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Stockholm framlägges till offentlig granskning för avläggande av teknologie
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Abstract

The objective has been to study turbulent boundary layers under adverse pres-
sure gradients (APG) through direct numerical simulation (DNS). The numer-
ical code is based on a pseudo-spectral technique which is suitable for the sim-
ple geometry (flat plate) considered here. A large effort has been put into the
optimization of the numerical code on various super computers. Five large sim-
ulations have been performed, ranging from a zero pressure gradient boundary
layer to a separating flow. The simulations have revealed many features of APG
turbulent boundary layers which are difficult to capture in experiments. Espe-
cially the near-wall behavior has been investigated thoroughly, both through
the statistical and instantaneous flow.

Theoretical work based on the turbulent boundary layer equation has been
conducted with the aim to develop near-wall laws suitable for turbulence mod-
els. The conditions for self-similarity and relations between mean flow pa-
rameters have been reviewed and applied in the DNS. The results from the
simulations have confirmed the theoretical part of this work.

The turbulent flows have also been investigated using turbulence models.
A boundary layer under strong APG is difficult to predict correctly, and the
separating boundary layer is one of the most difficult flows in this respect. The
near-wall damping was improved by comparing DNS data and model predic-
tions. The asymptotic behavior of an APG boundary layer for large Reynolds
numbers has been determined through asymptotic analysis and with the aid of
turbulence models.

The DNS data have also been utilized for the investigation of instanta-
neous turbulence structures. The turbulent boundary layer was found to be
populated by near-wall low-speed streaks and vortices shaped like a horseshoe,
in agreement with earlier investigations. The instability mechanism behind the
formation of these vortices is examined through a simulation of an artificial
low-speed streak introduced in a laminar boundary layer.

The turbulence statistics from the simulations have also been compared
with other simulations of turbulent boundary layers and Couette flow.

Descriptors: Turbulence, direct numerical simulation, boundary layer, sepa-
ration, parallel computers, turbulence modelling.



Preface

This thesis considers direct numerical simulation of turbulent boundary layer
flows. The introductory part is a summary of the work contained in the nine
papers included, and thus is not a general review of the subject. The thesis is
based on and contains the following papers.

Paper 1. Skote, M., Henningson, D.S. & Henkes, R.A.W.M. 1998
Direct numerical simulation of self-similar turbulent boundary layers in adverse
pressure gradients. Flow, Turbulence and Combustion, 60, 47–85.

Paper 2. Henkes, R.A.W.M., Skote, M. & Henningson, D.S. 1997
Application of turbulence models to equilibrium boundary layers under adverse
pressure gradient. Eleventh Symposium on Turbulent Shear Flows, Grenoble,
France, 33:13–33:18.

Paper 3. Skote, M. & Henningson, D.S. 1999 Analysis of the data base
from a DNS of a separating turbulent boundary layer. Center for Turbulence
Research, Annual Research Briefs 1999, 225–237.

Paper 4. Skote, M. & Henningson, D.S. 2000 Direct numerical simula-
tion of separating turbulent boundary layers. Submitted to Journal of Fluid
Mechanics.

Paper 5. Skote, M. & Wallin, S. 2000 Near-wall damping in model pre-
dictions of separated flows. FFA TN 2000-72.

Paper 6. Komminaho, J. & Skote, M. 2000 Reynolds stress budgets in
Couette and boundary layer flows. Submitted to Flow, Turbulence and Com-
bustion.

Paper 7. Skote, M., Haritonidis J.H. & Henningson, D.S. 2000 Insta-
bilities in turbulent boundary layers. Submitted to Physics of Fluids.
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Paper 8. Alvelius, K. & Skote, M. 1999 The performance of a spectral
simulation code for turbulence on parallel computers with distributed memory.
TRITA-MEK 2000:17.

Paper 9. Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J.,

Kim, J. & Henningson, D.S. 1999 An efficient spectral method for simula-
tion of incompressible flow over a flat plate. TRITA-MEK 1999:11.

The papers are re-set in the present thesis format. Some of them are based on
publications in conference proceedings (Skote & Henningson 1997, 1998, 1999;
Skote et al. 2000).

Division of work between authors

The DNS was performed with a numerical code already in use for mainly tran-
sition research. It is based on a pseudo-spectral technique and has been further
developed by Skote (MS) for extracting flow quantities needed in turbulence
research. The necessary changes of the code for the porting to computers with
distributed memory have been completed.

The DNS in paper 1 was performed by MS. The turbulence model cal-
culations were done by MS together with Henkes (RH). The theoretical work
was performed by MS. The writing was done by MS with great help from
Henningson (DH).

The DNS data in paper 2 are the same as in paper 1. The model predictions
were conducted by RH. The paper was written mainly by RH.

The DNS data in paper 3 were taken from Na & Moin (1998). The eval-
uation of the data and the writing was done by MS with help from DH. The
theoretical part of the work was done by MS.

The DNS in paper 4 was performed by MS. The theoretical work was done
by MS. The writing was done by MS with help from DH.

In paper 5, the a priori tests were performed by MS, while the model
predictions were performed by Wallin (SW). The theoretical work and writing
was done by MS and SW together.

The Couette data were produced and evaluated by Komminaho (JK) in
paper 6. The boundary layer data were produced and evaluated by MS. JK
wrote the part about the Couette flow, while the part about the boundary layer
was written by MS.

Haritonidis (JH) came up with the original idea for the work in paper
7. The simulations were performed by MS and JH together. The stability
analysis was performed by MS with a lot of help from JH and DH. The paper
was written by MS with help from JH and DH.

The work described in paper 8 was performed by Alvelius and MS together.
It was also written together.

MS contribution in paper 9 was the pressure solver and to compile and
organize the report.
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“A dry maple leaf fell off and is dropping to the ground; its
movement is exactly like the flight of a butterfly. Isn’t it strange?
The most mournful and dead—resembles the most gay and lively.”

Ivan Turgenev





CHAPTER 1

Introduction

The phenomenon leading to such an exclaim of wonder as on the previous page
is caused by the motion of air, which mysteries are investigated in the field of
fluid mechanics.

Actually, there is no mystery at all. Newton’s second law of motion and a
constitutive relation regarding the viscous forces describe the motion in mathe-
matical terms (equations). The equations are called Navier-Stokes (N-S) equa-
tions and form together with the continuity equation (conservation of mass) a
system of four equations for the four variables: velocity vector (three compo-
nents) and pressure. However, because the flow can be complicated enough to
even resemble living things, it is difficult to solve the governing equations. In
other words, the flow is represented by a simple equation (when put in a math-
ematical formulation), but the solution may not be simple. Only very special
solutions to the N-S equations can be solved mathematically to a closed expres-
sion, i.e. the velocity vector given as a function of time and space. For more
realistic situations, the solution has to be calculated with the aid of a computer.
Alternatively, experiments have to be conducted to extract information about
the flow.

Most of the flows in nature and in technical applications are turbulent, i.e.
the velocity fluctuates rapidly in time and space. This is what makes the dry
leaf come to life. Other examples include the flow over the wing of an aircraft
and the flow of blood through our veins.

To numerically solve the N-S equations is called direct numerical simulation
(DNS) and is an enormous challenge for the super computers in use today. The
difficulties that arise when performing DNS are due to the wide range of scales
in the turbulence that need to be resolved, making the simulations large and
time consuming. By scales one means the lengths (both in time and space) that
are important for the dynamics of the flow. The large scales are determined by
the outer, geometrical constraints, and the smallest scales are determined by
the viscosity (inner friction). The range of scales is measured by the Reynolds
number.

Another example of the complexity of fluid motion, actually involving a
butterfly, is that the flap of such tiny wings might be responsible for a full
storm on the other side of the earth. This illustrates another difficulty in
the prediction of fluid flows; the sensitivity to changes in boundary conditions
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4 1. INTRODUCTION

or initial conditions, which manifests itself in, among other things, the large
uncertainty in weather forecasts.

The usual concept in research of physical phenomena is to translate the
physics to mathematics, then solve the mathematical problem, and finally
translate the answer back to physics. The construction of a mathematical model
of the physical reality usually requires some assumption about the physics —
a simplification, or at least an interpretation of nature. In the part of fluid
mechanics dealt with here, the assumptions are
i the continuum hypothesis; the molecules are so small and many that they
constitute a continuum. This is the basis of fluid mechanics, and will not be
further discussed.
ii the incompressibility of fluid; the density of the fluid is constant. The work
presented here concerns flow at relatively low speed, thus compressibility is of
no concern.
iii Newtonian fluid; the relationship between the stresses and the rates of de-
formation is linear. The work presented here concerns air or water, which are
Newtonian fluids.

A physical experiment is the natural method for extracting information
about fluid flows. Why would one want to perform a numerical simulation?
There is a number of advantages with DNS over experiments. The most obvious
ones include the information of the flow close to the wall, which is crucial in
many aspects. It is difficult to measure close to the surface, while the full
information is available from numerical data. Furthermore, to have access to
all flow variables at the same instant is important in turbulence research, and
is only possible with numerical simulations.

However, because the limited performance of computers, DNS is con-
strained to simple geometries and low Reynolds numbers. Thus, DNS is only
suitable for basic studies of turbulence.

From an engineering point of view, the information needed for the design
consists of the average of the turbulent flow. Therefore, the full N-S equations
describing every detail in time and space are not necessary, or even desirable,
to solve. It is sufficient to solve the equations for the averaged flow, which
are obtained by taking the time or ensemble average of the full N-S equations.
The equations describing the mean flow have terms included that describe the
influence of the fluctuating part of the velocity on the mean. These terms are
unknown and must be modelled, i.e. they need to be expressed in the mean
flow variables. A lot of research has been devoted to this so called turbulence
modelling. All of the numerical calculations of turbulent flows of engineering
interest are performed using turbulence models.

The flow around an object that moves in air or water is responsible for such
phenomena as drag and lift. Close to a solid surface the flow forms a boundary
layer, where the speed of the fluid relative the object rapidly decreases to
zero. In this relatively thin layer many of the most interesting features of the
aerodynamic property of the body are determined. Thus, the boundary layer is
of engineering significance in most applications. Furthermore, the flow within
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this boundary layer is often turbulent. This type of flow, called turbulent
boundary layer flow, is the topic of this thesis.

In this thesis some features of the flow are compared with theoretical ex-
pressions, obtained from the averaged N-S equations (Reynolds equations), or
more specifically, a simplified version (the turbulent boundary layer equation).
The motivation for the theoretical work is to explain the behaviour of the mean
flow of the turbulent boundary layer. Furthermore, relating the DNS data with
theoretical results give an opportunity to advance turbulence models further
than is possible if only comparisons between DNS data and model predictions
are made.

References to papers 1 through 9 will be made in the following chapters.
The papers are included in the thesis and the proper reference is stated in the
preface.



CHAPTER 2

Direct numerical simulation

2.1. Numerical method
The direct numerical simulations presented in this thesis have all been per-
formed with the spectral algorithm described in detail in paper 9. In a spectral
method the solution is approximated by an expansion in smooth functions,
e.g. trigonometric functions as in our case. The earliest applications to partial
differential equations were developed by Kreiss & Oliger (1972) and Orszag
(1972), who named the method pseudo-spectral. The term pseudo-spectral
refers to the multiplications in the non-linear terms, which are calculated in
physical space to avoid the evaluation of convolution sums. The transforma-
tion between physical and spectral space can be efficiently done by Fast Fourier
Transform (FFT) algorithms that became generally known in the 1960’s, see
Cooley & Tukey (1965).

The high accuracy in spectral methods compared to finite-element or finite
difference discretizations is a result of the fast convergence rate of spectral
approximations of a function. Efficient implementations of pseudo-spectral
methods can be made thanks to the low costs of performing FFTs. Moreover,
the data structure makes the algorithms suitable for both vectorization and
parallelization. However, the spectral approximation limits the applications to
simple geometries.

Pseudo-spectral methods became widely used for a variety of flows during
the 1980’s. Early turbulent boundary layer results were presented by Spalart &
Leonard (1987), who used a parallel approximation of the boundary layer. The
first spatial (no parallel approximation) turbulent boundary layer computation
was performed by Spalart & Watmuff (1993).

The algorithm used for the simulations in this thesis is similar to that
for channel geometry of Kim et al. (1987), using Fourier series expansion in
the wall parallel directions and Chebyshev series in the normal direction and
pseudo-spectral treatment of the non-linear terms. The time advancement used
is a four-step low storage third-order Runge-Kutta method for the non-linear
terms and a second-order Crank-Nicolson method for the linear terms. Aliasing
errors from the evaluation of the non-linear terms are removed by the 3/2−rule
when the horizontal FFTs are calculated.

The numerical code is written in FORTRAN and consists of two major
parts; one linear part where the equations are solved in spectral space, and one
non-linear part where the non-linear terms in the equations are computed in
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Figure 2.1. The boundary layer thickness δ (dashed) of a
laminar mean flow that grows downstream in the physical do-
main and is reduced in the fringe region by the forcing. The
flow profile is returned to the desired inflow profile in the fringe
region, where the fringe function λ(x) is non-zero.

physical space. The linear part needs data for one spanwise (z) position at a
time since the equations are solved in the wall normal (y) direction. The non-
linear part needs data for one y position at a time since the FFT is performed
in the horizontal directions (spanwise and streamwise). The flow variables are
stored at an intermediate level with spectral representation in the horizontal
directions and physical representation in the y direction. All spatial derivatives
are calculated with spectral accuracy. The main computational effort in these
two parts is in the FFT.

Since the boundary layer is developing in the downstream direction, it is
necessary to use non-periodic boundary conditions in the streamwise direction.
This is possible while retaining the Fourier discretization if a fringe region,
similar to that described by Bertolotti et al. (1992), is added downstream of
the physical domain. In the fringe region the flow is forced from the outflow
of the physical domain to the inflow. In this way the physical domain and the
fringe region together satisfy periodic boundary conditions. The fringe region
is implemented by the addition of a volume force F , to the Navier-Stokes
equations:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj
2

+ Fi. (2.1)

The force
Fi = λ(x)(ũi − ui) (2.2)

is non-zero only in the fringe region; ũi is the laminar inflow velocity profile
the solution ui is forced to and λ(x) is the strength of the forcing. The form
of λ(x) is designed to minimize the upstream influence. See Nordström et al.
(1999) for an investigation of the fringe region technique. Figure 2.1 illustrates
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the variation of the boundary layer thickness and the mean flow profile in the
computational box for a laminar case, as well as a typical fringe function λ(x).

The code has been thoroughly checked and used in several investigations
by a number of users on a variety of workstations and super computers.

2.2. Computer implementation
Many super computers of various types have been used for the simulations.
All of the computers have been parallel, i.e. multiple processors are working
together at the same time. The computers can be divided in two groups with
respect to processor type, and two groups with respect to memory configura-
tion.

A processor has either scalar or vector registers. A scalar processor per-
forms operations on one element at a time with fast access to memory, whereas
a vector processor performs operations on several elements at the same time.

The processors can have access to a large memory, common to all proces-
sors (shared memory), or have their own memory, unique for all processors
(distributed memory).

All combinations of the different types have been used and the computers
are listed in table 2.1.

shared memory distributed memory
scalar processor SGI Origin 200 Cray T3E, IBM SP2
vector processor Cray J90, C90, T90 Fujitsu VPP300, NWT

Table 2.1. The four categories of super computers

While the parallelization of the code on shared memory computers is
straightforward, a lot of effort was needed for the parallelization and optimiza-
tion of the code on computers with distributed memory, see paper 8. Com-
munication between processors is necessary when the operations on the data
set are to be performed in the two different parts of the code. The data set
(velocity field) is divided between the different processors along the z direction.
Thus, in the linear part, no communication is needed. When the non-linear
terms are calculated, each processor needs data for a horizontal plane. The
main storage is kept at its original position on the different processors. In the
non-linear part each processor collects the two dimensional data from the other
processors, on which it performs the computations, and then redistributes it
back to the main storage.

The tuning of a code for optimal performance consists of two parts. One
is the single processor tuning and the other is the parallel optimization. The
tuning for one processor is dependent on the type of processor, whereas the par-
allelization is connected to the memory configuration. The two main issues for
the single processor performance are the vectorized versus scalar FFT. For the
parallelization the inherent structure of the code makes it suitable for shared
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memory systems, and for distributed memory the MPI (Message-Passing In-
terface) is utilized.

An overview of the performance on the different computers used for the
simulations presented in this thesis is shown in table 2.2. The peak performance
in the table is the theoretical maximum speed you could obtain on a single pro-
cessor. This number is more closely obtained in reality for vector processors.
Note that the clock frequency usually quoted in connection with personal com-
puters is somewhat misleading in this context. The clock frequency for e.g.
the SP2 processor is only 160 MHz, but it is capable of four operation in each
clock cycle, making the top performance 640 million floating point operations
per second (640 Mflop/s).

The largest computer used for the simulations was the Numerical Wind
Tunnel (NWT) at the National Aerospace Laboratory (NAL), Tokyo. It was
built in the early 90’s and consists of 166 vector processors from Fujitsu.

Computer # processors peak performance code performance
Cray J90 1 220 1001

Cray J90 8 600
Cray C90 1 952 5221

Cray C90 4 1500
Cray T90 1 1700 710

Fujitsu VPP300 1 2200 525
Fujitsu NWT 1 1700 3202

Fujitsu NWT 64 20500
Cray T3E 1 600 302

Cray T3E 64 1900
IBM SP2 1 640 552

IBM SP2 64 3500
SGI Origin 200 1 450 53
SGI Origin 200 4 181

Table 2.2. The speed on various super computers in Mflop/s.
1 Measured with optimal vector length, same performance not
possible on several processors. 2 Not measured, but calculated
from performance on 64 processors for comparison.

2.3. Performed simulations
The adverse pressure gradient is implemented through the variation of the
streamwise velocity at the freestream (U). In all of the simulations presented
in this thesis the form of U has been,

U = U0(1 − x

x0
)m. (2.3)
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Both the exponent m and the virtual origin x0 are parameters defining the
shape of U . The parameters used in the simulations are given in table 2.3.

The simulations start with a laminar boundary layer at the inflow which is
triggered to transition by a random volume force near the wall. All the quan-
tities are non-dimensionalized by the freestream velocity (U) and the displace-
ment thickness (δ∗) at the starting position of the simulation (x = 0), where
the flow is laminar. The Reynolds number is set by specifying Reδ∗ = Uδ∗/ν at
x = 0, and the values are given in table 2.3. The length (including the fringe),
height and width of the computational box are listed in table 2.3 together with
the number of modes used. Also included in table 2.3 are the total number of
collocation points, denoted Nc.

Case Reδ∗ Lx Ly Lz Nx Ny Nz Nc m x0

ZPG 450 600 30 34 640 201 128 37 · 106 0 ∞
A1 400 450 18 24 480 121 96 13 · 106 -0.077 -60
A2 400 450 24 24 480 161 96 17 · 106 -0.15 -60
A3 400 700 65 80 512 193 192 43 · 106 -0.25 -62

SEP 400 700 65 80 720 217 256 90 · 106 -0.35 -50
Table 2.3. Numerical parameters. L denotes the size of the
computational box. N denotes the number of modes.

The five different simulations are presented in six of the nine papers in-
cluded in this thesis, as well as in a number of conference proceedings not
included. The simulations have different notations in the papers and are sum-
marized in table 2.4.

Thesis paper 1 paper 2 paper 4 paper 5 paper 6 paper 7
ZPG ZPG ZPG
A1 APG1 APG1
A2 APG2 APG2 APG1
A3 APG1 APG1 APG2

SEP SEP SEP
Table 2.4. The simulations are presented in different papers
with a notation summarized here.



CHAPTER 3

Fundamental analysis of turbulent boundary layer flows

In most applications it is the mean flow that sets the limit on the performance
and hence determines the design. The rapid turbulent fluctuations in time
and space are not in themselves as interesting as their influence on the time-
averaged flow. The equations to be solved to obtain the steady mean flow is
the averaged Navier-Stokes equations (Reynolds equations),

∂ui

∂xi
= 0, (3.1)

uj
∂ui

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2ui

∂xj
2
− d

dxj
〈u′

iu
′
j〉, (3.2)

where 〈u′
iu

′
j〉 is the Reynolds stress tensor, which is the quantity that accounts

for the influence of the turbulent fluctuations on the mean flow ui. P is the
mean pressure.

By solving equation (3.2), the mean flow ui is obtained. However, 〈u′
iu

′
j〉

is an unknown quantity that needs to be expressed in ui and its derivatives
in order to obtain a solvable equation. Thus, one objective for DNS is to
obtain turbulence statistics from which the true coupling between mean flow
and Reynolds stresses can be extracted. From the results it is possible to draw
conclusions about the validity of current turbulence models and also to develop
new models. Furthermore, the solution to equation (3.2) does not contain any
information about the instantaneous flow. However, for the coupling between
the mean flow and Reynolds stresses, the instantaneous structure of the flow
could be of importance.

3.1. The boundary layer equations
In a steady two-dimensional boundary layer the mean flow equations (3.1) and
(3.2) reduce to,

∂u

∂x
+

∂v

∂y
= 0, (3.3)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
〈u′v′〉 − ∂

∂x
(〈u′u′〉 − 〈v′v′〉), (3.4)

where u is the mean streamwise velocity, v the mean wall normal velocity,
dP
dx the pressure gradient, 〈u′v′〉, 〈u′u′〉, 〈v′v′〉 the Reynolds stresses, ρ the

11



12 3. FUNDAMENTAL ANALYSIS

density and ν the kinematic viscosity. Equation (3.4) is the turbulent analogy
to the laminar second order boundary layer approximation, i.e. terms up to
order (δ/L)2 are kept, where δ is a typical length in the normal direction and
L is a typical length in the streamwise direction. The last term in equation
(3.4) can be neglected in most situations, and the resulting equation is a first
order boundary layer approximation. This simplified turbulent boundary layer
equation will be denoted TBLE throughout this chapter. The TBLE can be
further simplified by the distinction between an inner part and an outer part.

3.2. Scalings and self-similarity
One important concept in the analysis of equation (3.4) is self-similarity, which
means that velocity profiles at different downstream positions collapse on a
single curve. In order to achieve this, proper scaling has to be used.

The concept of scaling and self-similarity has been an important tool in
physics for a long time. According to Barenblatt (1996), the first application
was made by Fourier (1822), in the context of heat conduction.

By reducing a partial differential equation — with two or more indepen-
dent variables, to an ordinary equation — with one independent variable, an
enormous simplification of the problem has been made.

The velocities and Reynolds stresses in equation (3.4) are dependent on
both x and y. However, under certain conditions the dependency can be re-
duced to only one similarity coordinate (which depends on x and y).

In turbulent boundary layer theory one usually distinguish between two re-
gions of the flow with different characteristics. The individual terms in equation
(3.4) are of different importance in the two regions of the boundary layer flow.
The viscous term is only important in the inner region, while the advection
terms are only significant in the outer part.

3.2.1. The outer part
In the outer part of a turbulent boundary layer, equation (3.4) can be reduced
to,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
− ∂

∂y
〈u′v′〉. (3.5)

The partial differential equation (3.5) is converted to an ordinary differential
equation through the rescaling,

(u − U)/uτ = F (η), −〈u′v′〉/uτ
2 = R(η),

η = y/∆(x), ∆ = Uδ∗/uτ . (3.6)

U is the freestream velocity, uτ is the friction velocity (defined in the next
section) and δ∗ is the displacement thickness. These scalings yields an equation
of the form,

−(β − 2ω)F + γF 2 − (α − 2β − 2ω)η
dF

dη
− χ

dF

dη

∫ η

0

Fdη =
dR

dη
, (3.7)
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with

α =
(

U

uτ

)2
dδ∗

dx
, β =

δ∗

τw

dp

dx
, (3.8)

ω =
1
2

δ∗

uτ

(
U

uτ

)2
duτ

dx
,

γ =
U

uτ

δ∗

uτ

duτ

dx
, χ =

U

uτ

dδ∗

dx
+

δ∗

uτ

dU

dx
.

If the scalings in (3.6) is to produce an ODE of equation (3.7), all the
terms α, β, γ, χ, ω must be constants. The conditions under which constant
parameters can occur are discussed next.

The classical treatment of the equations which involves outer and inner
equations and a matching of the solutions, leads to the logarithmic friction
law,

uτ

U
=

1
C + 1

κ ln Reδ∗
, (3.9)

where κ is the Kármán constant and Reδ∗ = Uδ∗/ν. Equation (3.9) shows that
uτ/U → 0 in the limit of very high Reynolds number. A series expansion of
the terms (3.8) in the small parameter (uτ/U) is performed in paper 2. Letting
uτ/U → 0, the asymptotic version of equation (3.7) is obtained,

−2βF − (1 + 2β)η
dF

dη
=

dR

dη
, (3.10)

which is called the defect layer equation. The same asymptotic version was
obtained by Tennekes & Lumley (1972). Also Wilcox (1993) performed an
asymptotic analysis but made some mistakes as pointed out in paper 2 and by
Henkes (1998).

A different approach to equation (3.4) is presented in paper 1, in which
the asymptotic theory is substituted with an analysis permitting a finite ratio
uτ/U . Since the logarithmic function grows very slowly when the argument
is large, a better assumption than uτ/U → 0 for moderately high Reynolds
numbers is that uτ/U ≈ constant. If uτ/U is regarded as constant and an
outer length scale varies linearly, the condition β =constant is fulfilled if the
freestream variation is of the form U ∼ xm, which was shown by Townsend
(1956) and Mellor & Gibson (1966). When specifying a profile in a power-law
form it can be written,

U = U0(1 − x

x0
)m. (3.11)

Utilizing these constraints, the TBLE becomes,

−2βF +
β

m
(1 + m)η

dF

dη

+
uτ

U

{
−βF 2 +

β

m
(1 + m)

dF

dη

∫ η

0

Fdη

}
=

dR

dη
+

1
Reδ∗

d2F

dη2 . (3.12)
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If now uτ/U → 0, the asymptotic version becomes,

−2βF +
β

m
(1 + m)η

dF

dη
=

dR

dη
. (3.13)

The relation between the equations (3.10), (3.12) and (3.13), and what
they can be used for is discussed in the next chapter.

3.2.2. The inner part
The analysis of the flow near the wall is important because many features of
the flow of engineering significance is determined in the near-wall region. In
the inner part of a zero pressure gradient boundary layer, equation (3.4) can
be reduced to,

0 = ν
∂2u

∂y2
− ∂

∂y
〈u′v′〉. (3.14)

The right hand side is interpreted as the gradient of the shear stress τ (or
actually the gradient of τ/ρ), and equation (3.14) can be integrated from the
wall to give an expression for τ itself as a function of y and x,

τ

ρ
≡ ν

∂u

∂y
− 〈u′v′〉 =

(
ν

∂u

∂y
− 〈u′v′〉

) ∣∣∣∣
y=0

(3.15)

The Reynolds stress is zero at the wall and we define the friction velocity uτ

as,

uτ ≡
√

ν
∂u

∂y

∣∣∣∣
y=0

. (3.16)

If we use the viscous scaling (or plus units); u+ ≡ u/uτ , y+ ≡ yuτ/ν and
τ+ ≡ τ/(ρu2

τ ), equation (3.15) can be written,

τ+ ≡ du+

dy+
− 〈u′v′〉+ = 1, (3.17)

which implies that all the dependency on x is included in uτ . The assumption
that u+ is a function of only y+ was first made by Prandtl (1932). In the
viscous sub-layer, where the Reynolds stress is negligible, equation (3.17) can
be integrated to yield u+ = y+, i.e. the velocity profile is a function of only
one variable, which in turn depends on both x and y.

Equation (3.17) with the pressure gradient term included can be written
as,

τ+ = 1 +
(

up

uτ

)3

y+, (3.18)

with

up ≡
(

ν
1
ρ

dP

dx

)1/3

. (3.19)

The linear behavior of the total shear stress revealed in equation (3.18) was
first observed by Stratford (1959a,b).
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In the viscous sub-layer the Reynolds shear stress approaches zero and
equation (3.18) can be integrated to give,

u+ = y+ +
1
2

(
up

uτ

)3

(y+)2. (3.20)

This equation was first derived by Patel (1973), and reduces to the usual linear
profile in ZPG case, when up → 0.

It can be shown that the pressure gradient term decreases with increasing
Reynolds number. The term is thus important only for low Reynolds numbers.
However, close to separation, where uτ approaches zero, it is clear that the
terms becomes infinite, even for large Reynolds numbers.

For the ZPG case, the scaling of the total shear stress with uτ gives a self-
similar profile (τ+ = 1). From equation (3.18) it is observed that the velocity
scale uτ does not results in a self-similar expression. However, equation (3.18)
can be formulated as

τ∗ ≡ 1
u2∗

(
ν

∂u

∂y
− 〈u′v′〉

)
= 1, (3.21)

where u∗ is a velocity scale that depends on y and can be expressed as

u2
∗ = u2

τ +
u3

p

uτ
y+. (3.22)

The only velocity scale in the inner part of the ZPG boundary layer is uτ .
By normalizing the velocity gradient with y and uτ , and assume this scaling
leads to a constant non-dimensional velocity gradient for large enough y+, (see
e.g. Bradshaw & Huang (1995)), we get the equation,

y

uτ

∂u

∂y
=

1
κ

. (3.23)

When expressed in inner scales and integrated, equation (3.23) yields the log-
arithmic velocity profile.

In the APG boundary layer, the velocity scale is u∗, and using this velocity
scale in the normalization of the velocity gradient yields,

y

u∗
∂u

∂y
=

1
κ

. (3.24)

When expressed in inner scales and integrated, equation (3.24) yields,

u+ =
1
κ

(
ln y+ − 2 ln

√
1 + λy+ + 1

2
+ 2(

√
1 + λy+ − 1)

)
+ B, (3.25)

with

λ =
(

up

uτ

)3

.

A more thorough derivation of equation (3.25) is given in paper 4. Townsend
(1961), Mellor (1966) and Afzal (1996) have derived similar equations, albeit
with different methods and assumptions. Equation (3.25) will be compared
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with DNS data in the next chapter where also the corresponding equation for
the separated boundary layer will be presented.



CHAPTER 4

Turbulent boundary layers under adverse pressure
gradients

The turbulent boundary layer under an adverse pressure gradient (APG) is
decelerated, which does not mean that the turbulence intensity decreases. On
the contrary, the flow becomes even more unstable and the turbulence activity
is enhanced. The boundary layer also grows (thickens) more rapidly under the
influence of an APG. Since the momentum of the fluid is lower close to the wall
than further up in the boundary layer, the flow near the wall is more severely
affected by the pressure gradient. If the pressure gradient is strong enough, the
flow close to the wall separates, i.e. reversed flow appears.

4.1. General features
In figure 4.1 the freestream velocity (U) for all five simulations included in this
thesis are shown. These profiles constitute the boundary condition on the upper
edge of the computational box and define the APG. The resulting skin friction
(Cf ≡ 2(uτ/U)2) of the four attached boundary layers are shown in figure
4.2. As the APG is increased the Cf is reduced. If the APG is strong enough
it induces separation (Cf < 0), which occurs for the freestream distribution
used in the case SEP. The Cf for SEP is shown in figure 4.3, where also the
Cf distributions for previously completed simulations of a separated turbulent
boundary layer are included. The two earlier simulations were performed by
Na & Moin (1998) and Spalart & Coleman (1997). In figure 4.3 the x values
have been recalculated in our simulation coordinates. However, the relative
starting positions of the boundary layers cannot be calculated and are here
matched by letting the starting points of all three simulations be located at
x = 0. From figure 4.3 it is clear that the separation bubble is longer in the
present simulation (case SEP) than in the other two. In figure 4.3 the Cf

from our simulation has been calculated using the same technique as in Na &
Moin (1998) and Spalart & Coleman (1997), i.e. with a value of unity for the
freestream velocity. More results from the separated boundary layer simulation
are presented in section 4.4.

The streamwise velocity profile at x = 300 is shown for the five cases
in figure 4.4. The simulations were performed with different heights of the
computational box, as seen in figure 4.4. The heights in A3 and SEP were
actually 65 but the profiles are shown up to 45. The freestream velocity is unity

17
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Figure 4.1. U . — ZPG; - - A1; · · · A2; − · − A3; − · ·− SEP.
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Figure 4.2. Cf . — ZPG; - - A1; · · · A2; − · − A3.
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Figure 4.3. — Cf from SEP; - - Cf from Na & Moin (1998);
· · · Cf from Spalart & Coleman (1997).

only for ZPG. The profile from SEP exhibits negative values of the velocity close
to the wall, showing that separation has occurred.

The streamwise velocity fluctuations form elongated structures near the
wall in a ZPG boundary layer. It is generally thought that the structures are
weakened in an APG flow. This is illustrated in figure 4.5, where the streamwise
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Figure 4.4. Streamwise velocity profiles at x = 300. — ZPG;
- - A1; · · · A2; − · − A3; − · ·− SEP.

velocity fluctuations in a horizontal plane from ZPG, A3 and SEP are shown.
The figure shows the whole computational boxes in the spanwise direction and
excluding the transitional part and fringe region in the streamwise direction.
The dark color represents the low-speed regions and light color represents the
area containing high-speed fluid. The streaks formed in the ZPG case (figure
4.5a) are spaced 100 viscous units in the spanwise direction. The streaks in the
A3 case are shown in figure 4.5b. The structures are weakened at the end of the
domain as compared with those in the beginning, showing the damping effect
of the APG on the structures. The spacing between the structures increases
from 100 (the same as for a ZPG layer) at the beginning to about 130 at the
end, based on the local uτ .

The SEP case is shown in figure 4.5c. There are still some structures in
the separated flow, though not at all as long and frequent as in the ZPG or
A3. Before separation, which occurs at approximately x = 142, the streaks
are visible, but are rapidly vanishing in the beginning of the separated region.
There is notable increase in the streak formation around x = 350, where the
friction coefficient is at its lowest values, c.f. figure 4.3. Thus, there are indica-
tions that streaks may reappear in a separated region if the back flow is severe
enough. After the reattachment at x = 412 the streaks are not immediately
appearing, but are clearly visible after x = 450.
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Figure 4.5. Streamwise velocity fluctuations in a horizon-
tal plane at y+ = 10. (a) ZPG. (b) A3. (c) SEP. The points
denoted S and R represent the separation and reattachment
respectively.
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4.2. The outer region of the boundary layer
4.2.1. Self-similarity

The simulations presented in paper 1 showed constant β, see table 4.1. How-
ever, the functions F (η) and R(η) are not self-similar for low Reynolds numbers
as shown with DNS in paper 1. For large Reynolds numbers, the functions F (η)
and R(η) do become self-similar and converge to the asymptotic defect layer
equation given be equation (3.10), as shown with turbulence models in paper
2 and by Henkes (1998).

The shapes of F (η) from the simulations are shown in figure 4.6. The β
parameter has a strong influence on the profile shape for A3, while the A1 and
A2 profiles are closer to the ZPG profile.
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Figure 4.6. Velocity profiles at x = 300. — ZPG; - - A1;
· · · A2; − · − A3.

4.2.2. Mean flow parameters
The equation describing the outer region can be integrated from the wall to
the freestream, and thereby provide relations between mean flow parameters.
If equation (3.13) is integrated, the relation

m = − β

1 + 3β
(4.1)

is obtained, and when put back in equation (3.13), equation (3.10) is recovered.
When integrating equation (3.10) it should be noted that the wall boundary

condition is R(0) = 1 and not R(0) = 0. The reason for this is that the near-
wall region is neglected when uτ/U → 0.

The non-linear equation (3.12) can also be integrated and yields the rela-
tion,

m = − β

H(1 + β) + 2β
, (4.2)

where H is the shape factor. The limit uτ/U → 0, can now be obtained by
letting H → 1, and the relation (4.1) is recovered from (4.2).
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To compare the relations (4.1) and (4.2), a number of experiments and DNS
are summarized in table 4.1. There is obviously a much better agreement with
the non-linear theory, showing that even in high Reynolds number experiments,
the asymptotic expressions are of limited value.

The more rapidly U is decreased, the lower Cf is obtained, as shown in
figures 4.1 and 4.2. While the relative difference in U between the cases re-
mains the same, a dramatic decrease in Cf occurs between A2 and A3. In
other words, the closer to separation the boundary layer is, the more sensitive
on the freestream velocity distribution it is. The relation between m and β
should reveal this behavior. That so is the case is seen from figure 4.7, where
equation (4.2) has been plotted for the two values of H, between which separa-
tion has been observed to occur. The limiting value of m increases with H but
is confined between −0.22 and −0.25, which is consistent with the observed
values in experiments and DNS. The rapid and strongly non-linear approach
to separation (β → ∞) is consistent with the strong decrease in Cf between
A2 and A3 in figure 4.2.

Case β H m m = − β
H(1+β)+2β m = − β

1+3β

A1 0.24 1.60 -0.077 -0.097 -0.14
A2 0.65 1.63 -0.15 -0.16 -0.22
A3 4.5 1.97 -0.23 -0.23 -0.31

Bradshaw 1 0.9 1.4 -0.15 -0.20 -0.24
Bradshaw 2 5.4 1.54 -0.255 -0.26 -0.31

Sk̊are & 20.0 2.0 -0.22 -0.24 -0.33
Krogstad
Elsberry 25.0 2.45 -0.22 -0.22 -0.33
Stratford ∞ 2.5 -0.23 -0.22 -0.33
Spalart & 1.8 1.65 -0.21 -0.22 -0.28
Leonard 8.0 1.92 -0.23 -0.24 -0.32

∞ 2.3 -0.22 -0.23 -0.33
0.9 1.55 -0.18 -0.19 -0.24
5.4 1.86 -0.24 -0.24 -0.31

Table 4.1. Comparison of m from the non-linear/linear the-
ory. The data are taken from the following references (from
top to bottom) Bradshaw (1967), Sk̊are & Krogstad (1994),
Elsberry et al. (2000), Stratford (1959a), Spalart & Leonard
(1987).

4.3. The inner part of the boundary layer
4.3.1. The viscous sub-layer

Profiles in the viscous scaling are compared for the different APG cases in
figure 4.8. All of them matches closely the linear profile u+ = y+. Thus, even
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Figure 4.7. β as a function of m from equation (4.2) for
— H=2.0 and - - H=2.5.

under strong APG the inclusion of the pressure gradient term does not seem
to be of importance. However, close to separation or reattachment, when uτ is
small, the velocity profile is strongly influenced by the pressure gradient term.
In figure 4.9, a velocity profile from the SEP case (in the attached region)
illustrates the importance of the pressure gradient term.
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Figure 4.8. Velocity profiles at x = 300. — ZPG; - - A1;
· · · A2; − · − A3; ◦ u+ = y+.

4.3.2. The overlap region
An example of comparison between DNS data and equation (3.25) is shown
in figure 4.10. DNS data from the attached region (at x = 450) of the case
SEP is shown as a solid line in figure 4.10. The dashed line is equation (3.25)
and the dotted line is the logarithmic law for the ZPG boundary layer. The
value of additive constant is B = −2, which is in agreement with the earlier
investigation of the flow just upstream of separation in the simulation of Na &
Moin (1998), see paper 3.

The value of the Kármán constant, κ, has been set to 0.41 throughout
this thesis. Lately, Österlund et al. (2000) have shown that the value of the
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Figure 4.9. Velocity profile close to reattachment. — SEP;
- - equation (3.20); ◦ u+ = y+.
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Figure 4.10. Velocity profiles from SEP: — DNS; - - equation
(3.25) for x = 450 and equation (4.8) for x = 150; · · · u+ =

1
0.41 ln y+ + 5.1.

Kármán constant actually is 0.38 for large enough Reynolds number. However,
Spalart (1988) has shown that the old value of 0.41 gives good agreement for
low Reynolds numbers. In a number of earlier investigations the influence of the
Reynolds number on the Kármán constant has been debated, see e.g. Simpson
(1970).

4.4. Separation
In paper 4, one of the boundary layers was separated for a large portion of the
flow. The contours of mean streamwise velocity are shown in figure 4.11 with
positive values shown as solid lines and negative as dashed.

At the point of separation the wall shear stress is zero, i.e. uτ = 0. Thus
the scaling with uτ encounters a singularity. When considering a strong APG or
separation, the singularity can be avoided by using the velocity scale up instead
of uτ . This was noted by Stratford (1959b), Townsend (1961) and Tennekes &
Lumley (1972). By rescaling equation (3.20) the following expression for the
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Figure 4.11. SEP: contours of mean velocity. Positive values
shown as solid lines, negative as dashed.
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Figure 4.12. Velocity profile close to reattachment. — SEP;
◦ up = 1

2 (yp)2.

velocity profile in the viscous sub-layer is obtained,

up ≡ u

up
=

1
2
(yp)2 +

(
uτ

up

)2

yp, (4.3)

where yp ≡ yup/ν. In the limit of separation, when uτ → 0, equation (4.3)
reduces to

up =
1
2
(yp)2. (4.4)

Thus, in this rescaled form, the singularity is avoided. The profile from the
SEP case at reattachment is shown in figure 4.12 together with the asymptotic
expression (4.4). This is the same velocity profile as was shown in figure 4.9.
Equation (3.25) can be rewritten in the pressure gradient scaling for the overlap
region, and the resulting expression asymptotes to the square-root law when
uτ → 0,

up =
1
κ

2
√

yp + C, (4.5)

which was first obtained by Stratford (1959b).
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In the separated region the velocity gradient at the wall is negative, and
the definition of uτ needs to be changed to

uτ ≡
√

−ν
∂u

∂y

∣∣∣∣
y=0

. (4.6)

An integration from the wall was a crucial step in the derivation of the
total shear stress. Both the velocity profile in the viscous sub-layer and in
the overlap region depends on the expression for the total shear stress. In a
separated boundary layer the wall boundary condition is different due to change
of sign in the definition of uτ , which leads to a velocity profile in the viscous
sub-layer that reads,

u+ = −y+ +
1
2

(
up

uτ

)3

y+2
. (4.7)

The velocity profile in the overlap region becomes, in the separated region,

u+ =
1
κ

[
2
√

λy+ − 1 − 2 arctan
(√

λy+ − 1
)]

+ B, (4.8)

with

λ =
(

up

uτ

)3

.

One of the profiles (at x = 150) from the separated region is shown in figure
4.10 together with the profile given by equation (4.8). The additive constant
is B = −7 for the separated case. Observe that no part of the back-flow region
is shown in figure 4.10. The reader is referred to paper 4 for velocity profiles
in the back-flow region.



CHAPTER 5

Modelling of turbulence

The modelling of turbulence can be divided in three major groups. The one we
will talk about most is the Reynolds average Navier-Stokes (RANS) modelling.
With this expression it is meant that the Reynolds equations are closed by a
model for the Reynolds stresses. The second group is large eddy simulation
(LES) where the flow is resolved for the large scales while the small scales are
modelled. This is completely left out in this work. The third group is the
models based on the actual structure of turbulence. The models can e.g. be
used for RANS modelling (Perry et al. 1994) or for turbulence control purposes.

5.1. RANS modelling
If the mean flow of a turbulent flow is to be calculated by solving the equations
(3.1) and (3.2), a relation between the Reynolds stresses and the mean flow is
required.

5.1.1. Basic concepts
Often the two-dimensional boundary layer is calculated using the equations
(3.3) and (3.4) with the last term neglected. Hence, only the Reynolds shear
stress needs to be related to the velocity. The simplest relation is the mixing
length,

−〈u′v′〉+ = (l+)2
(

du+

dy+

)2

with l+ = κy+, (5.1)

which was first developed by Prandtl (1925). This relation has received a lot of
interest during the years and particularly the near-wall behavior of (5.1) is of
great importance, even for more sophisticated models. The wall is not naturally
accounted for in the relation (5.1), but a successful wall-damping function (f1)
was introduced by van Driest (1956),

f1 = 1 − exp(−y+/A+), (5.2)

which is applied on the mixing length l+ = κy+f1.
The mixing length is based on the concept of turbulent viscosity, first in-

troduced by Boussinesq (1877). The Boussinesq hypothesis can be generalized
to the form,

aij = −2
νT

K
Sij , (5.3)

where νT is the turbulent viscosity. Here we have introduced the anisotropy ten-
sor, aij ≡ 〈u′

iu
′
j〉/K − 2δij/3, and rate of strain tensor, Sij ≡ 1/2(Ui,j + Uj,i).

27
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Figure 5.1. Velocity profiles from A2 in inner scaling.
— DNS; - - DRSM; · · · Asymptotic DRSM.

There exists a number of methods to develop better models than the mixing
length for νT . In e.g. the two-equation models νT is written in the form,

νT = Cµ
K2

ε
or νT =

K

ω
, (5.4)

and two transport equations for K and ε or ω have to be solved.
There are also many models not based on the Boussinesq hypothesis. In

the differential Reynolds stress model (DRSM) the transport equations for
the Reynolds stresses themselves are solved. This leads to a much greater
computational effort than for the two-equation models. In addition, numerical
issues become important. However, in some cases the DRSM is required to
capture features of the flow that cannot be predicted by other models.

In the explicit algebraic Reynolds stress model (EARSM), the advection
and viscous diffusion of the anisotropy are neglected in the transport equations,
and an algebraic equation for the anisotropy is obtained. This kind of model
is based on a two-equation model and can be written in a similar form as a
generalized Boussinesq hypothesis.

In paper1 the DRSM of Hanjalić et al. (1995) was used to investigate
the asymptotic behavior of the boundary layer for large Reynolds numbers.
Furthermore, the model was used to predict the mean flow at the same low
Reynolds number as the DNS. The model predictions showed that low Reynolds
number effects are well captured by the DRSM. An example from the case A2
is shown in figure 5.1. The velocity profile from the low Reynolds number
DNS (solid line) is well predicted by the DRSM (dashed line). The asymptotic
profile calculated with the DRSM at high Reynolds number develops into a
self-similar profile (dotted line).
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Figure 5.2. A3 at x = 150: ◦ DNS; — non-damped
EARSM; Damped EARSM with the scaled coordinate in f1

as - - y+; · · · y∗. a) a12. b) a22.

In paper 2 a number of two-equations models were compared with DNS
data and experimental data. The general conclusion from that investigation is
that the k−ω model is reasonably accurate, while the k− ε model gives rather
large deviations for strong adverse pressure gradients.

5.1.2. Improvement of wall damping
In paper 5 the EARSM model of Wallin & Johansson (2000) was used for
the investigation of the near-wall behavior. By using DNS data in the model
expressions for the Reynolds stresses close to the wall, the influence of the
wall-damping functions can be examined. The wall-damping is based on the
van Driest function, equation (5.2). However, in an APG boundary layer,
equation (5.2) is not valid. Some of the work in the earlier mixing length
models have been concentrated on finding a relation between the constant A+

and the pressure gradient, see e.g. Granville (1989). A different method to
improve the wall-damping is used in paper 5. The viscous scaling of y in
equation (5.2) is replaced with the scalings related to the work in paper 4. The
improved near-wall damping is illustrated in figure 5.2, where the expressions
for the anisotropy are evaluated from DNS data. The DNS data is represented
with circles and the non-damped (i.e. f1 = 1) model evaluation is shown as the
solid line. By damping with f1 = 1 based on y+ the dashed line is obtained.
If y+ is replaced with y∗ ≡ yu∗/ν, where u∗ is defined from equation (3.22),
the dotted profile is obtained. Thus, the wall-damping is much improved by
changing from the viscous scaling to the relevant scaling in an APG flow.

DNS data from the case A3 was also used by Wallin & Johansson (2000)
to evaluate the damping of the EARSM model.
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5.2. Instantaneous flow structures
Turbulence does not consist of randomly fluctuating velocities. The experi-
ments of Kline et al. (1967) showed that low-speed streaks populate the near-
wall region. Since then many different types of structures and models for the
dynamics of turbulence structures have been proposed, see the introduction of
paper 7.

Most models trying to capture the essential mechanisms in turbulence are
conceptual, not predictive, in the sense they do not relate Reynolds stresses
to the mean flow, but try to explain the various steps in the production and
regeneration of turbulence. For a general review of the subject, see Robinson
(1991).

In paper 7 the instability mechanism of a turbulent low-speed streak is
addressed. Simulations of an artificial streak in a laminar boundary layer were
performed in order to examine the instability in a controlled environment. This
laminar simulation was also used for reproducing and further investigate the
results from an experimental investigation by Acarlar & Smith (1987).

The laminar streak breaks down due to an instability originating from
an inflectional velocity profile. The instability calculations using the Orr-
Sommerfeld equations gave qualitative agreement in the growth rate and stream-
wise wavenumber with the corresponding values extracted from the DNS veloc-
ity fields. The instability waves riding on the streak, roll up to form a horseshoe
vortex. Some striking similarities between the vortices that appear in the lam-
inar simulation and the ones found in a ZPG turbulent boundary layer were
found. To illustrate the qualitative agreement, a small part of the turbulent
boundary layer is shown in figure 5.3, while the laminar streak is shown in
figure 5.4. The horseshoe vortices are visualized with regions of low pressure.
The light grey structures represent the low-speed streaks and the darker ones
represent regions with low pressure. The flow is directed upward in the figures.
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Figure 5.3. The turbulent boundary layer.
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Figure 5.4. The laminar low-speed streak.



CHAPTER 6

Conclusions and outlook

The direct numerical simulations have been completed with a code which runs
efficiently on all types of super computers in use today. Besides the obvi-
ous wishes for higher Reynolds number, larger computational box and higher
resolution, there is a number of possible extensions for future DNS. A natural
extension to this work is the turbulent boundary layer with a three-dimensional
mean flow. Although some theoretical work has been presented for this type of
flow, (e.g. Degani et al. 1993), DNS would be interesting for comparison. Wall
roughness and wall curvature are also complications that are of engineering
significance.

A consistent analysis of the turbulent boundary layer equations for the
inner part in this work has given the theoretical expressions for the streamwise
velocity profile in the viscous sub-layer and overlap region. The analysis could
perhaps be extended to include complications of the kind mentioned above, see
e.g. Townsend (1976).

The work on turbulence modelling leaves some unanswered questions. The
damping of the non-linear terms in the EARSM model is one such issue.
However, the near-wall laws for APG boundary layers developed here could
be of great importance in turbulence model predictions of such flows. The
laws are suitable as boundary conditions through wall functions if well defined
freestream data are available. The work on coherent structures and their dy-
namics can be developed to obtain a more complete picture. Specially the insta-
bility mechanism of the low-speed streaks in a turbulent flow needs to be more
thoroughly investigated. The concept of two instability mechanisms present in
turbulence could lead to a more unified view on the self-sustained turbulence
regeneration cycle. The knowledge about turbulence structures should be uti-
lized in a predictive model, maybe in a similar manner as in the investigation
of Perry et al. (1994).

For more specific conclusions, the reader is referred to papers 1 through 8.
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