
y=yL

=
[

1
R
∇2v + h2 + λ(x)(Uy − v) − ∂v

∂t

] ∣∣∣∣
y=yL

, (96)

where λ(x) is the fringe function described in section 2.4.

For wavenumber zero the boundary condition (96) is automatically fulfilled if
boundary condition (94) is fulfilled. It is required by the compatibility condition∫ yL

0

dH2

dy
dy =

∂

∂y
(p + E)|y=yL

− ∂

∂y
(p + E)|y=0, (97)

which comes from the integration of equation (93). A second boundary condi-
tion for p itself is needed at y = 0 and this is chosen to be p = 0. The mean
pressure at the wall cannot be determined and p = 0 at the wall is a reference
pressure. It is not possible to choose p = 0 at y = yL because the location of
the free-stream is arbitrary chosen for numerical purposes.

It might seem to be a better approach to rewrite equation (3) as

∇2p = − ∂ui

∂xj

∂uj

∂xi
+

∂

∂xi
(2εijkujΩk) +

∂Fi

∂xi
, (98)

and solve for the pressure directly. The solution to equation (98) turns out
to be sensitive to the values of the velocities at the upper boundary. When
using different boundary conditions for the velocities, the solutions are slightly
different, hence the pressure will be different. The sensitivity comes from the
fact that derivation in the normal direction in Chebyshev space is dependent
on the coefficients in all the collocation points. These coefficients change when
transforming back and forth to physical space. Thus the derivations must be,
for consistency, performed at the same time, with no transformations between
them. These problems are avoided by solving for the pressure plus energy as
in equation (93).

The pressure can be calculated from a specific velocity field with the post
processing program pre. The pressure needs thus not be calculated in the
simulation itself. If turbulent statistics involving pressure are being calculated
during a simulation, the pressure is calculated in those time steps where the
sampling occurs.

3. Implementation

In implementing the algorithm presented above a significant effort has been
put into portability, flexibility and computational efficiency. The language is
standard FORTRAN 77 with the extension of the INCLUDE statements, eight
character names and lower case characters. Especially the demands on the data
structure have forced an encapsulation of the access to the main storage which
requires some attention. Also the vectorization and the need to process suitably
large chunks of data at a time adds complexity in exchange for execution speed.

290 A. Lundbladh et al.

3.1. Program structure of bla

The program bla has been divided into subroutines each with one specific task.
The main program steps the time and calculates the adaptive time step. The
subroutines nonlinbl and linearbl carry out the main part of the algorithm
aided by smaller subroutines for integration, equation solving etc. The FFTs
are taken from VECFFT which was developed specifically for the simulation
codes but is an independent package of vectorizable Fourier and Chebyshev
transforms.

3.1.1. Coarse program structure, step 1 - 4

Since some computers cannot hold all of the three dimensional data in the
main memory simultaneously, and in any case the number of three dimensional
arrays should be minimized to save space, the three dimensional computation
is carried out by slicing the data into two dimensional planes.

In the main time stepping loop the data needs to be stepped through twice.
First slicing in x-z-planes to calculate the FFTs and the pointwise product
for non-linear terms, step 2, and second in x-y-planes to calculate the normal
Chebyshev transforms and solve the equation systems for the new velocities and
vorticities, step 3. Step 1 reads input files, initializes the FFTs and calculates
the partial right hand sides needed to start the time stepping loop and computes
the base flow. Step 4 stores the final velocity field.

3.1.2. Step 1, initialization

Subroutine ppar prints the contents of the parameter file to standard output
as a check of which size of problem the image is compiled for.

Subroutine rparambl reads the file bla.i which contains control information
for the program, especially the input and output filenames and the final time
to which the simulation is to be done, cf. section 5.2.

Subroutine rdiscbl reads the resolution, the computational box size and a few
parameters defining the flow from the file namnin. The velocities are then
read from the file and put into the main storage positions 1-3. If the resolution
of the image and the file do not correspond, this is printed on standard output
and the program stops execution. The check can be disabled by the varsiz flag
in the bla.i file in which case the field is extended by zero-padding or truncated
to fit the image resolution.

Subroutine rescale rescales all data read from bla.i from boundary layer scal-
ing to the channel flow scaling used internally, see Appendix B.

Subroutine fskch computes the base flow boundary layer profile.

An efficient spectral method for simulation 291

Subroutine preprbl calculates wavenumbers and collocation points, and ini-
tializes the FFTs.

Subroutine fshift computes a Galilei transformation which can be used to
increase the maximum stable time step.

Subroutine rwavebl reads the profile of forcing waves to be introduced in the
fringe region.

Subroutine getdt calculates the initial time step to set get a CFL number
equal to the cflmax value. The subroutine is only used if the time stepping is
adaptive.

Subroutine prhs calculates the initial partial right hand sides p̂φ p̂ω, p̂01, p̂03

and places the first two in positions 6 and 7 of the main storage. The streamwise
and spanwise vorticities are also calculated and put into positions 4 and 5 of
the storage.

Subroutine bflow generates a base flow used for spatial simulations.

Subroutine cbflow reads or writes the base flow boundary layer profile in ba-
sic.i for spatial simulations.

Subroutine blfou computes the streamwise Fourier transform of the base flow.

Some initial parameter values for the time stepping mechanism are prepared
in the main program and output files are opened.

3.1.3. Step 2, computations in physical space

The subroutine wplbl writes data to 2-d plane files.

The subroutine blshift shifts the base flow and boundary conditions to be
aligned with the computational domain when a Galilean transform is used, i.e.
if the lower wall is “moving”.

The subroutine gtrip generates a random force flow trip.

The subroutine boxxys computes the spanwise and time averaged statistics
for one xz-box.

The subroutine nonlinbl calculates Hi as pointwise products in physical space
and stores them in position 1 to 3 of the main storage. It also computes the
volume forcing and adds it to Hi. As the main storage is in Fourier-physical
space, cf. section 3.2.2 below, the velocities and vorticities must be transformed
back to physical space before the product can be formed. Likewise the products
Hi must be transformed to Fourier space before storing them. The velocity
rms amplitudes are computed in Fourier-physical space. The maximum CFL
number and the extrema of the velocities are calculated from the velocities in
physical space.

292 A. Lundbladh et al.

The xy-statistics, CFL number, and rms-amplitude and extremum statistics
are written to the respective files.

3.1.4. Step 3, computations in Fourier-Chebyshev space

The time step is recalculated to regulate the CFL number close to cflmax if
adaptive time stepping is enabled. The time stepping parameters are calculated
for the next time step.

Subroutine linearbl transforms the non-linear products into Chebyshev space
and constructs the complete right hand sides for the evolution equations. The
Chebyshev-tau or Chebyshev-integration method is used to solve for the evo-
lution variables from a set of tridiagonal equations. The chosen boundary
conditions are applied. All velocities and vorticities are constructed and par-
tial right hand sides are computed for the next time step. Finally the velocities
and vorticities are transformed back to physical space in the y-direction. The
velocities are stored into positions 1 to 3, the streamwise and spanwise vorticity
into 4 and 5 and the partial right hand sides into 6 and 7 of the main storage.

For selected times the 3-dimensional velocity data is written to file.

Time is incremented and execution is continued with the next time step from
step 2 if the the final time tmax is not reached.

If pressure is set to one in the file par.f, the following two subroutines are
entered if statistics are sampled in this step. In nonlinp the terms H1,1 +H3,3

and H2 are calculated and stored in position 4 and 5. The energy E is calculated
and stored in position 8. In linearp the linear and non-linear parts of the
boundary conditions and the sum H1,1 + H2,2 + H3,3 are calculated. The
equation for the pressure is solved and the streamwise and spanwise vorticity
need to be recalculated. Pressure is stored in position 8.

3.1.5. Step 4, output

The subroutine wdiscbl handles the output of a velocity field to an external
file. The final values of xy-statistics are written to file by wxys. The pressure is
written to an external file by wdiscp if pressure is set to one. The amplitude
files are written by wamp, and planes are written by wplbl. All opened files
are closed.

3.2. Data structure

As the size of a problem is explicitly compiled into the program, the memory
allocation is for the most part static. Some effort was put into minimizing
not only the three dimensional storage but also the two dimensional arrays

An efficient spectral method for simulation 293

since this is the only part residing in main memory when the three dimensional
storage is located on an external device.

3.2.1. Complex numbers and FFTs

Most of the algorithm above works with quantities in Fourier space. These are
in general complex which requires storage of both real and imaginary parts.
Though FORTRAN has the capability of automatically handling complex num-
bers most compilers produce inefficient code for this, especially for mixed real
and complex expressions. Moreover FORTRAN stores complex numbers with
alternating real and imaginary parts, which causes a severe performance loss
for vector fetches on certain computers as the stride will be even. To circum-
vent this, it was decided to store all complex quantities in double arrays, one
for real and one for imaginary parts. As the algorithm neither includes gen-
eral complex-complex multiplications nor divisions this did not add very much
code.

The FFTs in VECFFT are built for separate storage of the real and imaginary
parts, but can optionally be used with standard FORTRAN storage.

3.2.2. Main storage, boxes, drawers, and planes

As mentioned above, to save on space the algorithm traverses the three dimen-
sional volume twice to complete a time step. The three dimensional storage is
in some cases too large to fit in the main memory in which case it may be put
on an external device such as an SSD or a disk. In order to efficiently access
this external device the records need to be long, preferably much longer than
the typical vector length needed to get good CPU performance. If the three
dimensional storage is divided into x-z- and x-y-planes the largest common
element between these is a single vector in the x-direction, a pencil containing
nx words. In order to increase this number, planes are combined into a box
consisting of an integer number of adjacent planes e.g., an x-y-box holds mbz
x-y-planes and an x-z-box holds mby x-z-planes. The intersection between an
x-y- and an x-z-box then holds mby*mbz pencils, which is called a drawer. Most
subroutines are made to handle a box rather than a plane at a time, with the
additional advantage that the vector length increases by a factor of mbz or mby.

The variables in the main storage are in Fourier-physical format, i.e., the axes
are α, physical y and β, except for the partial right hand sides p̂v and p̂ω, which
are stored in Fourier-Chebyshev space.

The structure of the file used for the three dimensional storage is as follows: File
format : unformatted, direct access, scratch, record length nx*mby*mbz*npreal
bytes, name ur. npreal is the number of bytes used to store a real number
(usually 4 or 8 bytes). Storage sequence: the drawers are stored in increasing
y, z and i order, with y varying the fastest and i slowest. Within each drawer

294 A. Lundbladh et al.

the coefficients are stored in increasing x, y, z order with x varying the fastest
and z slowest. All the real data is stored in the first half of the drawer and
imaginary data in the second. The number of records is nby*nbz*7.

The main storage is accessed box-wise by the routines getxy, putxy, getxz
and putxz. The routines select between core storage and file storage depending
on the value of the integer nfc (1/0); for the latter case the routines getdr,
putdr move one drawer from or to the file.

3.2.3. Naming conventions

The variable names in the algorithm description above have been followed as
closely as possible. One important exception is that Ny in the algorithm cor-
responds to ny-1. Greek letters have been replaced by abbreviations. In the
case a variable is complex it has been replaced by two with the last letters ‘r’
and ‘i’, for the real and imaginary parts. An example of this is pomyr which is
the real part of the array p̂n

ω. Note that the superscripts ‘n’ etc. and the hat
symbol are generally left out, when needed for distinction they are replaced by
suffices , e.g. an+1 becomes anp1. The component indices ‘1,2,3’ in, e.g., H1

are usually found as the last index of the array. Instead numbers in the array
names are used to distinguish between the same variable when represented by
two different arrays in step 2 and step 3. Normal derivatives are denoted by
prefixes d and d2. Sometimes a ‘b’ is used for ‘box’, cf. above, e.g., bbeta is
the wavenumber beta vector expanded to correspond to other box sized arrays.

All variables are declared a specific type and the program has been compiled
with an implicit none statement, which was changed to implicit logical
(a-z) as the former is non-standard. Thus the type rules are not into effect
and have not been adhered to; note especially that x, y, z are integer indices
in do loops.

4. Operation

The program bla reads a velocity field from an external device, steps the field
to a selected final time while producing some log information on the standard
output device and writes the final velocities back to a file. During the simulation
it may also output a file of the velocity and vorticity rms amplitudes, a file of
the amplitude of specific wavenumbers, a file of extremum amplitudes, a file
of statistics averaged over the spanwise direction, files with velocities in two
dimensional planes at regular intervals in time and files containing complete 3-d
velocity fields at selected times. The simulation can be run with the pressure
solver to get the pressure at the same time steps as the velocities.

The program bls may be used to produce the initial velocity field.

An efficient spectral method for simulation 295

The program rit performs post processing of 3-d velocity fields into Tektronix,
Postscript or ppm (portable pixel map) compatible graphics. Linear combina-
tions (for example difference) of one or more 3-d velocity fields can be computed
with cmp, which also can calculate rms and maxnorm amplitudes of the result.
This is useful for, for example, convergence checks.

The program pre calculates the pressure for a 3-d velocity field and produces
a 3-d pressure field which is post processed with ritpre.

Postprocessing of two dimensional planes is done by the program rps in a way
similar to rit. Plots of amplitude files are generated by the programs pamp1
and pamp2, which handle one and multiple amplitude files respectively. Wave
amplitude files are plotted by the program pampw and pampw2 and ex-
tremum amplitude files by pext1.

To reduce the storage requirements of 3-d velocity files, they can be compressed
by dfc and similarly for two dimensional plane files by dpc. Note that regular
compression programs such as gzip or compress give a negligible reduction in
size of these binary data files. An additional advantage with using the com-
pression routines is that they produce a binary data format which is portable
between machines with different file formats and floating point representations.

These programs along with the Fourier transform library VECFFT, the com-
pression library dclib and the plot library plot1 forms a completely self con-
tained and portable system written in FORTRAN 77.

4.1. Compiling

Most of the programs need to be recompiled for each size of problem to be
run. Under UNIX this is most easily handled with a makefile. As stated above
the compiler must handle INCLUDE statements and lower case characters.
For compilation most of the programs require Fourier transforms from the
package VECFFT. These are also written in standard FORTRAN 77 and can
be compiled along with the code. The number of grid points and some other
parameters must be set prior to compilation in the file par.f. The same par.f
file should be used for the compilation of all programs to work on a specific
simulation. Which routines that need to be recompiled after changing the
parameter file is determined by the makefiles.

The number of spectral modes in each direction is set by the parameters nx, ny,
nz. The following restrictions apply : nx and ny-1 must be even and factorable
by 2, 3 and 5, nz must be factorable by 2, 3, 5 and at least 2. Note that ny
is the number of Chebyshev polynomials and thus is equal to Ny + 1 used in
section 2 above.

Dealiazing, i.e. padding to remove aliazing errors, can be switched on (=1) or
off (=0) independently for each direction by the flags nfxd, nfyd and nfzd. If

296 A. Lundbladh et al.

dealiazing in the respective direction is used nx, ny-1 must be divisible by 4,
and nz must be divisible by 2. Z-symmetry can be used to reduce computation
time and storage by setting nfzsym=1. If this is done nz must be divisible
by 4, and if used simultaneously with dealiazing in the z-direction nz must be
divisible by 8.

There is an option to run 2 1/2 dimensional simulations, i.e., simulations of
flow in a two dimensional geometry with all three velocity components non-
zero, which is sometimes called the infinite swept flow. (Two dimensional flow
is a special case of this.) In this case set nz=1 nfzsym=0 and nfzd=0. (In this
case the limitations on nz given above do not apply.)

Normally (nfc=1) all the storage resides in primary memory but it is possible
to put the main three dimensional arrays in the external file ur by setting
nfc=0. To achieve maximum performance, especially for external main storage,
the parameters mby and mbz can be changed from the default value =1, see
section 4.4 below. Note that nz must be divisible by mbz. The program can be
coarse grain parallelized, in which case the parameter nproc should be changed
from the default value one to the number of available processors. This is also
discussed in section 4.4. To allow for simultaneous calculation of velocities and
pressure, the parameter pressure should be set to 1. All other parameters in
the par.f file are computed and should not be changed manually. Note that
most subroutines except those in the libraries dclib, VECFFT and plot1
must be recompiled after changing par.f.

The codes are written in single precision, i.e. with REAL and COMPLEX
declaration. However, in most cases there is a need to run the code in double
precision, i.e., with at least 10-12 digit precision. For this purpose the supplied
makefile convert the programs to double precision. Note that for the programs
to work with the libraries and together with binary files all routines must be
compiled with the same precision. The makefile automatically compile the
libraries with the same precision as the program. For the double precision,
you can also use the compiler option by specifying the default size of variables
as DOUBLE PRECISION like “-r8”. This option varies from one machine to
another. In case of work stations, the compiler option for the double precision
is used. See the Makefile for more informations.

However, to change precision (i.e., compiling the programs as double precision
where they have previously been compiled as single or vice versa) it is necessary
to delete all object files before recompiling. This is not handled automatically
by the makefiles.

The same makefile named “Makefile” can be used in most machines including
Crays, IBM, SGI, SUN, DEC and HP. You must have “cpp” in path and may
need to change preprocessor option because it varies from machine to machine.
The C language preprocessor, cpp performs the preprocessing directives in some

An efficient spectral method for simulation 297

programs like ctim.f. It is useful to handle system dependent functions in one
file.

4.2. Generation of initial velocity fields with bls

An initial velocity field consists of a header and an array with the three com-
ponents of velocity in Fourier space fulfilling the equation of continuity. The
format of the file is described in section 5.3. The routine bls may be used to
generate an initial velocity field, consisting of a basic laminar flow, a localized
disturbance, waves and a random noise. The different disturbances can be
switched off to allow zero to three disturbances to be inserted.

The initial velocity field file has the same format as files generated by subse-
quent execution of the bla program so that it is possible to feed the initial
velocity field to the postprocessing directly for examination.

To compute a velocity field a velocity profile file must first be generated. The
subroutine fskch finds velocity profiles from the Blasius/Falkner-Skan/Falkner-
Skan-Cooke family. These are similarity boundary layer profiles derived from
the laminar boundary layer flow equations for flow over a flat plate, wedge
and infinite swept wedge. bls is generating a temporal/spatial or parallel/non-
parallel velocity field depending on flow type parameter fltype.

bls is intended for batch execution and has no interactive input. The input
comes from the file bls.i. The format of this file is given in section 5.1. All
input is non-dimensionalized with the displacement thickness and free-stream
velocity at the inflow boundary (x = 0) at t = 0.

4.3. Generation of non-similarity base flows

In case the streamwise free-stream velocity is not a power of the downstream
distance, the boundary layer equations do not have a self similar solution.
To generate a base flow for this situation we can first use bls to generate a
similarity flow field (without disturbances) which is a good approximation to
the sought flow around the inflow boundary. I.e., a flow such that boundary
layer thickness and acceleration are correct around the inflow boundary. Then
this flow field can be advanced in time with bla to find a steady state using
a streamwise free-stream velocity given in tabular form as a function of the
downstream distance (see section 5.2 and 5.10). The generated steady flow
field can be input to bls and disturbances superimposed. The same flow field
can be used to specify the baseflow to bla for subsequent simulations.

4.4. Execution of bla

The program is intended to be used in batch mode and so has no interactive
input. The main configuration is done at compile time through changes to the

298 A. Lundbladh et al.

file par.f (see section 4.1) and at runtime by bla.i (see section 5.2). An initial
velocity field, which can be produced by the program bls, see above, is needed
to start execution.

4.4.1. Storage requirements

The core size depends on the compiled size of the code, the resolution of the
simulation, and whether dealiazing in the y-direction is used, the tuning pa-
rameters mby, mbz and nproc and if the three dimensional storage is in the
core.

The two dimensional storage for step 2 is 7*nx*nz*mby*nproc words; multiply
by a factor 1.5 each for dealiazing in the x and z-directions, by 0.5 for z-
symmetry and by 8/7 if the pressure solver is activated. For step 3 storage is
19.5*nx*ny*mbz*nproc words; multiply by 1.5 for dealiazing in the y-direction
and 8/7 for pressure solver. The storage for step 2 and step 3 overlaps so that
the total two-dimensional storage is equal to the maximum of the requirement
for step 2 and step 3.

The three dimensional storage is 7*nx*ny*nz words, multiply by a factor of
1.5 for dealiazing in the y-direction, by 0.5 for z-symmetry. This storage can
be kept out of the core by setting nfc=0.

4.4.2. Tuning

The code itself has been written for maximum speed on a vectorizing computer
using a highly optimizing compiler. To achieve highest possible performance
the main storage should preferably be kept in the core. If this is is not possible
the performance in terms of wall time will degrade due to waiting for I/O, but
the CPU time will only increase in the order of 10%.

For tuning of the program to a given installation two parameters mby and mbz
can be set in par.f. This has the greatest impact on performance if the storage
of the main data is out of core. For large in-core simulations mby=mbz=1 will
generally give good performance. Note that nz must be divisible by mbz.

If the three dimensional storage is in the core the value of mby and mbz affects
only the vector lengths. The basic vector length is nxp/2*(mby-1)+nx/2 in
most of step 2 (where nxp is equal to nx without x-dealiazing and nx*3/2 with
x-dealiazing, and nz*mby in the x-transform, multiply the latter by 1.5 for z-
dealiazing and multiply by 0.5 and add 1 for z-symmetry. The vector length
in step 3 is nx/2*mbz. If these values are lower than what is needed to get a
good performance, mby and mbz can be increased.

If the three dimensional storage is out of core it is important to keep the record
length, nx*mby*mbz*npreal bytes (where npreal is the number of bytes used
to store a real number, in communication with the main storage file as large as

An efficient spectral method for simulation 299

possible. Since increasing mby and mbz increases the amount of internal storage,
this is preferably done by balancing the amount of storage needed for step 2
and step 3, cf. above. A suggestion is to put mby=mbz=2 and see if this gives
an acceptable performance in terms of wall time/CPU time. If not, they can
be increased to see if this improves the situation. Note finally that nothing can
be done to the finite bandwidth of the transfer between disk and processor,
the program will do about 4 flops for every byte transferred between disk and
processor (8 when using 4-byte reals), so it is quite likely that the program will
spend a large portion of the time waiting for the disk.

The program is prepared to be coarse-grain parallelized. Step 2 and step 3 can
each be divided on as many processors as there are boxes to process; typically
this is no limitation. There are directives for several compilers inserted before
the loops 2 and 3, these may have to be replaced for compilers not previously
used. To achieve parallelization nproc in par.f should be set to the number of
processors to be used. Then all subroutines have to be compiled as recursive,
i.e. with dynamic local storage. In addition a parallelizing option has to be
added to the compile statement for the main program. The code has been
run in parallel mode on the Alliant FX-80 and FX-2800, the SGI Powerstation,
Challenge and Power Challenge, the CRAY-2, J90 and C90. The typical speed-
up is 3.5-3.8 for four processors.

A slightly different version of the code has been implemented on various com-
puters with distributed memory, such as IBM SP2 and CRAY T3E. The com-
munications between the processors are handled with the Message-Passing In-
terface (MPI). The efficiency has been tested and is reported in Alvelius &
Skote (2000).

4.5. Post processing

4.5.1. Post processing velocity files with pre and ritpre

The program pre generates a pressure field from a velocity field. The pressure
can be examined with the program ritpre in the same way a velocity field is
post processed with rit.

4.5.2. Post processing velocity files with rit

The program rit generates various graphs from a velocity field file. The graphs
can be generated in either Tektronix 4014 format or Postscript. There is also
a possibility to produce black and white portable pixel maps (ppm). When
executed, rit prompts for an input file name. The file is read and the program
offers a choice of various types of graphs. It is mainly intended for interactive
execution and should be self explanatory.

300 A. Lundbladh et al.

It is possible to use rit in a batch environment by compiling it into a input
program. This is run interactively to produce a file ritin, which is subsequently
read by the batch code to produce the desired plots. Note that if plots in batch
mode are produced ‘to the screen’ the resulting Tektronix graphic characters
will be written to the log file. To compile a batch program, set imode to 2 in
the rit.f file and compile a second time with imode=3 to get an input program.
To get an interactive program imode should be left at 1.

4.5.3. Post processing velocity files with cmp

The program cmp is used for subtracting and adding different velocity fields.
This is useful when comparing velocity fields.

4.5.4. Post processing plane files with rps

Planes saved during a simulation can be examined with the program rps.

4.5.5. Post processing velocity files with fou

When a number of velocity fields has been saved during a simulation, the
program fou can be used to make Fourier transforms in both time and space.

4.5.6. Postprocessing amplitude files with pamp1, pamp2, pampw,
pampw, pampw2 and pext1

The programs pamp1 and pamp2 can be used to produce plots of the time
history of various amplitudes from the amplitude files by written bla. pamp1
works on one file and pamp2 can plot one quantity from multiple files. pext1
makes plots of time histories of extremum values (i.e. min and max values) of
velocities and vorticities and the location of extrema. pampw and pampw2
similarly plot amplitudes of wave components (streamwise-spanwise Fourier
mode) from one or multiple wave-amplitude files. The programs are intended
to be self explanatory and prompt for input file names. Since the amplitude
files are formatted and normally relatively small, no batch versions of these
programs are available. The files contain no headers so that files from sequential
runs of one flow case can be concatenated and then plotted to show the complete
evolution of the amplitudes.

4.5.7. Postprocessing xy-statistics files with pxyst

To get good statistics of space developing flows with one homogeneous direction
(spanwise), the data needs to be averaged in time. The plotting of time and
spanwise averaged data saved to file is performed by pxyst. Note that these
files have headers, and thus cannot be concatenated together. The statistics in

An efficient spectral method for simulation 301

different files can be added together by the program addxyst. The format of
the statistics files is given in section 5.9 below.

pxyst generates plots both of the raw statistical data and of a number of
derived quantities. It is also possible to generate various special plots of the
mean flow, such as boundary layer thicknesses and skin friction.

There is an initial option to filter data, which applies to the raw data, before
computing other quantities. There is also an option to filter data prior to
producing plots, the filter is then applied to the derived quantity. The results
of the two filtering processes may differ. In both cases the filter is applied in
the streamwise direction.

5. File formats

These are the input/output files used by the programs. For the format of the
external main storage file see section 3.2.2 above.

5.1. bls.i file

bls.i is formatted and sequential. Comments can be put after data on lines not
containing character input. All input is non-dimensionalized with the displace-
ment thickness at x = 0, t = 0 and the free-stream velocity at x = 0, t = 0.
For more explanations see section 4.2. Contents line by line :

1. namnin Optional input velocity field file name; character*32.

As an option the base flow can instead be given in the form of an input velocity
field file.

2. namnut Output velocity file name; character*32.

3. re The Reynolds number (based on the units above); real.

4. xlb The length of the computational box; real.

5. h2 The height of the computational box; real.

6. zlb The width of the computational box; real.

The dimension of the simulation box in all three dimensions must be given.
The streamwise extent of the box must for spatially developing flows include
the length of the fringe region, which is typically set to 30-100 displacement
thicknesses. The vertical extent of the box must include the whole boundary
layer. Depending on the choice of free-stream boundary condition, the box may
include only the boundary layer or a few times more. The sufficiency of the
box height may be investigated through numerical experiments.

302 A. Lundbladh et al.

7. fltype Type of flow (-2 temporal Falkner-Skan-Cooke, -1 temporal Falkner-
Skan, 3 temporal Blasius BL, 6 spatial Blasius BL, 7 spatial Falkner-Skan, 8
spatial Falkner-Skan-Cooke, 9 spatial parallel Blasius/Falkner-Skan/Falkner-
Skan-Cooke; integer.

8. If fltype = -1 or ≥ 7: rlam The acceleration exponent of the velocity in
the free-stream; real.

9. If fltype = -2 or ≥ 8: spanv The spanwise free-stream velocity; real.

10. If fltype ≥ 6: bstart The x-value of the start of the blending of the base
flow; real.

11. If fltype ≥ 6: bslope The length of base flow blending region; real.

The base flow can either be parallel or space developing. The parallel base
flow is for the present version only of Blasius type and is selected by setting
fltype=3. The space developing base flow can be either Blasius (fltype=6),
Falkner-Skan (fltype=7), or Falkner-Skan-Cooke (fltype=8). For the two
latter the acceleration exponent rlam for the streamwise free-stream velocity
must be given (i.e. m in U = Cxm). For Falkner-Skan-Cooke (swept wedge)
flow the spanwise velocity in the free-stream must be specified. Note that the
spanwise direction is parallel to the leading edge of the wedge for this case, and
that the spanwise free-stream velocity is constant. For spatially developing
flows the base flow from the upstream and the downstream end are blended in
the fringe region. The start and blending length must be specified. Typically
the start is given as a negative number i.e., the distance upstream of the inflow
boundary where the blend starts is given. (see section 2.4)

12. ushift The Galilei shift velocity, =0 for no shift; real.

13. locdi Flag to generate a localized disturbance; logical.

13.a If locdi is true: ditype The type of disturbance , only useful values 1 to
3; integer.

13.b If locdi is true: amp The amplitude of a localized disturbance; real.

13.c If locdi is true: theta The rotation angle of the localized disturbance in
radians; real.

13.d If locdi is true: xscale The streamwise scale of the disturbance; real.

13.e If locdi is true: xloc0 Origin of the disturbance in x-direction; real.

13.f If locdi is true: yscale The wall normal scale of the disturbance; real.

13.g If locdi is true: zscale The spanwise scale of the disturbance; real.

13.h If locdi is true: ipoly The wall normal distribution of the disturbance,
only useful values 1 to 4; integer.

An efficient spectral method for simulation 303

The ditype determines the type of disturbance. See bls.i for more information.
The example below is for ditype set to 1.

The localized disturbance is governed by the amplitude, the rotation angle,
the length and spanwise scale. The rotation angle is the angle by which the
spanwise symmetric disturbance is rotated about the y-axis. The x-scale and
the z-scale of the disturbance are given to be applied to the disturbance before
rotation. The form of the disturbance is in a coordinate system aligned with
disturbance:

u′ = 0

v = −∂ψ

∂z

w′ = −∂ψ

∂y

ψ = amp
x′

xscale

z′

zscale
p(

y

yscale
)e−(x′

xscale
)2−(z′

zscale
)2

(99)

where p(s) is determined by ipoly, see bls.i. The relation between the distur-
bance aligned velocities and coordinates (with ′) and the computational box
aligned ones is :

x = x′ cos(theta) + z′ sin(theta) (100)

z = −x′ sin(theta) + z′ cos(theta) (101)

u = w′ sin(theta) (102)

w = w′ cos(theta) (103)

14. waves Flag to generate a pair of oblique waves; logical.

14.a If waves is true: energy Energy density of the waves; real.

14.b If waves is true: ystart The lowest y-value of non-zero wave amplitude;
real.

14.c If waves is true: yend The largest y-value of non-zero wave amplitude;
real.

14.d If waves is true: yrise The switch distance from zero to max wave am-
plitude; real.

304 A. Lundbladh et al.

14.e If waves is true: yfall The highest y-value of non-zero wave amplitude;
real.

14.f If waves is true: walfa Streamwise wave number of the waves; real.

14.g If waves is true: wbeta Spanwise wave number of the waves; real.

15. os eigen modes flag, .true. for use of tabulated eigen modes; logical.

16. noise noise flag, .true. for noise; logical.

16.a If noise is true: ed The mean energy density of the noise; real.

16.b If noise is true: nxn The maximum streamwise wavenumber of the noise,
should be ≤ nx/2; integer.

16.c If noise is true: nyn The number of vertical Stokes modes in the noise,
should be even, < ny*2/3; integer.

16.d If noise is true: nzn The maximum spanwise wavenumber of the noise,
should be odd, < nz; integer.

16.e If noise is true: seed A random number seed in the range -700000 to -1;
integer.

The noise is in the form of Stokes modes, i.e., eigenmodes of the flow operator
without the convective term. These fulfill the equation of continuity and the
boundary condition of vanishing velocity at the lower and upper boundaries.
Although the actual boundary condition may allow a non-zero amplitude at
the free-stream boundary the restriction of zero amplitude for the noise doesn’t
have a large impact in practise.

The noise can be switched on by a flag in the input file. If noise is used the
mean energy density must be given along with the number of wave numbers
to be randomized for each direction. In the wall normal direction the number
of Stokes modes to be randomized is given. The same noise will be generated
for the same setting of this seed, if the physical size of the simulation box is
unchanged. In particular the resolution can be changed without affecting the
noise, as long as the number of grid points is sufficient to resolve the noise
modes. This is useful for convergence studies.

5.2. bla.i file

bla.i is formatted and sequential. Comments can be put after data on lines not
containing character input. For more explanations see section 4.4. Contents
line by line :

1. namnin Input velocity file name; character*32.

2. namnut Output velocity file name; character*32.

An efficient spectral method for simulation 305

3. If pressure in par.f is 1: namnutp Output pressure file name; character*32.

4. tmax The final time to which to simulate; real.

5. maxit The maximum number of iterations to simulate; integer.

6. cpumax The maximum CPU time in seconds; real.

The input and output file names and the final time tmax determine the scope
of the simulation, in addition setting the maximum number of iterations puts a
limit on the number of iterations to be taken through the main time step loop.
The latter parameter is useful with variable time stepping in a batch environ-
ment to ensure that the execution terminates before running out of execution
time. If the maximum number of iterations is used before the final time is
reached the execution will terminate normally by saving the present velocity
field to the output velocity file. Note that for RK3 a time step consists of three
or four iterations. The execution will only stop after completing an integer
number of physical time steps. If adaptive time stepping is used the program
will adjust the final four time steps so that it reaches exactly the final time.
You can also control maximum execution time in CRAY systems by giving the
maximum CPU time for batch job so that it terminates by cpumax. You just
give a very big number if you do not need to control maximum execution time.

7. dt The time step length; real.

dt is the length of the time step, if it is set ≤ 0 the adaptive time stepping
is used. The time step is regulated to keep the CFL number close to cflmax,
which is set to 0.9

√
3 for the three stage Runge-Kutta and 0.9

√
8 for the four

stage Runge-Kutta. When using a fringe region the time step is also limited
by the numerical stability for the damping term, this is 1.75/fmax for the three
stage RK and 1.96/fmax for the four stage RK (fmax is the max strength of
the fringe region, see below). If dt is set < 0 then −dt is used as an additional
limit on the variable time step.

8. nst The number of stages in the time discretization; integer (3 three stage
Runge-Kutta, 4 four stage Runge-Kutta).

nst selects between the different formulas for the explicit time discretization.
The 4 stage Runge-Kutta method is about 20% more efficient than the 3 stage
version.

9. xl The new box length. If lower than the old length, the old value will be
used; real.

10. varsiz Flag to allow read of a file of different size than the code is compiled
for; logical.

If varsiz is set true the program may start from an input field of a differ-
ent resolution than the program is compiled for. The spectral coefficients are

306 A. Lundbladh et al.

ibc BC at free-stream boundary
0 u = v = w = 0
1 Du = Dv = Dw = 0
2 D2u = D2v = D2w = 0
3 D3u = D3v = D3w = 0

10 Du + ku = Dv + kv = Dw + kw = 0
11 D2u + kDu = D2v + kDv = D2w + kDw = 0
12 D3u + kD2u = D3v + kDv = D3w + kD2w = 0
20 Dv + kv = D2v + kDv = ω = 0

100 u = U, v = V,w = W
101 Du = DU,Dv = DV,Dw = DW
110 Du + ku = DU + kU,Dv + kv = DV + kV,Dw + kw = DW + kW
120 Dv + kv = DV + kV,D2v + kDv = D2V + kDV, ω = 0
130 u = U,Du = DU,w = W
140 u = U, v = dDV,w = W
150 u = U,Du − vx = 0,Dw = 0

Table 2. Free-stream boundary conditions. u, v, w are the
solution velocities. U, V,W are the base flow velocities. D
is the velocity derivative normal to the boundary, k is the
modulus of the horizontal wavenumber (k2 = α2 + β2).

padded with zeroes or truncated to achieve a spectrally accurate interpolation.
However, the resolution cannot be reduced in the normal direction as the trun-
cated field in general will not fulfill the equation of continuity and the boundary
conditions.

11. rot The rotation rate, 0. for no rotation ; real.

rot is the angular velocity of the coordinate frame around the z-axis. For
non-rotating flows it should be set to zero.

12. ibc The boundary condition number; integer.

ibc is the number of the free-stream boundary condition. The implemented
boundary conditions are given in table 2. See also section 2.2 above. A number
of these boundary conditions makes the numerical scheme unstable. Among
the stable boundary conditions , the most used are number 101 and 110.

13. cim Flag to use chebyshev integration method. If false the tau method is
used; logical.

14. If cim is true: icorr Flag to use integration correction; logical.

icorr is a flag to use integration correction. The combination of using inte-
gration correction and boundary conditions other than of Dirichlet type may
lead to numerical instability. The flag is normally set false.

An efficient spectral method for simulation 307

15. gall Flag to compute and use a Galilei transformation to increase max
stable time step; logical.

16. spat Flag to perform spatial simulation; logical.

spat turns on spatial simulations, if it is set false the program performs a
temporal simulation. For spatial simulations a number of parameters specifying
the fringe region must be given, see section 2.4 above.

17. If spat is true: tabfre Flag to use a tabulated free-stream velocity; logical.

To use a tabulated free-stream velocity the flag tabfre is set true. The format
of the free-stream velocity file is given in section 5.10 below.

18. If spat and tabfre are true: namfre Name of file containing free-stream
velocity table; character*32.

19. If spat is true: rbfl Flag to use a 3-d flow field as a base flow; logical.

To use a 3-d flow file to define the base flow the flag rbfl is set true. The
format of the 3-d flow file is given in section 5.3 below.

20. If spat and rbfl are true: nambfl Name of file containing a 3-d base flow;
character*32.

21. If spat is true : fmax Maximum strength of the fringe region; real.

22. If spat is true : fstart x-position of the start of the fringe region; real.

23. If spat is false : fend x-position of the end of the fringe region; real.

24. If spat is true : frise The distance from the start of the fringe region to
the first point of maximum damping; real.

25. If spat is true : ffall The distance from the last point of maximum
damping to the end of the fringe region; real.

26. If spat is true : ampob The amplitude of oblique waves forced in the fringe;
real.

A pair of oblique waves can be generated in the fringe region by setting ampfw
non-zero. The format of the waveform file wave.d is given in section 5.11.

27. If spat is true : amp2d The amplitude of two dimensional T-S wave forced
in the fringe; real.

28. If spat is false : cdev The reference speed for the parallel boundary layer
growth; real.

For temporal simulations cdev must be set to the reference speed of the bound-
ary layer growth, see section 2.3 above.

29. loctyp to generate a localized volume force disturbance; integer.

308 A. Lundbladh et al.

loctyp can take values from 1 to 5. Various disturbances can be created. See
locf for more information. The different values of loctyp each require a distinct
number of parameters in the file bla.i, see rparambl for more information. As
an example, a localized volume force disturbance to generate wave packets is
created by setting loctyp to 1. The following parameters (28.a-i) are required
if loctyp is 1. Different parameters are needed when loctyp is 2, 3, 4 or 5.
This is explained in rparambl and locf.

29.a If loctyp is 1 : ampx Max amplitude of the localized volume force distur-
bance in x-direction; real.

29.b If loctyp is 1 : ampy Max amplitude of the localized volume force distur-
bance in y-direction; real.

29.c If loctyp is 1 : ampz Max amplitude of the localized volume force distur-
bance in z-direction; real.

29.d If loctyp is 1 : xscale Length scale of the localized volume force distur-
bance in x-direction; real.

29.e If loctyp is 1 : xloc0 Origin of the localized volume force disturbance in
x-direction; real.

29.f If loctyp is 1 : yscale Length scale of the localized volume force distur-
bance in y-direction; real.

29.g If loctyp is 1 : zscale Length scale of the localized volume force distur-
bance in z-direction; real.

29.h If loctyp is 1 and zscale < 0 : lskew The obliqueness of waves of the
localized volume force disturbance; real.

29.i If loctyp is 1 : tscale Time scale of the localized volume force disturbance;
real.

If loctyp is 1, the form of the localized disturbance is:

 F1

F2

F3

 =

 ampx

ampy

ampz

e−(y/yscale)2g(x, z)f(t), (104)

where

zscale > 0 g(x, z) = e−[(x−xloc0)/xscale]2−(z/zscale)2 (105)

zscale < 0 g(x, z) = cos(2π(z − xlskew)/zscale)e−[(x − xloc0)/xscale]2,

An efficient spectral method for simulation 309

and

tscale > 0 f(t) = e−(t/tscale)2

tscale < 0 f(t) = S(−t/tscale))

tscale = 0 f(t) = 1, (106)

and

S(x) =

0 x ≤ 0
1/[1 + exp(1

x−1 + 1
x)] 0 < x < 1

1 x ≥ 1
. (107)

30. tripf Flag to generate a random “sandpaper” volume force trip strip;
logical.

30.a If tripf is true : tamps Max stationary amplitude of the trip; real.

30.b If tripf is true : tampt Max time varying amplitude of the trip; real.

30.c If tripf is true : txsc x length scale of the trip; real.

30.d If tripf is true : tx0 x origin of the trip; real.

30.e If tripf is true : tysc y length scale of the trip; real.

30.f If tripf is true : nzt Number of z Fourier modes in the trip; integer.

30.g If tripf is true : tdt Time interval between change of the time dependent
part of the trip; real.

30.h If tripf is true : seed Negative number in the range -700000 to -1 to
initialize the random number generator for the trip ; integer.

tripf is a flag to enable forcing of a volume force trip strip at the wall running
in the spanwise direction. The trip can be used to generate turbulence or at
lower amplitude levels to test the stability of a boundary layer or flow struc-
ture. The trip has a steady amplitude tamps, and a time dependent amplitude
tampt which allow both steady and time varying trips to be generated. The
volume force has one continuous time derivative and is independent of the time
discretization. The random numbers are generated such that if the random
number seed and other trip parameters are unchanged, the same trip forces
are generated. This is true even if the simulation is split into two or more runs.
For every run beyond the first the random number generator is run forward to
the correct state. The form of the volume force, which is directed normal to
the wall, is as follows :

F2 = exp[((x − tx0)/txsc)2 − (y/tysc)2]f(z, t), (108)

where

f(z, t) = tampsg(z) + tampt[(1 − b(t))hi(z) + b(t)hi+1(z)], (109)

310 A. Lundbladh et al.

and

i = int(t/tdt),

b(t) = 3p2 − 2p3,

p = t/tdt − i. (110)

g(z) and hi(z) are Fourier series of unity amplitude with nzt random coeffi-
cients.

31. wbci Boundary conditions at wall; integer.

wbci can be set to 0, 1, 2 or 3. If wbci is not equal to zero, additional parameters
must be provided. See rparambl and cwallbc. The example below is for wbci
set to 1.

31.a If cwallbc is 1 : amp Max amplitude of the localized blowing/suction;
real.

31.b If cwallbc is 1 : damp Damp amplitude. No effect if less than one; real.

31.c If cwallbc is 1 : xstart Start position of disturbance; real.

31.d If cwallbc is 1 : xend End position of disturbance; real.

31.e If cwallbc is 1 : xrise Rise length of disturbance; real.

31.f If cwallbc is 1 : xfall Fall length of disturbance; real.

31.g If cwallbc is 1 : zbet Spanwise variation; real.

31.h If cwallbc is 1 : tomeg Time variation; real.

The blowing and suction at the wall is implemented in cwallbc. The form of
the boundary condition below is for wbci set to 1.

v|y=0 = amp · f(x) · cos(zbet · z) · sin(tomeg · t), (111)

where

f(x) = S

(
x − xstart

xrise

)
− S

(
x − xend

xfall + 1

)
, (112)

and S(x) is given by equation (107).

32. icfl Number of time iterations between calculation of the CFL number;
integer.

icfl is the calculation interval for the CFL number. If the CFL number is
computed each iteration this adds a few percent to the execution time, but
since it is used to regulate the time step it should not be computed too sparsely,
preferably every complete time step, i.e. icfl = nst.

An efficient spectral method for simulation 311

33. iamp Number of time iterations between calculation of rms amplitudes;
integer.

33.a If iamp > 0 : namamp Output file for rms amplitudes; character*32.

iamp is the interval for evaluation of the amplitude. As for the CFL number
continuous calculation of the amplitude costs a number of percent in execution
speed. If iamp=0 no amplitudes will be calculated and no amplitude file will be
written. To get the correct time accuracy iamp should be an integer multiple
of nst.

34. longli Flag to generate amplitude for each horizontal plane (y-value).
Applies both to rms amplitudes (items 46-47) and wave component amplitudes
(items 58-60).

longli is set true the program will produce y-dependent statistics and write
these to the amplitude files, both for the global statistics and statistics by
wavenumber. The statistics files can become quite long if the flag is set true.

35. iext Number of time iterations between calculation of extremum ampli-
tudes; integer.

iext is the interval for evaluation of the extremum values and their coordinates.
This evaluation is somewhat more time consuming than that for the amplitudes.
If iext=0 no extremum amplitudes will be calculated. To get the correct time
accuracy iext should be an integer multiple of nst.

35.a If iext > 0 : namext Output file for extremum amplitudes; character*32.

36. ixys Number of time iterations between calculation of xy-statistics; integer.

ixys is the interval for evaluation of xy-statistics, used by pxyst. The statistics
generated and the output file format are described in section 5.9. The file is
written to every ixyss iterations, overwriting older data. To get the correct
time accuracy ixys should be an integer multiple of nst.

36.a If ixys > 0 : namxys Output file for xy-statistics; character*32.

36.b If ixys > 0 : ixyss Number of time iterations between saving of xy-
statistics data to file; integer.

36.c If ixys > 0 : txys Time to start accumulation of xy-statistics; real.

37. msave The number of complete intermediate velocity fields to be saved. If
non-zero, items a and b are repeated for each file; integer.

37.a If msave> 0 : tsave The time for which to save an intermediate field; real.

37.b If msave> 0 :nmsave The name of the intermediate velocity file; charac-
ter*32.

312 A. Lundbladh et al.

msave is the number of intermediate velocity fields to be saved, maximum 20.
If higher than zero the times and names of the files to be saved must be given.
If the time stepping is adaptive the program automatically adjusts the time
step to reach exactly the desired times. For fixed time step the save is done at
the nearest time.

38. mwave The number of wavenumbers to save amplitudes for. If non-zero,
item b is repeated for each wavenumber; integer.

38.a If mwave> 0: The name of the wave amplitude file; character*32.

38.b If mwave> 0: kx,kz The streamwise wavenumber as multiples of the fun-
damental 2π/xL, the spanwise wavenumber as multiple of the fundamental
2π/zL; both integers.

mwave sets the number of specific wavenumbers to calculate amplitudes for.
For each wave, the x and z wavenumbers must be specified as integers to be
multiplied by 2π/xL and 2π/zL respectively. The wavenumbers are counted in
the physical way for positive and negative kz and kx zero and up, not in the
way of the internal storage. The wave amplitudes are calculated for each of the
six velocities and vorticities at intervals set by the iamp value.

39. npl The number of planes to be continuously saved during the simulation.
If non-zero, items b through e are repeated for each plane; integer.

39.a If npl > 0: ipl The saving interval for planes in number of iteration;
integer.

39.b If npl > 0: tpl(i,1) The type of plane to be saved. 1 for xy,2 for xz;
integer.

39.c If npl > 0: tpl(i,2) The variable to be saved, i.e. 1 for u, 2 for v, 3 for
w; integer.

39.d If npl > 0: cpl The coordinate for which to save the plane; real.

39.e If npl > 0: nampl The name of the file in which to save the planes;
character*32.

npl is the number of 2d planes to be saved every ipl iterations during the
simulation. To get the correct time accuracy ipl should be an integer multiple
of nst. It is these files which are used by rps for plotting, the format is
described in section 5.8 below.

5.3. Velocity file

Format of a 3-d uncompressed velocity file. The format is used for any 3-d
input or output from bls and bla. The file is unformatted, sequential.

An efficient spectral method for simulation 313

Record 1: Reynolds number; real, .false. (this is to be backward compatible
with channel flow files); logical, xL; real, zL; real, the time for this field; real,
the length by which the box has been shifted to the right since time zero; real.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: Flow type fltype; integer, displacement thickness expressed in half
box heights dstar; real.

Record 4: If fltype ≥ 4 : start of blending region bstart, end of blending
region bslope, if fltype ≥ 7: acceleration exponent of streamwise free-stream
velocity rlam, spanwise free-stream velocity spanv. For other values of fltype
this record is omitted.

Record 5: The u, v, w-velocities in Fourier x, z and physical y space. One record
contains nx/2 complex coefficients in normal Fortran format. The records are
stored in y, z, i order with y varying the fastest and i the slowest. The number
of points in the y-direction is nyp and the number in the z-direction nzc. Total
number of records nyp*nzc*3.

5.4. Pressure file

Format of a 3-d uncompressed pressure file. The format is the same as for the
velocity file, except the last record which contains only the pressure.

5.5. Amplitude file

Formatted, sequential. The rms-levels are an average over the physical box.
For each time three records are saved:

1. Time; real, urms; real, vrms; real, wrms; real.

2. χrms; real, ωrms; real, ϑrms; real,ω2/k2; real.

3. DUuv; real, energy for wavenumber zero; real, h+, i.e. the box half-height
in wall units; real.

if longli is .true. then for each time the above is followed by statistics by
y-plane in descending y-coordinate order as follows :

4. mean squared streamwise velocity without Blasius base flow; real, mean
squared normal velocity ; real, mean squared spanwise velocity ; real, mean
squared streamwise vorticity ; real, mean squared normal vorticity ; real, mean
squared spanwise vorticity without Blasius base flow ; real, mean squared vor-
ticity squared over wavenumber square average, no (0,0); real, Reynolds stress

314 A. Lundbladh et al.

average; real, mean streamwise disturbance velocity squared; real, mean span-
wise disturbance velocity squared; real.

5.6. Wave amplitude file

Formatted, sequential. The data in this file is in internal scaling. For each time
are saved:

1. Time; real, number of waves saved; integer, number of points in the y-
direction; integer, Reynolds number; real, fundamental wavenumber in the x-
direction; real, fundamental wavenumber in the z-direction; real, flag longli.

2. The wavenumber α as multiples of the fundamental 2π/xL; integer, the
wavenumber β as multiple of the fundamental 2π/zL; integer, urms; real, vrms;
real, wrms; real, ωrms; real.

Item 2 is repeated for each wave.

if longli is .true. then for each time the above is followed by statistics by
y-plane in descending y-coordinate order as follows :

3. if the wavenumber is zero : û for each y-plane (with the imaginary part
zero), otherwise v̂ for each y-plane; complex.

4. if the wavenumber is zero : ŵ for each y-plane (with the imaginary part
zero), otherwise ω̂ for each y-plane; complex.

Item 3 and 4 are repeated for each wave.

5.7. Extremum file

Formatted, sequential. For each time are saved:

1. Time; real.

2. Min u − Ulaminar; real, x-coordinate for this minimum; real.

3. y-coordinate; real, z-coordinate; real.

4. and 5. same for min v

6. and 7. same for min w

8. and 9. same for min χ

10. and 11. same for min ω

12. and 13. same for min ϑ

14. and 15. same for min ϑ − ϑlaminar

16. through 29. same as 2. through 15. but for maximum

An efficient spectral method for simulation 315

5.8. Plane velocity file

Unformatted, sequential.

Record 1: Reynolds number; real, .false. (this is to be backward compatible
with channel flow files); logical, xL; real, zL; real, the time for this field; real,
the length by which the boxed has been shifted to the right since time zero;
real.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: The type of plane, 1 for xy,2 for xz; integer, the variable number,
i.e., 1 for u, 2 for v, 3 for w; integer, the coordinate of the plane; real, flow type
fltype; integer, displacement thickness expressed in half box heights; real.

Record 4: Time; real, the length by which the boxed has been shifted to the
right since time zero; real.

Record 5: The velocity array in physical space; x-y-planes are nx×nyp with
x varying the fastest; x-z-planes are nx×nz for the non-symmetric case and
nx×(nz/2+1) for the symmetric case with x varying the fastest.

Record 4-5 are repeated for each time when the plane is saved.

5.9. xy-statistics file

Unformatted, sequential.

Record 1: Reynolds number; real, .false. (this is to be backward compatible
with channel flow files); logical, xL; real, zL; real, the time for this field; real,
the length by which the boxed has been shifted to the right since time zero;
real.

Record 2: Number of spectral modes in the x-direction; integer, the number of
points in the physical y-direction; integer, the number of spectral modes in the
z-direction reduced for symmetry; integer, 0/1 no z-symmetry/z-symmetry;
integer.

Record 3: Flow type fltype; integer, displacement thickness expressed in half
box heights; real.

Record 4: If fltype ≥ 4 : start of blending region bstart; real , end of blending
region bslope; real , if fltype ≥ 7 acceleration exponent of streamwise free-
stream velocity rlam; real, spanwise free-stream velocity spanv; real. For other
values of fltype this record is omitted.

316 A. Lundbladh et al.

Record 5. Sum of the length of the time steps at which statistics have been
sampled sumw; real, number of statistics calculated nxys; integer.

Record 6-5+nxys. Each record contains a nx × nyp plane of statistics with
the x-index varying the fastest. The statistics are averaged over time and the
z-direction.

Record 6-11 u, v, w,u2, v2, w2.

Record 12-17 ω1, ω2, ω3,ω2
1 , ω2

2 , ω2
3

Record 18-20 uv, uw, vw

Record 21-23 u(x)u(x+1), v(x)v(x+1), w(x)w(x+1) (i.e. one point separation
auto correlations, x counted cyclically).

Record 24-26 u(y)u(y + 1), v(y)v(y + 1), w(y)w(y + 1)

Record 27-29 u(z)u(z + 1), v(z)v(z + 1), w(z)w(z + 1) (z counted cyclically)

Record 30 Rε11 = u2
x + u2

y + u2
z, εij is the dissipation tensor

Record 31 Rε22 = v2
x + v2

y + v2
z

Record 32 Rε33 = w2
x + w2

y + w2
z

Record 33 Rε12 = uxvx + uyvy + uzvz

Record 34 Rε13 = uxwx + uywy + uzwz

Record 35 Rε23 = vxwx + vywy + vzwz

Record 36-47 p, p2, pu, pv, pw, pux, pvy, pwz, puy, pvx, upx,wpz

5.10. Free-stream velocity table file

formatted, sequential

Record 1: n number of table entries

Record 2 - n+1: xtab streamwise coordinate; real, utab free-stream velocity;
real.

5.11. wave.d forced wave file

formatted, sequential

Record 1: rew Reynolds number of wave (not used by bla); real.

Record 2: alfaw the streamwise, betaw the spanwise wavenumber of the wave;
both real.

An efficient spectral method for simulation 317

Record 3: eig the eigenvalue of the wave, the real part of which is used as the
angular frequency of the wave; complex.

Record 4-n+3: n chebyshev coefficients of the mode shape of the normal ve-
locity, of which the first nyp are used. If there are not enough coefficients they
are padded by zeroes; complex.

5.12. basic.i Base flow profile file

basic.i is unformatted and sequential. basic.i is an output file from cbflow.
basic.i saves the basic flow profile only for non-parallel spatial simulations if
the file does not exist, or reads the basic flow profile for the same simulation
parameters.

Record 1: Reynolds number; real, xL; real, the length by which the boxed has
been shifted to the right since time zero; real, displacement thickness expressed
in half box heights dstar; real, start of blending region bstart, end of blending
region bslope, acceleration exponent of streamwise free-stream velocity rlam,
spanwise free-stream velocity spanv, the number of points in the physical x-
direction; integer, the number of points in the physical y-direction; integer.

Record 2: The basic u, v, w-velocities in the physical x, y space.

Acknowledgments

The authors thank The Aeronautical Research Institute of Sweden (FFA) for
generous financial support during the code development.

References

Alvelius, K. & Skote, M. 2000 The performance of a spectral simulation code for
turbulence on parallel computers with distributed memory. Tech. Rep. TRITA-
MEK 2000:17. Royal Institute of Technology, Stockholm.

Bech, K. H., Henningson, D. S. & Henkes, R. A. W. M. 1998 Linear and non-
linear development of localized disturbances in zero and adverse pressure gradi-
ent boundary layers. Phys. Fluids 10, 1405–1418.

Berlin, S., Hanifi, A. & Henningson, D. S. 1998a The neutral stability curve for
non-parallel boundary layer flow. In Berlin, S. 1998, Oblique waves in bound-
ary layer transition, Ph.D. Thesis, Department of Mechanics, KTH, Stockhom,
TRITA-MEK 1998:7.

Berlin, S. & Henningson, D. S. 1999 A nonlinear mechanism for receptivity of
free-stream disturbances. Phys. Fluids 11, 3749–3760.

Berlin, S., Kim, J. & Henningson, D. S. 1998b Control of oblique transition by
flow oscillations. Tech. Rep. TRITA-MEK 1998:6. Royal Institute of Technology,
Stockholm.

318 A. Lundbladh et al.

Berlin, S., Lundbladh, A. & Henningson, D. S. 1994 Spatial simulations of
oblique transition. Phys. Fluids 6, 1949–1951.

Berlin, S., Wiegel, M. & Henningson, D. S. 1999 Numerical and experimental
investigation of oblique boundary layer transition. J. Fluid Mech. 393, 23–57.

Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and nonlinear
stability of the Blasius boundary layer. J. Fluid Mech. 242, 441–474.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral
Methods in Fluids Dynamics. Springer.

Elofsson, P. A. & Lundbladh, A. 1994 Ribbon induced oblique transition in plane
poiseulle flow. In Bypass transition - proceedings from a mini-workshop (ed. D. S.
Henningson), pp. 29–41. TRITA-MEK Technical Report 1994:14, Royal Institute
of Technology, Stockholm, Sweden.

Greengard, L. 1991 Spectral integration and two-point boundary value problems.
SIAM J. Numer. Anal. 28, 1071–1080.

Henningson, D. S. 1995 Bypass transition and linear growth mechanisms. In Ad-
vances in turbulence V (ed. R. Benzi), pp. 190–204. Kluwer Academic Publishers.

Henningson, D. S., Johansson, A. V. & Lundbladh, A. 1990 On the evolution of
localized disturbances in laminar shear flows. In Laminar-Turbulent Transition
(eds. D. Arnal & R. Michel), pp. 279–284. Springer-Verlag.

Henningson, D. S. & Lundbladh, A. 1994 Transition in Falkner-Skan-Cooke flow.
Bull. Am. Phys. Soc. 39, 1930.

Henningson, D. S. & Lundbladh, A. 1995 Evaluation of turbulence models from
direct numerical simulations of turbulent boundary layers. FFA-TN 1995-09,
Aeronautical Research Institute of Sweden, Bromma.

Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for
bypass transition from localized disturbances in wall bounded shear flows. J.
Fluid Mech. 250, 169–207.

Hildings, C. 1997 Simulations of laminar and transitional separation bubbles. Tech.
Rep.. Department of Mechanics, The Royal Institute of Technology, Stockholm,
Sweden.

Högberg, M. & Henningson, D. S. 1998 Secondary instability of cross-flow vortices
in Falkner-Skan-Cooke boundary layers. J. Fluid Mech. 368, 339–357.

Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel
flow. J. Fluid Mech. 177, 133–166.

Kleiser, L. & Schumann, U. 1980 Treatment of incompressibility and boundary
conditions in 3-D numerical spectral simulations of plane channel flows. In Proc.
3rd GAMM Conf. Numerical Methods in Fluid Mechanics (ed. E. H. Hirschel),
pp. 165–173. Vieweg. Braunschweig.

Kreiss, G., Lundbladh, A. & Henningson, D. S. 1994 Bounds for threshold
amplitudes in subcritical shear flows. J. Fluid Mech. 270, 175–198.

Lu, Q. & Henningson, D. S. 1990 Subcritical transition in plane Poiseuille flow.
Bull. Am. Phys. Soc. 35, 2288.

Lundbladh, A. 1993 Growth of a localized disturbance in inviscidly stable shear
flow. TRITA-MEK 93-04, Royal Institute of Technology, Stockholm, Sweden.

Lundbladh, A. & Henningson, D. S. 1993 Numerical simulation of spatial dis-
turbance development in rotating channel flow. FFA-TN 1993-30, Aeronautical
Research Institute of Sweden, Bromma.

An efficient spectral method for simulation 319

Lundbladh, A., Henningson, D. S. & Johansson, A. V. 1992a An efficient spec-
tral integration method for the solution of the Navier-Stokes equations. FFA-TN
1992-28, Aeronautical Research Institute of Sweden, Bromma.

Lundbladh, A., Henningson, D. S. & Reddy, S. C. 1994a Threshold ampli-
tudes for transition in channel flows. In Transition, Turbulence and Combustion,
Volume I (eds. M. Y. Hussaini, T. B. Gatski & T. L. Jackson), pp. 309–318.
Dordrecht: Kluwer.

Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in
plane Couette flow. J. Fluid Mech. 229, 499–516.

Lundbladh, A., Johansson, A. V. & Henningson, D. S. 1992b Simulation of the
breakdown of localized disturbances in boundary layers. Proceedings of the 4th
European Turbulence Conference, Delft, The Netherlands.

Lundbladh, A., Schmid, P. J., Berlin, S. & Henningson, D. S. 1994b Simula-
tion of bypass transition in spatially evolving flows. Proceedings of the AGARD
Symposium on Application of Direct and Large Eddy Simulation to Transition
and Turbulence, AGARD-CP-551.

Malik, M. R., Zang, T. A. & Hussaini, M. Y. 1985 A spectral collocation method
for the Navier-Stokes equations. J. Comp. Phys. 61, 64–88.

Nordström, J., Nordin, N. & Henningson, D. S. 1999 The fringe region tech-
nique and the fourier method used in the direct numerical simulation of spatially
evolving viscous flows. SIAM J. Sci. Comp. 20 (4), 1365–1393.

Reddy, S. C., Schmid, P. J., Bagget, P. & Henningson, D. S. 1998 On stability
of streamwise streaks and transition thresholds in plane channel flows. J. Fluid
Mech. 365, 269–303.

Schmid, P. J. & Henningson, D. S. 1992 A new mechanism for rapid transition
involving a pair of oblique waves. Phys. Fluids A 4, 1986–1989.

Schmid, P. J. & Henningson, D. S. 1993 Nonlinear energy density transfer during
oblique transition in plane Poiseuille flow. Tech. Rep. TRITA-MEK 1993:5. Royal
Institute of Technology, Stockholm.

Schmid, P. J., Lundbladh, A. & Henningson, D. S. 1994 Spatial evolution of
disturbances in plane Poiseuille flow. In Transition, Turbulence and Combustion,
Volume I (eds. M. Y. Hussaini, T. B. Gatski & T. L. Jackson), pp. 287–297.
Dordrecht: Kluwer.

Schmid, P. J., Reddy, S. C. & Henningson, D. S. 1996 Transition thresholds in
boundary layer and channel flow. In Advances in Turbulence VI (eds. S. Gavri-
lakis, L. Machiels & P. A. Monkewitz), pp. 381–384. Kluwer Academic Publish-
ers.

Skote, M., Henkes, R. A. W. M. & Henningson, D. S. 1998 Direct numerical
simulation of self-similar turbulent boundary layers in adverse pressure gradients.
Flow, Turbulence and Combustion 60, 47–85.

Spalart, P. R. & Yang, K. 1987 Numerical study of ribbon induced transition in
blasius flow. J. Fluid Mech. 178, 345–365.

320 A. Lundbladh et al.

Appendix A. Release notes

This manual refers to the following programs and packages :

bla v3.3

bls v1.8

rit v1.9

pre v1.0

ritpre v1.0

rps v1.13

cmp v1.9

fou v1.4

pxyst v1.5

pamp1 v1.1

pamp2 v1.3

pampw v1.1

pext1 v1.1

dfc v1.1

dpc v1.1

plot1 v1.7

VECFFT v1.1

dclib v1.4

fsdf v1.2

This is software which is distributed free on a limited basis; it comes with
no guarantees whatsoever. Problems can be reported to henning@mech.kth.se
or hnd@ffa.se, but no action is promised. If results obtained by using these
programs are published the authors would like an acknowledgment.

Distribution of the code is done by email using a uuencodeed, compressed
tar file. A complete directory structure including all of the material above
can be obtained by executing the following commands on the saved mail file,
preferably called prog

An efficient spectral method for simulation 321

uudecode prog
uncompress prog.tar.Z
tar -xf prog.tar

Makefiles appropriate for compiling the codes are also included for those using
the UNIX operating system.

A version of bla (blap v1.0) exists that runs on computers with distributed
memory. This version is slightly different from the one described in this report,
and its efficiency has been thoroughly tested by Alvelius & Skote (2000).

Appendix B. Scaling of variables

We have chosen a scaling for all parameters based on the displacement bound-
ary layer thickness and free-stream velocity at t = 0, x = 0 for the reference or
base flow. However, internally in the simulation code bla the implementation
uses a scaling based on the half box height. (The external and internal velocity
scale is the same.) This means that all external data must be rescaled when
read into the program, and the reverse scaling applied on output. If we let
dstar be the displacement thickness expressed in half box heights, then the
following scaling relationships hold:

time(internal)=time(external)*dstar

length(internal)=length(external)*dstar

velocity(internal)=velocity(external)

vorticity(internal)=vorticity(external)/dstar

force(internal)=force(external)/dstar

All formatted input and output files except the wave amplitude file use external
scaling, whereas the unformatted files and the wave amplitude file use internal
scaling.

322 A. Lundbladh et al.

Appendix C. Investigation of the fringe method

In some flow cases with large growth rates, e.g. flows with adverse pressure
gradients and separation bubbles, a badly chosen fringe might not offer suffi-
cient damping. The present study aims to give guidelines to choose an optimum
fringe. Three types of flow have been studied, channel flow, boundary-layer flow
with zero pressure gradient and boundary-layer flow with an adverse pressure
gradient.

Although this report does not contain a description of the channel flow code,
we include this flow case in the fringe investigation. This is done since it makes
it possible to exemplify the properties of the fringe only related to the damping
of disturbances, excluding the large forcing needed to return the mean or basic
flow to its required inflow state.

The main parameters deciding the damping properties of the fringe are

• Length of Fringe (L)

• Strength of Fringe (λ)

• Shape of Fringe

• Resolution

• Influence of Blending (For Boundary-Layer)

Variations in all of these parameters have been made, with the main focus on
the length and strength of the fringe. The shape of the fringe, i.e. how λ is
varied in the fringe region, is of some importance. To simplify the investigation
and reduce the number of variables it was decided to use a fringe where the
strength is gradually increased until a maximum is reached and then imme-
diately decreased to zero. This way only two variables describe the shape of
the fringe, see figure 2. Generally the rise has been three fourths of the total
length and the decrease of fringe strength one fourth of the length. The max-
imum strength is what will be denoted with λ hereafter. The gradual change
of strength of the fringe is done with a smooth step function that has continu-
ous derivatives of all orders, equation (114). Throughout this investigation the
damping has been measured as the difference in amplitude of the disturbance
when going into the fringe compared with the value going out of the fringe. All
calculations were continued until the disturbance had been convected through
the computational domain more than once, thus ensuring that a steady state
was reached.

C.1. Channel flow

In the channel flow calculations, a fixed physical box of length 80 h/2 was used
and thus the length of the computational box was varied when the length of

An efficient spectral method for simulation 323

λ

rise

︸ ︷︷ ︸
fall

︸ ︷︷ ︸
Figure 2. Schematic picture of the fringe used in the investi-
gations. For this fringe the sum of the rise and fall is the same
as the total length.

0 0.5 1 1.5 2 2.5 3 3.5 4
3

4

5

6

7

8

9

10

11

log(damp)

λ

Figure 3. Damping as function of λ for channel flow.

the fringe changed. The Reynolds number based on the channel half height and
centerline velocity was 3000 for all computations. To obtain the results shown
in figures 3 and 4 a periodic volume force located at x = 30 with ω = 0.3 has
been used to introduce a disturbance that then evolved downstream. Figure
3 shows the damping as function of λ for a fixed length of the fringe. Note
that the damping increases very rapidly with λ until it reaches a certain level
from where further increase in damping is very modest. It is obvious that
the strength integrated over the length of the fringe plays a major role of the
damping. In figure 4 this is shown in a different way. Contours of the damping
are plotted as function of the length and strength of the fringe region. For a
given integral of the fringe region it is however advantageous to have a longer
fringe with a lower λ.

324 A. Lundbladh et al.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20

30

40

50

60

70

80

90

L

λ

Figure 4. Contours of damping as function of the length of
the fringe and λ. Each contour represents a magnitude of
amplitude, from 2 to 9. Picture for channel flow.

In figure 5 the damping is shown as function of α = 2π/σ, where σ is the
wavelength, for three different frequencies. In all the cases the same fringe pa-
rameters have been used. The curves are obviously very close. This implies that
without sufficient resolution the fringe cannot damp disturbances efficiently re-
gardless of how well the fringe parameters are chosen. There is however an
upper limit of the fringe damping regardless of the resolution. It is desirable
to be close or at least know where this limit is. Based on this investigation
one should strive for αdx to be approximately 0.5, i.e. σ/dx = 2π/0.5 ≈ 12.5.
This is a very high value for optimum performance of the fringe, it is however
not likely that the highest frequencies are particularly amplified in other parts
of the computational box and thus need the best damping. It is also possible
that other parts of the flow require better resolution than the fringe, in which
case the above requirement would not determine the necessary resolution.

C.2. Boundary-Layer Flow

In boundary-layer geometry the forcing is gradually varied from the correspond-
ing outflow boundary-layer to the desired inflow. This variation in the forcing
function is accomplished by the blending. The blending is achieved by varying
the streamwise component of the velocity toward which the solution is forced
according to

u∗
1(x, y) = U(x, y) +

[
U(x + xperiod, y) − U(x, y)

]
S

(
x − xstart

xrise

)
, (113)

An efficient spectral method for simulation 325

0.2 0.4 0.6 0.8 1 1.2 1.4
2

3

4

5

6

7

8

9

10

log(damp)

αdx

Figure 5. Damping as function of resolution for three differ-
ent angular frequencies, ω = 1 solid line, ω = 1.65 dotted line
and ω = 3 dashed line, where α = 2π/σ. Result for channel
flow.

where U(x, y) typically is a solution to the boundary-layer equations, xperiod

the streamwise length of the simulation box and

S(x) =

0 x ≤ 0
1/[1 + exp(1

x−1 + 1
x)] 0 < x < 1

1 x ≥ 1
. (114)

The wall normal component of the velocity toward which the solution is forced
is calculated from continuity.

Tests showed that the blending is of little importance for the damping. The
blending should therefore be determined for maximum computational efficiency.
If the flow is laminar or almost laminar the longest possible blending should
be used, as the greatest gradients of the flow are likely to appear due to the
blending, and thus regulate the finest resolution. If on the other hand the flow
is turbulent, the largest gradients are usually in other parts of the domain and
the resolution requirements due to the flow in the fringe are of less importance,
allowing both shorter fringe and blending. It is worth noting that the profiles
which the flow is forced towards are generally not solutions of the Navier-Stokes
equations, rather these are usually similarity solutions of the boundary-layer
equations.

For the calculations of the zero pressure-gradient boundary-layer flow a physical
box of length 400 δ∗0 (δ∗0 = δ∗ at inflow) and height 10 δ∗0 was used. The
Reynolds number was 1000 and the disturbance was introduced at x = 200 δ∗0
with ω = 0.1

326 A. Lundbladh et al.

0 0.5 1 1.5 2 2.5 3 3.5 4
4

4.5

5

5.5

6

6.5

7

log(damp)

λ

Figure 6. Damping as function of λ for three different bound-
ary conditions. Solid line for bc prescribing the normal deriva-
tives, dashed line for bc prescribing the streamwise velocity
and dash-dotted line for the asymptotic condition. Length of
fringe 400, with 75 % used for rise and 25 % for fall of the
fringe function. Note that the damping is less than for channel
flow.

For boundary-layer flow, there are differences in the fringe damping depending
on the boundary condition used. Three different boundary conditions have been
used in this investigation, the condition prescribing the normal derivatives, 101
in table 2, the asymptotic condition, 110 in table 2, and finally the boundary
condition prescribing the streamwise velocity, 150 in table 2. In figure 6 the
damping is plotted as function of λ for the different boundary conditions. The
damping using the asymptotic boundary condition is somewhat less than the
other two, and all three are smaller than in the channel flow calculations.

In figure 7 contours of damping are shown as function of strength and length
of the fringe. The basic characteristics are the same as in the channel case.
Figure 8 shows the effect of the shape of the fringe. The differences between the
different cases are not large. This implies that there is only a small dependence
on where the maximum strength of the fringe is reached, although the case
with a very early maximum strength is the worst and should be avoided.

An efficient spectral method for simulation 327

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
40

60

80

100

120

140

160

180

200

L

λ

Figure 7. Damping as function of length of fringe and λ.
Solid lines denote magnitudes of damping, from 2 to 5. The
boundary condition prescribing the streamwise velocity has
been used.

50 100 150 200 250 300 350 400
3

3.5

4

4.5

5

5.5

6

6.5

log(damp)

L

Figure 8. Damping as function of shape of fringe. Solid line
corresponds to 25 % rise and 75 % fall. Dashed 50/50, dotted
75/25 and dash-dotted 100 % rise and zero distance for fall.
The integral was held constant for the different lengths. The
boundary condition prescribing the streamwise free-stream ve-
locity, 150 in table 2, has been used.

328 A. Lundbladh et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.5

5

5.5

6

6.5

7

log(damp)

λ

Figure 9. Damping as function of λ for boundary-layer flow
with an adverse pressure gradient. Length of fringe was 200 δ∗0 .
The boundary condition prescribing the streamwise velocity
has been used.

C.3. Boundary-Layer with Pressure Gradient

C.3.1. Qualities of the fringe

For these calculations Reδ∗
0

= 1000 and Hartree-Parameter β = −0.18 were
chosen. Length of the physical part of the box was set to 200 δ∗0 and the height
to 12. The blending started at the end of the physical box and used a rise
distance of 100. A volume force with ω = 0.13 was applied at x = 100 δ∗0 .

The main characteristics from the investigation with boundary layer flow are
unchanged. However, there is now a much stronger natural amplification of
disturbances. The same behavior of the damping as a function of λ as was
observed for the investigation without pressure gradient is observed in figure 9.
The total damping in the fringe is somewhat better than in the case without
pressure gradient. In figure 10 contours of the damping are shown as func-
tion of the strength and length of the fringe. Quite surprisingly the damping
deteriorates in some cases when the strength increases. The best damping is
obtained with rather low values of λ.

C.3.2. Spatial evolution of a disturbance

The purpose of the remaining figures is mainly to show the evolution of a dis-
turbance when it is convected through the computational box. Two different
cases are studied, one without any forced disturbance and one with an intro-
duced Tollmien-Schlichting wave. In figure 11 the frequency spectra at several

An efficient spectral method for simulation 329

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
100

120

140

160

180

200

220

240

260

280

300

L

λ

Figure 10. Contours of damping. Solid lines denote magni-
tudes of amplitude. The boundary condition prescribing the
streamwise velocity has been used.

downstream positions are shown for the undisturbed case. Each curve shows
the general disturbance level at the corresponding streamwise position. It is
apparent that frequencies with ω = 0.1 to 0.2 are the most amplified. The
smallest disturbances are found at x = 350 and are mainly due to trunca-
tion errors. As the strength of the fringe decreases they start to grow. They
reach their maximum intensity at x = 200, where they enter the fringe and
are quickly damped. In figure 12 this evolution as well as that for the forced
disturbance are shown, but only for the frequency that the TS-wave is forced
with. Note that after the forcing the growth of the forced disturbance is greater
than that of the unforced. It is also possible to see the upstream influence of
the forcing. Of great importance is that the curve of the forced disturbance
is above the curve of the undisturbed one. Figure 13 shows the evolution of
the forced disturbance in the same manner as figure 12, i.e. the evolution for
different frequencies at several streamwise positions. The greatest difference
with the unforced case is the well defined peak at the frequency of the forcing.
It is also possible to see that other frequencies than the forced one are the ones
which grow at the end of the fringe.

330 A. Lundbladh et al.

 1.0E-01

 1.0E-25

 1.0E-20

 1.0E-15

 1.0E-10

v-vmean x-pos

0

50

100

150
200

250

300
350

ω

Figure 11. Frequency spectrum for different x-positions. For
each line the x-position is given to the right. The fringe starts
at x = 200 and total the length of the computational box is
400. No forcing is applied to create a disturbance, instead
truncation errors grow in the physical part of the box.

 0. 50. 100. 150. 200. 250. 300. 350.
 1.0E-25

 1.0E-20

 1.0E-15

 1.0E-10

 1.0E-05

 1.0E+00

lo
g(

en
er

gy
)

x

Figure 12. Energy of the forced wave as function of x. The
solid line denotes a case where a volume force was introduced
at x = 100. The dashed line represents the case of no forcing.

An efficient spectral method for simulation 331

 1.0E-01

 1.0E-25

 1.0E-20

 1.0E-15

 1.0E-10

v-vmean x-pos

0

50

100

150

200
250

300

350

ω

Figure 13. Frequency spectrum for different x-positions. For
each line the x-position is given to the right. The fringe starts
at x = 200 and total length of the computational box is 400.
A volume force is applied at x = 100 with the frequency ω =
0.13.

332 A. Lundbladh et al.

Appendix D. Examples, user created files

D.1. Example par.f, bls.i, bla.i file for a simple simulation

Below is an example of the adjustable part of a par.f include file. It is set up for
a 32 × 33 × 32 spectral mode simulation without spanwise symmetry, dealiazing in
the x and z-direction, and in-core storage. The parameters mby and mbz are set for
minimum storage.

c par.f contains size of problem

.

.

.

c adjustable parameters

c number of spectral modes

parameter (nx=32,ny=33,nz=32)

c dealiazing flags

parameter (nfxd=1,nfyd=0,nfzd=1)

c symmetry flag

parameter (nfzsym=0)

c core storage flag

parameter (nfc=1)

c boxsize

parameter(mby=1,mbz=1)

c number of processors

parameter(nproc=1)

c bla with pressure solver (1)

c bls,rit,pre,cmp and bla without pressure (0)

parameter(pressure=0)

c statistics

parameter (nxys=42)

c computed parameters

.

.

.

Below is an example of a simple bls.i file to generate a localized disturbance in a file
named bl0.u. Note that comments are allowed on lines with non-character data.

bl0.u

950. re

100. xl

10. yl

50. zl

3 fltype

0. no Galilei shift velocity

.true. generation of localized disturbance

1 type of disturbance

0.0002 amplitude

An efficient spectral method for simulation 333

0. rotation angle

2. scale in x-direction

0. origin in x-direction

2. scale in y-direction

2. scale in z-direction

1 type of distribution in the wall normal direction

.false. no waves

.false. no noise

Below is an example of a simple bla.i file to run initial data in file bl0.u to time 10
and output the result to file bl10.u. An amplitude list is written to bl10amp.d

bl0.u

bl10.u

10. time for simulation

100 max iterations

7200. max CPU time to stop(give a big value if not needed)

0.0 time step, =0 for automatic variation

4 number of time integration stages (1/3/4)

100. keep old box length

.false. no variable size

.0 rotation rate; no rotation

110 boundary condition at the free-stream

.false. no chebyshev integration method; tau method

.false. no Galilei transformation

.false. no spatial simulation; temporal simulation

0.5 the boundary layer development speed

0 no localized volume force

.false. no trip force

0 the boundary condition at the wall; no blowing/suction

4 cfl calc interval

4 amp calc interval

bl10amp.d

.false. no y-dependent statistics

0 extremum calc interval; no extremum calc

0 xy-statistics calculation interval; no xy-stat calc

0 number of saved 3-d fields

0 number of saved wavenumbers

0 number of save planes

D.2. Example par.f, bla.i file for a simulation of a turbulent boundary layer
under an adverse pressure gradient.

When running this example the turbulent statistics are stored in the file endxys.u.
The simulation has to be run for a long time for the statistics to be sufficiently smooth.
On a super computer the job can be restarted again after accomplishing a run. The
different files for the statistics are then added together by the addxys program. The
statistics are evaluated with the program pxyst. The velocity field bl3400.u and
free-stream table freestream.d015 are required when running this example.

334 A. Lundbladh et al.

c par.f contains size of problem

.

.

.

c adjustable parameters

c number of spectral modes

parameter (nx=480,ny=161,nz=96)

c dealiazing flags

parameter (nfxd=1,nfyd=0,nfzd=1)

c symmetry flag

parameter (nfzsym=0)

c core storage flag

parameter (nfc=1)

c boxsize

parameter(mby=2,mbz=2)

c number of processors

parameter(nproc=6)

c bla with pressure solver (1)

c bls,rit,pre,cmp and bla without pressure (0)

parameter(pressure=1)

c statistics

parameter (nxys=42)

c computed parameters

.

.

.

Below is the bla.i file.

bl3400.u

bl3416.u

p3416.u

3416. total simulation time

4000000 number of iterations

3600000. cpu time

0.0 time step

4 1/3/4 number of stages

450. keep old box length

.false. variable size

.0 rotation rate

101 boundary condition number

.false. no cim; use tau method

.false. no Galilean transform

.true. spatial simulation

.true. read tabulated free-stream

freestream.d015

.false. read in base flow; no base flow

1.25 strength of fringe region

-50. start of fringe region

An efficient spectral method for simulation 335

.0 end of fringe region

40. rise distance of fringe

10. fall distance of fringe

0.0 no oblique waves forced in the fringe

0.0 no two dimensional T-S wave

0 no localized volume force

.true. trip forcing

0.0 steady forcing amplitude

0.2 time dependent forcing amplitude

4.0 x-length scale of trip

10. x-origin of trip

1.0 y-length scale of trip

10 number of z-modes in trip

4.0 time-scale of trip

-1 random number seed for trip

0 the boundary condition at the wall; no blowing/suction

4 cfl calc interval

0 amp calc interval; no amplitude calculation

.false. no y-dependent statistics

0 extremum calc interval; no extremum calculation

20 xy statistics calculation interval

endxys.u

50000 iterations between saves; do not save until finished

0. time to start accumulation of statistics

3 number of saved 3-d fields

3404.

bl3404.u

3408.

bl3408.u

3412.

bl3412.u

0 number of saved wavenumbers

0 number of save planes

